1
|
Dousti M, Hosseinpour M, D Ghasemi N, Mirfakhraee H, Rajabi SK, Rashidi S, Hatam G. The potential role of protein disulfide isomerases (PDIs) during parasitic infections: a focus on Leishmania spp. Pathog Dis 2023; 81:ftad032. [PMID: 38061803 DOI: 10.1093/femspd/ftad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/24/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
Leishmaniasis is a group of vector-borne diseases caused by intracellular protozoan parasites belonging to the genus Leishmania. Leishmania parasites can employ different and numerous sophisticated strategies, including modulating host proteins, cell signaling, and cell responses by parasite proteins, to change the infected host conditions to favor the parasite persistence and induce pathogenesis. In this sense, protein disulfide isomerases (PDIs) have been described as crucial proteins that can be modulated during leishmaniasis and affect the pathogenesis process. The effect of modulated PDIs can be investigated in both aspects, parasite PDIs and infected host cell PDIs, during infection. The information concerning PDIs is not sufficient in parasitology; however, this study aimed to provide data regarding the biological functions of such crucial proteins in parasites with a focus on Leishmania spp. and their relevant effects on the pathogenesis process. Although there are no clinical trial vaccines and therapeutic approaches, highlighting this information might be fruitful for the development of novel strategies based on PDIs for the management of parasitic diseases, especially leishmaniasis.
Collapse
Affiliation(s)
- Majid Dousti
- Firoozabadi Clinical Research Development Unit (FACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Hosseinpour
- Student Research Committee, School of Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nadia D Ghasemi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hosna Mirfakhraee
- Firoozabadi Clinical Research Development Unit (FACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Shahin K Rajabi
- Firoozabadi Clinical Research Development Unit (FACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Rashidi
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Gholamreza Hatam
- Basic Sciences Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Critical roles of protein disulfide isomerases in balancing proteostasis in the nervous system. J Biol Chem 2022; 298:102087. [PMID: 35654139 PMCID: PMC9253707 DOI: 10.1016/j.jbc.2022.102087] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 02/08/2023] Open
Abstract
Protein disulfide isomerases (PDIs) constitute a family of oxidoreductases promoting redox protein folding and quality control in the endoplasmic reticulum. PDIs catalyze disulfide bond formation, isomerization, and reduction, operating in concert with molecular chaperones to fold secretory cargoes in addition to directing misfolded proteins to be refolded or degraded. Importantly, PDIs are emerging as key components of the proteostasis network, integrating protein folding status with central surveillance mechanisms to balance proteome stability according to cellular needs. Recent advances in the field driven by the generation of new mouse models, human genetic studies, and omics methodologies, in addition to interventions using small molecules and gene therapy, have revealed the significance of PDIs to the physiology of the nervous system. PDIs are also implicated in diverse pathologies, ranging from neurodevelopmental conditions to neurodegenerative diseases and traumatic injuries. Here, we review the principles of redox protein folding in the ER with a focus on current evidence linking genetic mutations and biochemical alterations to PDIs in the etiology of neurological conditions.
Collapse
|
3
|
Finelli MJ. Redox Post-translational Modifications of Protein Thiols in Brain Aging and Neurodegenerative Conditions-Focus on S-Nitrosation. Front Aging Neurosci 2020; 12:254. [PMID: 33088270 PMCID: PMC7497228 DOI: 10.3389/fnagi.2020.00254] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species and reactive nitrogen species (RONS) are by-products of aerobic metabolism. RONS trigger a signaling cascade that can be transduced through oxidation-reduction (redox)-based post-translational modifications (redox PTMs) of protein thiols. This redox signaling is essential for normal cellular physiology and coordinately regulates the function of redox-sensitive proteins. It plays a particularly important role in the brain, which is a major producer of RONS. Aberrant redox PTMs of protein thiols can impair protein function and are associated with several diseases. This mini review article aims to evaluate the role of redox PTMs of protein thiols, in particular S-nitrosation, in brain aging, and in neurodegenerative diseases. It also discusses the potential of using redox-based therapeutic approaches for neurodegenerative conditions.
Collapse
Affiliation(s)
- Mattéa J Finelli
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
4
|
Ghemrawi R, Khair M. Endoplasmic Reticulum Stress and Unfolded Protein Response in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E6127. [PMID: 32854418 PMCID: PMC7503386 DOI: 10.3390/ijms21176127] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is an important organelle involved in protein quality control and cellular homeostasis. The accumulation of unfolded proteins leads to an ER stress, followed by an adaptive response via the activation of the unfolded protein response (UPR), PKR-like ER kinase (PERK), inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) and activating transcription factor 6 (ATF6) pathways. However, prolonged cell stress activates apoptosis signaling leading to cell death. Neuronal cells are particularly sensitive to protein misfolding, consequently ER and UPR dysfunctions were found to be involved in many neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and prions diseases, among others characterized by the accumulation and aggregation of misfolded proteins. Pharmacological UPR modulation in affected tissues may contribute to the treatment and prevention of neurodegeneration. The association between ER stress, UPR and neuropathology is well established. In this review, we provide up-to-date evidence of UPR activation in neurodegenerative disorders followed by therapeutic strategies targeting the UPR and ameliorating the toxic effects of protein unfolding and aggregation.
Collapse
Affiliation(s)
- Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, UAE
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi 129188, UAE;
| |
Collapse
|
5
|
An 11-mer Amyloid Beta Peptide Fragment Provokes Chemical Mutations and Parkinsonian Biomarker Aggregation in Dopaminergic Cells: A Novel Road Map for "Transfected" Parkinson's. ACS Chem Neurosci 2016; 7:1519-1530. [PMID: 27635664 DOI: 10.1021/acschemneuro.6b00159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Amyloid beta (Aβ) aggregation is generally associated with Alzheimer's onset. Here, we demonstrate that incubation of dopaminergic SH-SY5Y cells with an Aβ peptide fragment (an 11-mer composed of residues 25-35; Aβ (25-35)) results in elevated intracellular nitrosative stress and induces chemical mutation of protein disulfide isomerase (PDI), an endoplasmic reticulum-resident oxidoreductase chaperone. Furthermore, Aβ (25-35) provokes aggregation of both the minor and major biomarkers of Parkinson's disease, namely, synphilin-1 and α-synuclein, respectively. Importantly, fluorescence studies demonstrate that Aβ (25-35) triggers colocalization of these Parkinsonian biomarkers to form Lewy-body-like aggregates, a key and irreversible milestone in the neurometabolic cascade leading to Parkinson's disease. In addition, fluorescence assays also reveal direct, aggregation-seeding interactions between Aβ (25-35), PDI and α-synuclein, suggesting neuronal pathogenesis occurs via prion-type cross-transfectivity. These data indicate that the introduction of an Alzheimer's-associated biomarker in dopaminergic cells is proliferative, with the percolative effect exercised via dual, independent, Parkinson-pathogenic pathways, one stress-derived and the other prion-like. The results define a novel molecular roadmap for Parkinsonian transfectivity via an Alzheimeric burden and reveal the involvement of PDI in amyloid beta induced Parkinson's.
Collapse
|
6
|
Manfredi G, Kawamata H. Mitochondria and endoplasmic reticulum crosstalk in amyotrophic lateral sclerosis. Neurobiol Dis 2015; 90:35-42. [PMID: 26282323 DOI: 10.1016/j.nbd.2015.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/31/2015] [Accepted: 08/12/2015] [Indexed: 12/13/2022] Open
Abstract
Physical and functional interactions between mitochondria and the endoplasmic reticulum (ER) are crucial for cell life. These two organelles are intimately connected and collaborate to essential processes, such as calcium homeostasis and phospholipid biosynthesis. The connections between mitochondria and endoplasmic reticulum occur through structures named mitochondria associated membranes (MAMs), which contain lipid rafts and a large number of proteins, many of which serve multiple functions at different cellular sites. Growing evidence strongly suggests that alterations of ER-mitochondria interactions are involved in neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), a devastating and rapidly fatal motor neuron disease. Mutations in proteins that participate in ER-mitochondria interactions and MAM functions are increasingly being associated with genetic forms of ALS and other neurodegenerative diseases. This evidence strongly suggests that, rather than considering the two organelles separately, a better understanding of the disease process can derive from studying the alterations in their crosstalk. In this review we discuss normal and pathological ER-mitochondria interactions and the evidence that link them to ALS.
Collapse
Affiliation(s)
- Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 401 East 61st Street, New York, NY 10065, United States.
| | - Hibiki Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 401 East 61st Street, New York, NY 10065, United States.
| |
Collapse
|
7
|
Kabiraj P, Marin JE, Varela-Ramirez A, Zubia E, Narayan M. Ellagic acid mitigates SNO-PDI induced aggregation of Parkinsonian biomarkers. ACS Chem Neurosci 2014; 5:1209-20. [PMID: 25247703 DOI: 10.1021/cn500214k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nitrosative stress mediated S-nitrosylation (SNO) of protein disulfide isomerase (PDI), a housekeeping oxidoreductase, has been implicated in the pathogenesis of sporadic Parkinson's (PD) and Alzheimer's (AD) diseases. Previous cell line studies have indicated that SNO-PDI formation provokes synphilin-1 aggregation, the minor Parkinsonian biomarker protein. Yet no work exists investigating whether SNO-PDI induces α-synuclein aggregation, the major Lewy body constituent associated with Parkinson's pathogenesis. Here, we report that SNO-PDI formation is linked to the aggregation of α-synuclein and also provokes α-synuclein:synphilin-1 deposits (Lewy-body-like debris) normally found in the PD brain. Furthermore, we have examined the ability of a small molecule, 2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione (ellagic acid; EA) to scavenge NOx radicals and to protect cells from SNO-PDI formation via rotenone insult both, cell-based and cell-independent in vitro experiments. Furthermore, EA not only mitigates nitrosative-stress-induced aggregation of synphilin-1 but also α-synuclein and α-synuclein:synphilin-1 composites (Lewy-like neurites) in PC12 cells. Mechanistic analyses of the neuroprotective phenomena revealed that EA lowered rotenone-instigated reactive oxygen species (ROS) and reactive nitrogen species (RNS) in PC12 cells, imparted antiapoptotic tributes, and directly interfered with SNO-PDI formation. Lastly, we demonstrate that EA can bind human serum albumin (HSA). These results collectively indicate that small molecules can provide a therapeutic foothold for overcoming Parkinson's through a prophylactic approach.
Collapse
Affiliation(s)
- Parijat Kabiraj
- Department of Chemistry, ‡Department of Biological
Sciences, §Cytometry, Screening and Imaging
Core Facility and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Jose Eduardo Marin
- Department of Chemistry, ‡Department of Biological
Sciences, §Cytometry, Screening and Imaging
Core Facility and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Armando Varela-Ramirez
- Department of Chemistry, ‡Department of Biological
Sciences, §Cytometry, Screening and Imaging
Core Facility and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Emmanuel Zubia
- Department of Chemistry, ‡Department of Biological
Sciences, §Cytometry, Screening and Imaging
Core Facility and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry, ‡Department of Biological
Sciences, §Cytometry, Screening and Imaging
Core Facility and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
8
|
Satoh J, Tabunoki H, Ishida T, Saito Y, Arima K. Ubiquilin-1 immunoreactivity is concentrated on Hirano bodies and dystrophic neurites in Alzheimer's disease brains. Neuropathol Appl Neurobiol 2014; 39:817-30. [PMID: 23421764 DOI: 10.1111/nan.12036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 02/07/2013] [Indexed: 12/11/2022]
Abstract
AIMS Ubiquilin-1 acts as an adaptor protein that mediates the translocation of polyubiquitinated proteins to the proteasome for degradation. Although previous studies suggested a key role of ubiquilin-1 in the pathogenesis of Alzheimer's disease (AD), a direct relationship between ubiquilin-1 and Hirano bodies in AD brains remains unknown. METHODS By immunohistochemistry, we studied ubiquilin-1 and ubiquilin-2 expression in the frontal cortex and the hippocampus of six AD and 13 control cases. RESULTS Numerous Hirano bodies, accumulated in the hippocampal CA1 region of AD brains, expressed intense immunoreactivity for ubiquilin-1. They were much less frequently found in control brains. However, Hirano bodies did not express a panel of markers for proteasome, autophagosome or pathogenic proteins, such as ubiquilin-2, ubiquitin, p62, LC3, beclin-1, HDAC6, paired helical filament (PHF)-tau, protein-disulphide isomerase (PDI) and phosphorylated TDP-43, but some of them expressed C9orf72. Ubiquilin-1-immunoreactive deposits were classified into four distinct morphologies, such as rod-shaped structures characteristic of Hirano bodies, dystrophic neurites contacting senile plaques, fragmented structures accumulated in the lesions affected with severe neuronal loss, and thread-shaped structures located mainly in the molecular layer of the hippocampus. CONCLUSIONS Ubiquilin-1 immunoreactivity is concentrated on Hirano bodies and dystrophic neurites in AD brains, suggesting that aberrant expression of ubiquilin-1 serves as one of pathological hallmarks of AD.
Collapse
Affiliation(s)
- J Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
9
|
Iqbal A, Paviani V, Moretti AI, Laurindo FR, Augusto O. Oxidation, inactivation and aggregation of protein disulfide isomerase promoted by the bicarbonate-dependent peroxidase activity of human superoxide dismutase. Arch Biochem Biophys 2014; 557:72-81. [DOI: 10.1016/j.abb.2014.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 06/05/2014] [Accepted: 06/11/2014] [Indexed: 11/29/2022]
|
10
|
Tadic V, Prell T, Lautenschlaeger J, Grosskreutz J. The ER mitochondria calcium cycle and ER stress response as therapeutic targets in amyotrophic lateral sclerosis. Front Cell Neurosci 2014; 8:147. [PMID: 24910594 PMCID: PMC4039088 DOI: 10.3389/fncel.2014.00147] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of upper and lower motor neurons. Although the etiology remains unclear, disturbances in calcium homoeostasis and protein folding are essential features of neurodegeneration in this disorder. Here, we review recent research findings on the interaction between endoplasmic reticulum (ER) and mitochondria, and its effect on calcium signaling and oxidative stress. We further provide insights into studies, providing evidence that structures of the ER mitochondria calcium cycle serve as a promising targets for therapeutic approaches for treatment of ALS.
Collapse
Affiliation(s)
- Vedrana Tadic
- Hans Berger Department of Neurology, Jena University HospitalJena, Germany
| | | | | | | |
Collapse
|
11
|
Peng L, Rasmussen MI, Chailyan A, Houen G, Højrup P. Probing the structure of human protein disulfide isomerase by chemical cross-linking combined with mass spectrometry. J Proteomics 2014; 108:1-16. [PMID: 24792702 DOI: 10.1016/j.jprot.2014.04.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/07/2014] [Accepted: 04/24/2014] [Indexed: 11/18/2022]
Abstract
UNLABELLED Protein disulfide-isomerase (PDI) is a four-domain flexible protein that catalyzes the formation of disulfide bonds in the endoplasmic reticulum. Here we have analyzed native PDI purified from human placenta by chemical cross-linking followed by mass spectrometry (CXMS). In addition to PDI the sample contained soluble calnexin and ERp72. Extensive cross-linking was observed within the PDI molecule, both intra- and inter-domain, as well as between the different components in the mixture. The high sensitivity of the analysis in the current experiments, combined with a likely promiscuous interaction pattern of the involved proteins, revealed relatively densely populated cross-link heat maps. The established X-ray structure of the monomeric PDI could be confirmed; however, the dimer as presented in the existing models does not seem to be prevalent in solution as modeling on the observed cross-links revealed new models of dimeric PDI. The observed inter-protein cross-links confirmed the existence of a peptide binding area on calnexin that binds strongly both PDI and ERp72. On the other hand, interaction sites on PDI and ERp72 could not be uniquely identified, indicating a more non-specific interaction pattern. BIOLOGICAL SIGNIFICANCE The present work demonstrates the use of chemical cross-linking and mass spectrometry (CXMS) for the determination of a solution structure of natural human PDI and its interaction with the chaperones ERp72 and calnexin. The data shows that the dimeric structure of PDI may be more diverse than indicated by present models. We further observe that the temperature influences the cross-linking pattern of PDI, but this does not influence the overall folding pattern of the molecule.
Collapse
Affiliation(s)
- Li Peng
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Morten Ib Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Anna Chailyan
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Gunnar Houen
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
12
|
Disulfide bonding in neurodegenerative misfolding diseases. Int J Cell Biol 2013; 2013:318319. [PMID: 23983694 PMCID: PMC3747422 DOI: 10.1155/2013/318319] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/16/2013] [Indexed: 01/27/2023] Open
Abstract
In recent years an increasing number of neurodegenerative diseases has been linked to the misfolding of a specific protein and its subsequent accumulation into aggregated species, often toxic to the cell. Of all the factors that affect the behavior of these proteins, disulfide bonds are likely to be important, being very conserved in protein sequences and being the enzymes devoted to their formation among the most conserved machineries in mammals. Their crucial role in the folding and in the function of a big fraction of the human proteome is well established. The role of disulfide bonding in preventing and managing protein misfolding and aggregation is currently under investigation. New insights into their involvement in neurodegenerative diseases, their effect on the process of protein misfolding and aggregation, and into the role of the cellular machineries devoted to disulfide bond formation in neurodegenerative diseases are emerging. These studies mark a step forward in the comprehension of the biological base of neurodegenerative disorders and highlight the numerous questions that still remain open.
Collapse
|
13
|
Prell T, Lautenschläger J, Grosskreutz J. Calcium-dependent protein folding in amyotrophic lateral sclerosis. Cell Calcium 2013; 54:132-43. [DOI: 10.1016/j.ceca.2013.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 12/25/2022]
|
14
|
Redox regulation in amyotrophic lateral sclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:408681. [PMID: 23533690 PMCID: PMC3596916 DOI: 10.1155/2013/408681] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/07/2013] [Accepted: 01/10/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that results from the death of upper and lower motor neurons. Due to a lack of effective treatment, it is imperative to understand the underlying mechanisms and processes involved in disease progression. Regulations in cellular reduction/oxidation (redox) processes are being increasingly implicated in disease. Here we discuss the possible involvement of redox dysregulation in the pathophysiology of ALS, either as a cause of cellular abnormalities or a consequence. We focus on its possible role in oxidative stress, protein misfolding, glutamate excitotoxicity, lipid peroxidation and cholesterol esterification, mitochondrial dysfunction, impaired axonal transport and neurofilament aggregation, autophagic stress, and endoplasmic reticulum (ER) stress. We also speculate that an ER chaperone protein disulphide isomerase (PDI) could play a key role in this dysregulation. PDI is essential for normal protein folding by oxidation and reduction of disulphide bonds, and hence any disruption to this process may have consequences for motor neurons. Addressing the mechanism underlying redox regulation and dysregulation may therefore help to unravel the molecular mechanism involved in ALS.
Collapse
|
15
|
Wang C, Yu J, Huo L, Wang L, Feng W, Wang CC. Human protein-disulfide isomerase is a redox-regulated chaperone activated by oxidation of domain a'. J Biol Chem 2011; 287:1139-49. [PMID: 22090031 DOI: 10.1074/jbc.m111.303149] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-disulfide isomerase (PDI), with domains arranged as abb'xa'c, is a key enzyme and chaperone localized in the endoplasmic reticulum (ER) catalyzing oxidative folding and preventing misfolding/aggregation of proteins. It has been controversial whether the chaperone activity of PDI is redox-regulated, and the molecular basis is unclear. Here, we show that both the chaperone activity and the overall conformation of human PDI are redox-regulated. We further demonstrate that the conformational changes are triggered by the active site of domain a', and the minimum redox-regulated cassette is located in b'xa'. The structure of the reduced bb'xa' reveals for the first time that domain a' packs tightly with both domain b' and linker x to form one compact structural module. Oxidation of domain a' releases the compact conformation and exposes the shielded hydrophobic areas to facilitate its high chaperone activity. Thus, the study unequivocally provides mechanistic insights into the redox-regulated chaperone activity of human PDI.
Collapse
Affiliation(s)
- Chao Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|