1
|
Borges GSM, Sicard P, de Mello Gomides Loures C, Evangelista FGC, Sales CC, de Paula Sabino A, Fernandes C, Ferreira LAM, Richard S. Tocotrienols-enriched Self-nanoemulsifying Drug Delivery System Enhances the Antileukemic Activity of All-trans Retinoic Acid but not Electrocardiogram Alterations Evoked by Its Combination with Arsenic Trioxide. AAPS PharmSciTech 2023; 24:79. [PMID: 36918482 DOI: 10.1208/s12249-023-02531-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/09/2023] [Indexed: 03/16/2023] Open
Abstract
All-trans retinoic acid and arsenic trioxide are the leading choices for the treatment of acute promyelocytic leukemia. Notwithstanding the impressive differentiative properties of all-trans retinoic acid and the apoptotic properties of arsenic trioxide, some problems still occur in acute promyelocytic leukemia treatment. These problems are due to patients' relapses, mainly related to changes in the ligand-binding domain of RARα (retinoic acid receptor α) and the cardiotoxic effects caused by arsenic trioxide. We previously developed a self-nanoemulsifying drug delivery system enriched with tocotrienols to deliver all-trans retinoic acid (SNEDDS-TRF-ATRA). Herein, we have evaluated if tocotrienols can help revert ATRA resistance in an APL cell line (NB4-R2 compared to sensitive NB4 cells) and mitigate the cardiotoxic effects of arsenic trioxide in a murine model. SNEDDS-TRF-ATRA enhanced all-trans retinoic acid cytotoxicity in NB4-R2 (resistant) cells but not in NB4 (sensitive) cells. Moreover, SNEDDS-TRF-ATRA did not significantly change the differentiative properties of all-trans retinoic acid in both NB4 and NB4-R2 cells. Combined administration of SNEDDS-TRF-ATRA and arsenic trioxide could revert QTc interval prolongation caused by ATO but evoked other electrocardiogram alterations in mice, such as T wave flattening. Therefore, SNEDDS-TRF-ATRA may enhance the antileukemic properties of all-trans retinoic acid but may influence ECG changes caused by arsenic trioxide administration. SNEDDS-TRF-ATRA presents cytotoxicity in resistant APL cells (NB4-R2). Combined administration of ATO and SNEDDS-TRF-ATRA in mice prevented the prolongation of the QTc interval caused by ATO but evoked ECG abnormalities such as T wave flattening.
Collapse
Affiliation(s)
- Gabriel Silva Marques Borges
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Campus Pampulha, Belo Horizonte, Minas Gerais, 6627CEP 31270-901, Brazil.,PhyMedExp, Inserm, University of Montpellier, Montpellier, France
| | - Pierre Sicard
- PhyMedExp, Inserm, University of Montpellier, Montpellier, France.,IPAM, Biocampus, INSERM, CNRS, University of Montpellier, Montpellier, France
| | - Cristina de Mello Gomides Loures
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Camila Campos Sales
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Christian Fernandes
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Campus Pampulha, Belo Horizonte, Minas Gerais, 6627CEP 31270-901, Brazil
| | - Lucas Antônio Miranda Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Campus Pampulha, Belo Horizonte, Minas Gerais, 6627CEP 31270-901, Brazil.
| | - Sylvain Richard
- PhyMedExp, Inserm, University of Montpellier, Montpellier, France. .,IPAM, Biocampus, INSERM, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
2
|
Najafi N, Mehri S, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effects of alpha lipoic acid on metabolic syndrome: A comprehensive review. Phytother Res 2022; 36:2300-2323. [PMID: 35234312 DOI: 10.1002/ptr.7406] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MetS) is a multifactorial disease with medical conditions such as hypertension, diabetes, obesity, dyslipidemia, and insulin resistance. Alpha-lipoic acid (α-LA) possesses various pharmacological effects, including antidiabetic, antiobesity, hypotensive, and hypolipidemia actions. It exhibits reactive oxygen species scavenger properties against oxidation and age-related inflammation and refines MetS components. Also, α-LA activates the 5' adenosine monophosphate-activated protein kinase and inhibits the NFκb. It can decrease cholesterol biosynthesis, fatty acid β-oxidation, and vascular stiffness. α-LA decreases lipogenesis, cholesterol biosynthesis, low-density lipoprotein and very low-density lipoprotein levels, and atherosclerosis. Moreover, α-LA increases insulin secretion, glucose transport, and insulin sensitivity. These changes occur via PI3K/Akt activation. On the other hand, α-LA treats central obesity by increasing adiponectin levels and mitochondrial biogenesis and can reduce food intake mainly by SIRT1 stimulation. In this review, the most relevant articles have been discussed to determine the effects of α-LA on different components of MetS with a special focus on different molecular mechanisms behind these effects. This review exhibits the potential properties of α-LA in managing MetS; however, high-quality studies are needed to confirm the clinical efficacy of α-LA.
Collapse
Affiliation(s)
- Nahid Najafi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Nurliyani N, Harmayani E, Sunarti S. Synbiotic goat milk kefir improves health status in rats fed a high-fat and high-fructose diet. Vet World 2022; 15:173-181. [PMID: 35369595 PMCID: PMC8924388 DOI: 10.14202/vetworld.2022.173-181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Background and Aim: Kefir, a natural probiotic containing bacteria and yeast, is a fermented milk product, whereas glucomannan from porang tuber (Amorphophallus oncophyllus) is prebiotic in vivo. Simvastatin is a potent lipid-lowering statin that can be utilized for pharmacological therapy in obesity. This study aimed to determine the effect of goat milk kefir supplemented with porang glucomannan (synbiotic kefir) and goat milk kefir without glucomannan (probiotic kefir) on blood glucose, hemoglobin A1c (HbA1c), free fatty acids (FFAs), tumor necrosis factor-alpha (TNF-α), gene expression of peroxisome proliferator-activated receptor gamma (PPARg), and insulin-producing cells in rats fed a high-fat and high-fructose (HFHF) diet. Materials and Methods: Male Sprague-Dawley rats were divided into five dietary groups: (1) Normal control, (2) rats fed HFHF, (3) rats fed HFHF+probiotic kefir, (4) rats fed HFHF+synbiotic kefir, and (5) rats fed HFHF+simvastatin. All of these treatments were administered for 4 weeks. Results: There were no significant differences in plasma glucose levels in HFHF diet-fed rats before and after treatment. However, plasma HbA1c and TNF-α decreased, and FFAs were inhibited in rats after treatment with synbiotic kefir. Synbiotic kefir decreased the gene expression of PPARγ2 in HFHF diet-fed rats but did not affect the total number of islets of Langerhans and insulin-producing cells. Conclusion: Synbiotic kefir improved the health of rats fed an HFHF diet by decreasing HbA1c, TNF-α, and PPARγ2 gene expression and preventing an increase in FFAs.
Collapse
Affiliation(s)
- Nurliyani Nurliyani
- Department of Animal Product Technology, Faculty of Animal Science, Universitas Gadjah Mada, Jl. Fauna 3, Kampus UGM, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Eni Harmayani
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora 1 Bulaksumur, Yogyakarta 55281, Indonesia
| | - Sunarti Sunarti
- Department of Biochemistry, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Farmako, Senolowo, Sekip Utara, Yogyakarta 55281, Indonesia
| |
Collapse
|
4
|
Wong SK, Kamisah Y, Mohamed N, Muhammad N, Masbah N, Mohd Fahami NA, Mohamed IN, Shuid AN, Mohd Saad Q, Abdullah A, Mohamad NV, Ibrahim NI, Pang KL, Chow YY, Thong BKS, Subramaniam S, Chan CY, Ima-Nirwana S, Chin KY. Potential Role of Tocotrienols on Non-Communicable Diseases: A Review of Current Evidence. Nutrients 2020; 12:E259. [PMID: 31963885 PMCID: PMC7019837 DOI: 10.3390/nu12010259] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Tocotrienol (T3) is a subfamily of vitamin E known for its wide array of medicinal properties. This review aimed to summarize the health benefits of T3, particularly in prevention or treatment of non-communicable diseases (NCDs), including cardiovascular, musculoskeletal, metabolic, gastric, and skin disorders, as well as cancers. Studies showed that T3 could prevent various NCDs, by suppressing 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) in the mevalonate pathway, inflammatory response, oxidative stress, and alternating hormones. The efficacy of T3 in preventing/treating these NCDs is similar or greater compared to tocopherol (TF). TF may lower the efficacy of T3 because the efficacy of the combination of TF and T3 was lower than T3 alone in some studies. Data investigating the effects of T3 on osteoporosis, arthritis, and peptic ulcers in human are limited. The positive outcomes of T3 treatment obtained from the preclinical studies warrant further validation from clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (S.K.W.); (Y.K.); (N.M.); (N.M.); (N.M.); (N.A.M.F.); (I.N.M.); (A.N.S.); (Q.M.S.); (A.A.); (N.-V.M.); (N.I.I.); (K.-L.P.); (Y.Y.C.); (B.K.S.T.); (S.S.); (C.Y.C.); (S.I.-N.)
| |
Collapse
|
5
|
Castro MC, Villagarcía HG, Massa ML, Francini F. Alpha-lipoic acid and its protective role in fructose induced endocrine-metabolic disturbances. Food Funct 2019; 10:16-25. [PMID: 30575838 DOI: 10.1039/c8fo01856a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent decades a worldwide increase has been reported in the consumption of unhealthy high calorie diets associated with marked changes in meal nutrient composition, such as a higher intake of refined carbohydrates, which leads to the speculatation that changes in food habits have contributed to the current epidemic of obesity and type 2 diabetes. Among these refined carbohydrates, fructose has been deeply investigated and murine models of high fructose diet have emerged as useful tools to study dietary-induced insulin resistance, impaired glucose tolerance, dyslipidemia and alterations in glucose metabolism. Since oxidative stress has been demonstrated to play a key pathogenic role in the alterations described above, several lines of research have focused on the possible preventive effects of antioxidant/redox state regulation therapy, among which alpha-lipoic acid has been extensively investigated. The following references discussed support the fact that co-administration of alpha-lipoic acid normalized the changes generated by fructose rich diets, thereby making this compound a good therapeutic tool, also administered as a food supplement, to prevent endocrine-metabolic disturbances triggered by high fructose associated with obesity and type 2 diabetes at an early stage of development (prediabetes).
Collapse
Affiliation(s)
- María Cecilia Castro
- CENEXA (Centro de Endocrinología Experimental y Aplicada, UNLP-CONICET La Plata-FCM) (Centro asociado CICPBA), 1900 La Plata, Argentina.
| | | | | | | |
Collapse
|
6
|
Pang KL, Chin KY. The Role of Tocotrienol in Protecting Against Metabolic Diseases. Molecules 2019; 24:E923. [PMID: 30845769 PMCID: PMC6429133 DOI: 10.3390/molecules24050923] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/02/2019] [Accepted: 03/03/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is a major risk factor for diabetes, and these two metabolic conditions cause significant healthcare burden worldwide. Chronic inflammation and increased oxidative stress due to exposure of cells to excess nutrients in obesity may trigger insulin resistance and pancreatic β-cell dysfunction. Tocotrienol, as a functional food component with anti-inflammatory, antioxidant, and cell signaling-mediating effects, may be a potential agent to complement the current management of obesity and diabetes. The review aimed to summarize the current evidence on the anti-obesity and antidiabetic effects of tocotrienol. Previous studies showed that tocotrienol could suppress adipogenesis and, subsequently, reduce body weight and fat mass in animals. This was achieved by regulating pathways of lipid metabolism and fatty acid biosynthesis. It could also reduce the expression of transcription factors regulating adipogenesis and increase apoptosis of adipocytes. In diabetic models, tocotrienol was shown to improve glucose homeostasis. Activation of peroxisome proliferator-activated receptors was suggested to be responsible for these effects. Tocotrienol also prevented multiple systemic complications due to obesity and diabetes in animal models through suppression of inflammation and oxidative stress. Several clinical trials have been conducted to validate the antidiabetic of tocotrienol, but the results were heterogeneous. There is no evidence showing the anti-obesity effects of tocotrienol in humans. Considering the limitations of the current studies, tocotrienol has the potential to be a functional food component to aid in the management of patients with obesity and diabetes.
Collapse
Affiliation(s)
- Kok-Lun Pang
- School of Pharmacy, University of Reading Malaysia, Iskandar Puteri Johor 79200, Malaysia.
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Venturini PR, Thomazini BF, Oliveira CA, Alves AA, Camargo TF, Domingues CEC, Barbosa-Sampaio HCL, do Amaral MEC. Vitamin E supplementation and caloric restriction promotes regulation of insulin secretion and glycemic homeostasis by different mechanisms in rats. Biochem Cell Biol 2018; 96:777-785. [PMID: 30481061 DOI: 10.1139/bcb-2018-0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vitamin E and caloric restriction have antioxidant effects in mammals. The aim of this study was to evaluate effects of vitamin E supplementation and caloric restriction upon insulin secretion and glucose homeostasis in rats. Male Wistar rats were distributed among the following groups: C, control group fed ad libitum; R, food quantity reduction of 40%; CV, control group supplemented with vitamin E [30 mg·kg-1·day-1]; and RV, food-restricted group supplemented with vitamin E. The experiments ran for 21 days. Glucose tolerance and insulin sensitivity was higher in the CV, R, and RV groups. Insulin secretion stimulated with different glucose concentrations was lower in the R and RV groups, compared with C and CV. In the presence of glucose and secretagogues, insulin secretion was higher in the CV group and was lower in the R and RV groups. An increase in insulin receptor occurred in the fat pad and muscle tissue of groups CV, R, and RV. Levels of hepatic insulin receptor and phospho-Akt protein were higher in groups R and RV, compared with C and CV, while muscle phospho-Akt was increased in the CV group. There was a reduction in hepatic RNA levels of the hepatocyte growth factor gene and insulin degrading enzyme in the R group, and increased levels of insulin degrading enzyme in the CV and RV groups. Thus, vitamin E supplementation and caloric restriction modulate insulin secretion by different mechanisms to maintain glucose homeostasis.
Collapse
Affiliation(s)
- Paula R Venturini
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, UNIARARAS, Araras, São Paulo, Brazil
| | - Bruna Fontana Thomazini
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, UNIARARAS, Araras, São Paulo, Brazil
| | - Camila Andréa Oliveira
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, UNIARARAS, Araras, São Paulo, Brazil
| | - Armindo A Alves
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, UNIARARAS, Araras, São Paulo, Brazil
| | - Thaís Furtado Camargo
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, UNIARARAS, Araras, São Paulo, Brazil
| | - Caio E C Domingues
- School of Biology, Centro Universitário Hermínio Ometto, UNIARARAS, Araras, São Paulo, Brazil
| | - Helena C L Barbosa-Sampaio
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, São Paulo, Brazil
| | - Maria Esméria C do Amaral
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, UNIARARAS, Araras, São Paulo, Brazil
| |
Collapse
|
8
|
Chin KY, Pang KL, Soelaiman IN. Tocotrienol and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:97-130. [DOI: 10.1007/978-3-319-41334-1_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Abstract
The discovery of vitamin E (α-tocopherol) began in 1922 as a vital component required in reproduction. Today, there are eight naturally occurring vitamin E isoforms, namely α-, β-, γ- and δ-tocopherol and α-, β-, γ- and δ-tocotrienol. Vitamin E is potent antioxidants, capable of neutralizing free radicals directly by donating hydrogen from its chromanol ring. α-Tocopherol is regarded the dominant form in vitamin E as the α-tocopherol transfer protein in the liver binds mainly α-tocopherol, thus preventing its degradation. That contributed to the oversight of tocotrienols and resulted in less than 3% of all vitamin E publications studying tocotrienols. Nevertheless, tocotrienols have been shown to possess superior antioxidant and anti-inflammatory properties over α-tocopherol. In particular, inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase to lower cholesterol, attenuating inflammation via downregulation of transcription factor NF-κB activation, and potent radioprotectant against radiation damage are some properties unique to tocotrienols, not tocopherols. Aside from cancer, vitamin E has also been shown protective in bone, cardiovascular, eye, nephrological and neurological diseases. In light of the different pharmacological properties of tocopherols and tocotrienols, it becomes critical to specify which vitamin E isoform(s) are being studied in any future vitamin E publications. This review provides an update on vitamin E therapeutic potentials, protective effects and modes of action beyond cancer, with comparison of tocopherols against tocotrienols. With the concerted efforts in synthesizing novel vitamin E analogs and clinical pharmacology of vitamin E, it is likely that certain vitamin E isoform(s) will be therapeutic agents against human diseases besides cancer.
Collapse
Affiliation(s)
- Hong Yong Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - W S Daniel Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore; Immunology Program, Life Science Institute, National University of Singapore, Singapore.
| |
Collapse
|
10
|
Boa BCS, Barros CMMR, Souza MDGC, Castiglione RC, Cyrino FZGA, Bouskela E. α-Tocopherol Improves Microcirculatory Dysfunction on Fructose Fed Hamsters. PLoS One 2015; 10:e0134740. [PMID: 26244369 PMCID: PMC4526657 DOI: 10.1371/journal.pone.0134740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/13/2015] [Indexed: 11/19/2022] Open
Abstract
Fructose, an everyday component of western diet associated to chronic hyperglycemia and enhanced free radical production, impairs endothelial function and supplementation with antioxidants might improve it. In this study we investigated if vitamin E could reverse the microvascular damage elicited by fructose. Male Syrian golden hamsters drank either 10% fructose solution (F) or filtered water (C), combined with three concentrations of vitamin E in their chows [zero, normal (VE) or 5X (5XVE)] during 60 days. Microvascular reactivity in response to topical application of acetylcholine (Ach; endothelium-dependent vasodilator) or sodium nitroprusside (SNP; endothelium-independent vasodilator) and macromolecular permeability increase induced by either 30 min ischemia followed by reperfusion (I/R) or topical application of histamine (5 μM) were assessed using the cheek pouch preparation. Compared to controls (drinking filtered water), fructose-drinking animals showed decreased vasodilatation to acetylcholine in all concentrations tested (-56.2% for 10-9M, -53.9% for 10-7M and -43.7% for 10-5M). On the other hand, vitamin E supplementation resulted in increased responses for both water and fructose drinking groups (177.4% for F vs. F/5XVE and 241.6% for C vs. C/5XVE for 10-5M Ach). Endothelial-independent vasodilatation explored by topical application of SNP was restored and even enhanced with the supplementation of 5X vitamin E in both groups (80.1% for F vs. F/5XVE; 144.2% for C vs. C/5XVE; 3.4% of difference for C/5XVE vs. F/5XVE on 10-5M SNP). The number of leaky sites after I/R and histamine stimuli in vitamin E supplemented animals decreased (-25.1% and -15.3% for F vs. F/5XVE; and -21.7% and -16% of leaky sites comparing C vs. C/5XVE, respectively for I/R and histamine stimuli) pointing to tightening of the endothelial barrier for macromolecular permeability. Our results strongly suggest that vitamin E could improve the endothelial function and permeability barrier and also reverse impairments elicited by sugar overload.
Collapse
Affiliation(s)
- Beatriz C. S. Boa
- Laboratory for Clinical and Experimental Research on Vascular Biology (BioVasc), Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - Carlos M. M. R. Barros
- Laboratory for Clinical and Experimental Research on Vascular Biology (BioVasc), Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria das Graças C. Souza
- Laboratory for Clinical and Experimental Research on Vascular Biology (BioVasc), Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel C. Castiglione
- Laboratory for Clinical and Experimental Research on Vascular Biology (BioVasc), Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fátima Z. G. A. Cyrino
- Laboratory for Clinical and Experimental Research on Vascular Biology (BioVasc), Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliete Bouskela
- Laboratory for Clinical and Experimental Research on Vascular Biology (BioVasc), Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Sloboda DM, Li M, Patel R, Clayton ZE, Yap C, Vickers MH. Early life exposure to fructose and offspring phenotype: implications for long term metabolic homeostasis. J Obes 2014; 2014:203474. [PMID: 24864200 PMCID: PMC4017842 DOI: 10.1155/2014/203474] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 03/03/2014] [Indexed: 11/17/2022] Open
Abstract
The consumption of artificially sweetened processed foods, particularly high in fructose or high fructose corn syrup, has increased significantly in the past few decades. As such, interest into the long term outcomes of consuming high levels of fructose has increased significantly, particularly when the exposure is early in life. Epidemiological and experimental evidence has linked fructose consumption to the metabolic syndrome and associated comorbidities-implicating fructose as a potential factor in the obesity epidemic. Yet, despite the widespread consumption of fructose-containing foods and beverages and the rising incidence of maternal obesity, little attention has been paid to the possible adverse effects of maternal fructose consumption on the developing fetus and long term effects on offspring. In this paper we review studies investigating the effects of fructose intake on metabolic outcomes in both mother and offspring using human and experimental studies.
Collapse
Affiliation(s)
- Deborah M. Sloboda
- The Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, HSC 4H30A, Hamilton, ON, Canada L8S 4K1
| | - Minglan Li
- The Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand
| | - Rachna Patel
- The Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand
| | - Zoe E. Clayton
- The Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand
| | - Cassandra Yap
- The Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand
| | - Mark H. Vickers
- The Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
12
|
Tocotrienols reverse cardiovascular, metabolic and liver changes in high carbohydrate, high fat diet-fed rats. Nutrients 2012. [PMID: 23201770 PMCID: PMC3497010 DOI: 10.3390/nu4101527] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Tocotrienols have been reported to improve lipid profiles, reduce atherosclerotic lesions, decrease blood glucose and glycated haemoglobin concentrations, normalise blood pressure in vivo and inhibit adipogenesis in vitro, yet their role in the metabolic syndrome has not been investigated. In this study, we investigated the effects of palm tocotrienol-rich fraction (TRF) on high carbohydrate, high fat diet-induced metabolic, cardiovascular and liver dysfunction in rats. Rats fed a high carbohydrate, high fat diet for 16 weeks developed abdominal obesity, hypertension, impaired glucose and insulin tolerance with increased ventricular stiffness, lower systolic function and reduced liver function. TRF treatment improved ventricular function, attenuated cardiac stiffness and hypertension, and improved glucose and insulin tolerance, with reduced left ventricular collagen deposition and inflammatory cell infiltration. TRF improved liver structure and function with reduced plasma liver enzymes, inflammatory cell infiltration, fat vacuoles and balloon hepatocytes. TRF reduced plasma free fatty acid and triglyceride concentrations but only omental fat deposition was decreased in the abdomen. These results suggest that tocotrienols protect the heart and liver, and improve plasma glucose and lipid profiles with minimal changes in abdominal obesity in this model of human metabolic syndrome.
Collapse
|
13
|
Lipoic acid prevents liver metabolic changes induced by administration of a fructose-rich diet. Biochim Biophys Acta Gen Subj 2012; 1830:2226-32. [PMID: 23085069 DOI: 10.1016/j.bbagen.2012.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 01/15/2023]
Abstract
BACKGROUND To evaluate whether co-administration of R/S-α-lipoic acid can prevent the development of oxidative stress and metabolic changes induced by a fructose-rich diet (F). METHODS We assessed glycemia in the fasting state and during an oral glucose tolerance test, triglyceridemia and insulinemia in rats fed with standard diet (control) and fructose without or with R/S-α-lipoic acid. Insulin resistance and hepatic insulin sensitivity were also calculated. In liver, we measured reduced glutathione, protein carbonyl groups, antioxidant capacity by ABTS assay, antioxidant enzymes (catalase and superoxide dismutase 1 and 2), uncoupling protein 2, PPARδ and PPARγ protein expressions, SREBP-1c, fatty acid synthase and glycerol-3-phosphate acyltransferase-1 gene expression, and glucokinase activity. RESULTS R/S-α-lipoic acid co-administration to F-fed rats a) prevented hyperinsulinemia, hypertriglyceridemia and insulin resistance, b) improved hepatic insulin sensitivity and glucose tolerance, c) decreased liver oxidative stress and increased antioxidant capacity and antioxidant enzymes expression, d) decreased uncoupling protein 2 and PPARδ protein expression and increased PPARγ levels, e) restored the basal gene expression of PPARδ, SREBP-1c and the lipogenic genes fatty acid synthase and glycerol-3-phosphate acyltransferase, and f) decreased the fructose-mediated enhancement of glucokinase activity. CONCLUSIONS Our results suggest that fructose-induced oxidative stress is an early phenomenon associated with compensatory hepatic metabolic mechanisms, and that treatment with an antioxidant prevented the development of such changes. GENERAL SIGNIFICANCE This knowledge would help to better understand the mechanisms involved in liver adaptation to fructose-induced oxidative stress and to develop effective strategies to prevent and treat, at early stages, obesity and type 2 diabetes mellitus.
Collapse
|
14
|
Rosmarinic acid treatment alleviates fibrotic changes in the myocardium induced in a rat model of insulin resistance. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60292-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Howarth FC, Qureshi MA, Sobhy ZHH, Parekh K, Yammahi SRRKD, Adrian TE, Adeghate E. Structural lesions and changing pattern of expression of genes encoding cardiac muscle proteins are associated with ventricular myocyte dysfunction in type 2 diabetic Goto-Kakizaki rats fed a high-fat diet. Exp Physiol 2011; 96:765-77. [PMID: 21666035 DOI: 10.1113/expphysiol.2011.058446] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Given the clinical prevalence of type 2 diabetes and obesity and their association with high mortality linked to cardiovascular disease, the aim of the study was to investigate the effects of feeding type 2 diabetic Goto-Kakizaki (GK) rats either high- or low-fat diets on cardiomyocyte structure and function. The GK rats were fed either a high-fat diet (HFD) or a low-fat diet (LFD) from the age of 2 months for a period of 7 months. The GK-HFD rats gained more weight, ate less food and drank less water compared with GK-LFD rats. At 7 months, non-fasting blood glucose was higher in GK-LFD (334 ± 35 mg dl(-1)) compared with GK-HFD rats (235 ± 26 mg dl(-1)). Feeding GK rats with a HFD had no significant effect on glucose clearance following a glucose challenge. Time-to-peak (t(peak)) shortening was reduced in myocytes from GK-HFD (131.8 ± 2.1 ms) compared with GK-LFD rats (144.5 ± 3.0 ms), and time-to-half (t(1/2)) relaxation of shortening was also reduced in myocytes from GK-HFD (71.7 ± 6.9 ms) compared with GK-LFD rats (86.1 ± 3.6 ms). The HFD had no significant effect on the amplitude of shortening. The HFD had no significant effect on t(peak), t(1/2) decay, amplitude of the Ca(2+) transient, myofilament sensitivity to Ca(2+), sarcoplasmic reticulum Ca(2+) content, fractional release of Ca(2+) and the rate of Ca(2+) uptake. Structurally, ventricular myocytes from GK-HFD rats showed extensive mitochondrial lesions, including swelling, loss of cristae, and loss of inner and outer membranes, resulting in gross vacuolarization and deformation of ventricular mitochondria with a subsequent reduction in mitochondrial density. Expression of genes encoding various L-type Ca(2+) channel proteins (Cacnb2) and cardiac muscle proteins (Myl2 and Atp2a1) were downregulated in GK-HFD compared with GK-LFD rats. Structural lesions and changed expression of genes encoding various cardiac muscle proteins might partly underlie the altered time course of myocyte shortening and relaxation in myocytes from GK-HFD compared with GK-LFD rats.
Collapse
Affiliation(s)
- Frank C Howarth
- Department of Physiology, Faculty of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | | | | | | | | | | | | |
Collapse
|