1
|
Anuranjana P, Beegum F, K.P D, George KT, Viswanatha G, Nayak PG, Kanwal A, Kishore A, Shenoy RR, Nandakumar K. Mechanisms Behind the Pharmacological Application of Biochanin-A: A review. F1000Res 2023; 12:107. [PMID: 38106650 PMCID: PMC10725524 DOI: 10.12688/f1000research.126059.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
This review was aimed at summarizing the cellular and molecular mechanisms behind the various pharmacological actions of biochanin-A. Many studies have been reported claiming its application in cancers, metabolic disorders, airway hyperresponsiveness, cardiac disorders, neurological disorders, etc. With regard to hormone-dependent cancers like breast, prostate, and other malignancies like pancreatic, colon, lung, osteosarcoma, glioma that has limited treatment options, biochanin-A revealed agreeable results in arresting cancer development. Biochanin-A has also shown therapeutic benefits when administered for neurological disorders, diabetes, hyperlipidaemia, and other chronic diseases/disorders. Isoflavones are considered phenomenal due to their high efficiency in modifying the physiological functions of the human body. Biochanin-A is one among the prominent isoflavones found in soy (glycine max), red clover (Trifolium pratense), and alfalfa sprouts, etc., with proven potency in modulating vital cellular mechanisms in various diseases. It has been popular for ages among menopausal women in controlling symptoms. In view of the multi-targeted functions of biochanin-A, it is essential to summarize it's mechanism of action in various disorders. The safety and efficacy of biochanin-A needs to be established in clinical trials involving human subjects. Biochanin-A might be able to modify various systems of the human body like the cardiovascular system, CNS, respiratory system, etc. It has shown a remarkable effect on hormonal cancers and other cancers. Many types of research on biochanin-A, particularly in breast, lung, colon, prostate, and pancreatic cancers, have shown a positive impact. Through modulating oxidative stress, SIRT-1 expression, PPAR gamma receptors, and other multiple mechanisms biochanin-A produces anti-diabetic action. The diverse molecular mechanistic pathways involved in the pharmacological ability of biochanin-A indicate that it is a very promising molecule and can play a major impact in modifying several physiological functions.
Collapse
Affiliation(s)
- P.V. Anuranjana
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Fathima Beegum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya K.P
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krupa Thankam George
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | | | - Pawan G. Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abhinav Kanwal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rekha R. Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K. Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
2
|
Activity of isoflavone biochanin A in chronic experimental toxoplasmosis: impact on inflammation. Parasitol Res 2022; 121:2405-2414. [PMID: 35710847 PMCID: PMC9279236 DOI: 10.1007/s00436-022-07571-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/03/2022] [Indexed: 11/07/2022]
Abstract
Toxoplasma gondii is a worldwide prevalent parasite. The infection has been linked to variable inflammatory effects including neuroinflammation. Biochanin A (BCA) is an isoflavone, known for its anti-inflammatory and anti-oxidative properties. In this study, we examined the effect of BCA on the brain and liver inflammatory lesions in a murine model with chronic toxoplasmosis. Mice were divided in to six groups: non-infected control, non-infected BCA-treated, and four infected groups with Toxoplasmagondii Me49-type II cystogenic strain: infected control, BCA (50 mg/kg/day)-treated, combined BCA/cotrimoxazole-treated and cotrimoxazole (370 mg/kg/day) alone-treated. Gene expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and inducible nitric oxide synthase (iNOS) was evaluated by quantitative real-time PCR in the brain and liver tissues. In the infected control group, an upregulation of TNF-α and IL-1β mRNA expression levels was found. However, a downregulation of iNOS expression was detected in the brain of infected control mice. In both BCA- and combined-treated groups, the brain and liver tissues showed significantly reduced inflammatory lesions compared to the infected control mice with inhibited TNF-α and IL-1β mRNA levels. The iNOS expression levels in the brain tissues of BCA group were significantly higher than the levels of the infected control group. BCA alone or combined significantly reduced T. gondii cyst count in the brain tissues. In conclusion, the anti-inflammatory activity of BCA was demonstrated in the brain tissues of mice with chronic toxoplasmosis with decreased TNF-α and IL-1β expression levels and increased iNOS expression levels.
Collapse
|
3
|
Ramachandran V, V IK, Hr KK, Tiwari R, Tiwari G. Biochanin-A: A Bioactive Natural Product with Versatile Therapeutic Perspectives. Curr Drug Res Rev 2022; 14:225-238. [PMID: 35579127 DOI: 10.2174/2589977514666220509201804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Biochanin-A (5,7 dihydroxy 4 methoxy isoflavone) is a phytochemical phytoestrogen that is highly effective against various diseases. Biochanin-A is a nutritional and dietary isoflavonoid naturally present in red clover, chickpea, soybeans and other herbs. Biochanin- A possesses numerous biological activities. OBJECTIVE The study focused on collective data of therapeutic activities of Biochanin-A. METHODS According to the literature, biochanin-A revealed a range of activities starting from chemoprevention, by hindering cell growth, activation of tumor cell death, hampering metastasis, angiogenic action, cell cycle regulation, neuroprotection, by controlling microglial activation, balancing antioxidants, elevating the neurochemicals, suppressing BACE-1, NADPH oxidase hindrance to inflammation, by mitigating the MAPK and NF- κB, discharge of inflammatory markers, upregulating the PPAR-γ, improving the function of heme oxygenase-1, erythroid 2 nuclear factors, detoxifying the oxygen radicals and stimulating the superoxide dismutase action, and controlling its production of transcription factors. Against pathogens, biochanin-A acts by dephosphorylating tyrosine kinase proteins, obstructing gram-negative bacteria, suppressing the development of cytokines from viruses, and improving the action of a neuraminidase cleavage of caspase-3, and acts as an efflux pump inhibitor. In metabolic disorders, biochanin-A acts by encouraging transcriptional initiation and inhibition, activating estrogen receptors, and increasing the activity of differentiation, autophagy, inflammation, and blood glucose metabolism. CONCLUSION Therefore, biochanin-A could be used as a therapeutic drug for various pathological conditions and treatments in human beings.
Collapse
Affiliation(s)
- Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Inba Kumar V
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Kiran Kumar Hr
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ruchi Tiwari
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kalpi Road, Bhauti, Kanpur 208020, India
| | - Gaurav Tiwari
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kalpi Road, Bhauti, Kanpur 208020, India
| |
Collapse
|
4
|
Qin J, Guo C, Yang L, Liang X, Jiao A, Lai KP, Yang B. Bioinformatics and in-silico findings reveal medical features and pharmacological targets of biochanin A against colorectal cancer and COVID-19. Bioengineered 2021; 12:12461-12469. [PMID: 34931923 PMCID: PMC8809988 DOI: 10.1080/21655979.2021.2005876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe mortality due to the COVID-19 pandemic resulted from the lack of effective treatment. Although COVID-19 vaccines are available, their side effects have become a challenge for clinical use in patients with chronic diseases, especially cancer patients. In the current report, we applied network pharmacology and systematic bioinformatics to explore the use of biochanin A in patients with colorectal cancer (CRC) and COVID-19 infection. Using the network pharmacology approach, we identified two clusters of genes involved in immune response (IL1A, IL2, and IL6R) and cell proliferation (CCND1, PPARG, and EGFR) mediated by biochanin A in CRC/COVID-19 condition. The functional analysis of these two gene clusters further illustrated the effects of biochanin A on interleukin-6 production and cytokine-cytokine receptor interaction in CRC/COVID-19 pathology. In addition, pathway analysis demonstrated the control of PI3K-Akt and JAK-STAT signaling pathways by biochanin A in the treatment of CRC/COVID-19. The findings of this study provide a therapeutic option for combination therapy against COVID-19 infection in CRC patients.
Collapse
Affiliation(s)
- Jingru Qin
- College of Pharmacy, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Chao Guo
- Department of Pharmacy, Guigang City People's Hospital, the Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, PR China
| | - Lu Yang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Xiao Liang
- College of Pharmacy, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Aijun Jiao
- College of Pharmacy, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Bin Yang
- College of Pharmacy, Guangxi Medical University, Nanning, Guangxi, PR China
| |
Collapse
|
5
|
Felix FB, Vago JP, Fernandes DDO, Martins DG, Moreira IZ, Gonçalves WA, Costa WC, Araújo JMD, Queiroz-Junior CM, Campolina-Silva GH, Soriani FM, Sousa LP, Grespan R, Teixeira MM, Pinho V. Biochanin A Regulates Key Steps of Inflammation Resolution in a Model of Antigen-Induced Arthritis via GPR30/PKA-Dependent Mechanism. Front Pharmacol 2021; 12:662308. [PMID: 33995086 PMCID: PMC8114065 DOI: 10.3389/fphar.2021.662308] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Biochanin A (BCA) is a natural organic compound of the class of phytochemicals known as flavonoids and isoflavone subclass predominantly found in red clover (Trifolium pratense). It has anti-inflammatory activity and some pro-resolving actions, such as neutrophil apoptosis. However, the effect of BCA in the resolution of inflammation is still poorly understood. In this study, we investigated the effects of BCA on the neutrophilic inflammatory response and its resolution in a model of antigen-induced arthritis. Male wild-type BALB/c mice were treated with BCA at the peak of the inflammatory process (12 h). BCA decreased the accumulation of migrated neutrophils, and this effect was associated with reduction of myeloperoxidase activity, IL-1β and CXCL1 levels, and the histological score in periarticular tissues. Joint dysfunction, as seen by mechanical hypernociception, was improved by treatment with BCA. The resolution interval (Ri) was also quantified, defining profiles of acute inflammatory parameters that include the amplitude and duration of the inflammatory response monitored by the neutrophil infiltration. BCA treatment shortened Ri from ∼23 h observed in vehicle-treated mice to ∼5.5 h, associated with an increase in apoptotic events and efferocytosis, both key steps for the resolution of inflammation. These effects of BCA were prevented by H89, an inhibitor of protein kinase A (PKA) and G15, a selective G protein–coupled receptor 30 (GPR30) antagonist. In line with the in vivo data, BCA also increased the efferocytic ability of murine bone marrow–derived macrophages. Collectively, these data indicate for the first time that BCA resolves neutrophilic inflammation acting in key steps of the resolution of inflammation, requiring activation of GPR30 and via stimulation of cAMP-dependent signaling.
Collapse
Affiliation(s)
- Franciel Batista Felix
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Priscila Vago
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Débora de Oliveira Fernandes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Débora Gonzaga Martins
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Zaidan Moreira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - William Antonio Gonçalves
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Walyson Coelho Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Celso Martins Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Frederico Marianetti Soriani
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia Pires Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Renata Grespan
- Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristovão, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Sridevi V, Naveen P, Karnam VS, Reddy PR, Arifullah M. Beneficiary and Adverse Effects of Phytoestrogens: A Potential Constituent of Plant-based Diet. Curr Pharm Des 2021; 27:802-815. [PMID: 32942973 DOI: 10.2174/1381612826999200917154747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Phytoestrogens are non-endocrine, non-steroidal secondary derivatives of plants and consumed through a plant-based diet also named as "dietary estrogens". The major sources of phytoestrogens are soy and soy-based foods, flaxseed, chickpeas, green beans, dairy products, etc. The dietary inclusion of phytoestrogen based foods plays a crucial role in the maintenance of metabolic syndrome cluster, including obesity, diabetes, blood pressure, cancer, inflammation, cardiovascular diseases, postmenopausal ailments and their complications. In recent days, phytoestrogens are the preferred molecules for hormone replacement therapy. On the other hand, they act as endocrine disruptors via estrogen receptor-mediated pathways. These effects are not restricted to adult males or females and identified even in development. OBJECTIVE Since phytoestrogenic occurrence is high at daily meals for most people worldwide, they focused to study for its beneficiary effects towards developing pharmaceutical drugs for treating various metabolic disorders by observing endocrine disruption. CONCLUSION The present review emphasizes the pros and cons of phytoestrogens on human health, which may help to direct the pharmaceutical industry to produce various phytoestrongen based drugs against various metabolic disorders.
Collapse
Affiliation(s)
- Vaadala Sridevi
- Department of Biochemistry, Yogi Vemana Universiti, Vemanapuram, Kadapa-516005, A.P, India
| | - Ponneri Naveen
- Department of Biochemistry, Yogi Vemana Universiti, Vemanapuram, Kadapa-516005, A.P, India
| | | | - Pamuru R Reddy
- Department of Biochemistry, Yogi Vemana Universiti, Vemanapuram, Kadapa-516005, A.P, India
| | - Mohammed Arifullah
- Institute of Food Security and Sustainable Agriculture (IFSSA) & Faculty of Agrobased Industry (FIAT), Universiti Malaysia Kelantan Campus Jeli, Locked Bag 100, Jeli 17600, Kelantan, Malaysia
| |
Collapse
|
7
|
Sangeethadevi G, V V SU, Jansy Isabella RAR, Saravanan G, Ponmurugan P, Chandrasekaran P, Sengottuvelu S, Vadivukkarasi S. Attenuation of lipid metabolic abnormalities, proinflammatory cytokines, and matrix metalloproteinase expression by biochanin-A in isoproterenol-induced myocardial infarction in rats. Drug Chem Toxicol 2021; 45:1951-1962. [PMID: 33719799 DOI: 10.1080/01480545.2021.1894707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the present study, we assessed the therapeutic potential of Biochanin-A (BCA) (10 mg/kg BW/day) pretreatment for 30 days on lipid metabolic abnormalities, proinflammatory cytokines and matrix metalloproteinase expression in isoproterenol (ISO)-induced myocardial infarction (MI) in rats. We measured the potential role of BCA on tissue and circulatory lipid profiles as well as on lipid metabolic enzymes: serum inflammatory cytokines (TNF-α, IL-1α, IL-1β, IL-6 and MCP1) and serum Matrix Metalloproteinases (particularly, MMP-2 and MMP-9) together with mRNA expressions of TNF-α, IL-6, MMP-2 and MMP-9 by RT-PCR analysis. Administration of ISO to rats significantly distorted their lipid metabolism and augmented inflammatory process, MMP expression and proteolytic activity. In addition, pretreatment with BCA of ISO-induced MI rats significantly reestablished the altered lipid metabolism and concealed the inflammation of cytokines. BCA suppressed the expressions of proinflammatory cytokines and MMPs in ISO-induced MI in rats when compared to normal untreated MI rats. Hence, these results established that BCA could improve the pathological processes of myocardial remodeling which was confirmed by histopathology of heart in MI rats and might be an effective beneficial ingredient for the management of heart failure disorders.
Collapse
Affiliation(s)
- Govindasami Sangeethadevi
- Department of Biochemistry, Vellalar College for Women (Autonomous), Thindal, Erode, Tamil Nadu, India.,Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Tamilnadu, India
| | - Sathibabu Uddandrao V V
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Tamilnadu, India
| | - Rani Antony Rathinasamy Jansy Isabella
- Department of Biochemistry, Vellalar College for Women (Autonomous), Thindal, Erode, Tamil Nadu, India.,Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Tamilnadu, India
| | - Ganapathy Saravanan
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Tamilnadu, India
| | | | - Ponnusamy Chandrasekaran
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Tamilnadu, India
| | | | - Sasikumar Vadivukkarasi
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Tamilnadu, India
| |
Collapse
|
8
|
Advances in Pharmacological Actions and Mechanisms of Flavonoids from Traditional Chinese Medicine in Treating Chronic Obstructive Pulmonary Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:8871105. [PMID: 33488753 PMCID: PMC7790571 DOI: 10.1155/2020/8871105] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease with high morbidity and mortality. The conventional therapies remain palliative and have various undesired effects. Flavonoids from traditional Chinese medicine (TCM) have been proved to exert protective effects on COPD. This review aims to illuminate the poly-pharmacological properties of flavonoids in treating COPD based on laboratory evidences and clinical data and points out possible molecular mechanisms. Animal/laboratory studies and randomised clinical trials about administration of flavonoids from TCM for treating COPD from January 2010 to October 2020 were identified and collected, with the following terms: chronic obstructive pulmonary disease or chronic respiratory disease or inflammatory lung disease, and flavonoid or nature product or traditional Chinese medicine. Pharmacokinetic studies and external application treatment were excluded. A total of 15 flavonoid compounds were listed. Flavonoids could inhibit inflammation, oxidative stress, and cellular senescence, restore corticosteroid sensitivity, improve pulmonary histology, and boost pulmonary function through regulating multiple targets and signaling pathways, which manifest that flavonoids are a group of promising natural products for COPD. Nevertheless, most studies remain in the research phase of animal testing, and further clinical applications should be carried out.
Collapse
|
9
|
Zhang S, Niu Y, Yang Z, Zhang Y, Guo Q, Yang Y, Zhou X, Ding Y, Liu C. Biochanin A alleviates gingival inflammation and alveolar bone loss in rats with experimental periodontitis. Exp Ther Med 2020; 20:251. [PMID: 33178349 PMCID: PMC7654219 DOI: 10.3892/etm.2020.9381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/20/2020] [Indexed: 02/05/2023] Open
Abstract
Biochanin A (BA) is an organic compound produced by Trifolium pretense and Arachis hypogaea with anti-inflammatory and antioxidative effects. The aim of the current study was to evaluate the effects of BA on gingival inflammation and alveolar bone destruction in rats with experimental periodontitis. Experimental rats (n=25) were distributed equally into five groups: i) Healthy control (control) group; ii) experimental periodontitis (ligation) group; and iii) and ligation plus low, medium and high dose of BA (12.5, 25 and 50 mg/kg/day, respectively) groups. A nylon ligature was inserted around rats' maxillary molars for 14 days to trigger the experimental periodontitis. BA was intravenous injected once daily for 4 weeks. After that, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), reactive oxygen species (ROS) and osteocalcin (OCN) levels were determined in gingival and/or serum samples using ELISA or reverse transcription-quantitative PCR. Alveolar bone volume was assessed via hematoxylin and eosin staining and micro-computed tomography. Osteoclasts were identified by tartrate-resistant acid phosphatase staining, and the level of the nuclear factor erythroid-2 related factor 2 (Nrf2) was also detected by immunohistochemical staining. BA treatment groups showed alleviated alveolar bone resorption compared with the ligation group. Moreover, BA treatment significantly inhibited IL-1β, TNF-α, ROS levels, and reduced leukocyte acid phosphatase-positive cells, as well as increased OCN and Nrf2 levels compared with the ligation group. BA had beneficial effects on experimental periodontitis of rats. BA treatment inhibited inflammation, regulated unbalanced oxidative stress response and ameliorated the alveolar bone loss.
Collapse
Affiliation(s)
- Shengdan Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yulong Niu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhuo Yang
- General Stomatology Clinic, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Yuwei Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yi Ding
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chengcheng Liu
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
10
|
Andugulapati SB, Gourishetti K, Tirunavalli SK, Shaikh TB, Sistla R. Biochanin-A ameliorates pulmonary fibrosis by suppressing the TGF-β mediated EMT, myofibroblasts differentiation and collagen deposition in in vitro and in vivo systems. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 78:153298. [PMID: 32781391 PMCID: PMC7395646 DOI: 10.1016/j.phymed.2020.153298] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/15/2020] [Accepted: 07/31/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Idiopathic Pulmonary Fibrosis (IPF) is a progressive inflammatory disorder driven by a fibrotic cascade of events such as epithelial to mesenchymal transition, extracellular matrix production and collagen formation in the lungs in a sequential manner. IPF incidences were raising rapidly across the world. FDA approved pirfenidone and nintedanib (tyrosine kinase inhibitors) are being used as a first-line treatment drugs for IPF, however, neither the quality of life nor survival rates have been improved because of patient noncompliance due to multiple side effects. Thus, the development of novel therapeutic approaches targeting TGF-β mediated cascade of fibrotic events is urgently needed to improve the survival of the patients suffering from devastating disease. PURPOSE The aim of this study was to investigate and validate the anti-fibrotic properties of Biochanin-A (isoflavone) against TGF-β mediated fibrosis in in vitro, ex vivo, in vivo models and to determine the molecular mechanisms that mediate these anti-fibrotic effects. METHODS The therapeutic activity of BCA was determined in in vitro/ex vivo models. Cells were pre-treated with BCA and incubated in presence or absence of recombinant-TGF-β to stimulate the fibrotic cascade of events. Pulmonary fibrosis was developed by intratracheal administration of bleomycin in rats. BCA treatment was given for 14 days from post bleomycin instillation and then various investigations (collagen content, fibrosis gene/protein expression and histopathological changes) were performed to assess the anti-fibrotic activity of BCA. RESULTS In vitro/ex vivo (Primary normal, IPF cell line and primary IPF cells/ Precision cut mouse lung slices) experiments revealed that, BCA treatment significantly (p < 0.001) reduced the expression of TGF-β modulated fibrotic genes/protein expressions (including their functions) which are involved in the cascade of fibrotic events. BCA treatment significantly (p < 0.01) reduced the bleomycin-induced inflammatory cell-infiltration, inflammatory markers expression, collagen deposition and expression of fibrotic markers in lung tissues equivalent or better than pirfenidone treatment. In addition, BCA treatment significantly (p < 0.001) attenuated the TGF-β1/BLM-mediated increase of TGF-β/Smad2/3 phosphorylation and resulted in the reduction of pathological abnormalities in lung tissues determined by histopathology observations. CONCLUSION Collectively, BCA treatment demonstrated the remarkable therapeutic effects on TGF-β/BLM mediated pulmonary fibrosis using IPF cells and rodent models. This current study may offer a novel treatment approach to halt and may be even rescue the devastating lung scarring of IPF.
Collapse
Affiliation(s)
- Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India
| | - Karthik Gourishetti
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India
| | - Satya Krishna Tirunavalli
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India
| | - Taslim Babru Shaikh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India.
| |
Collapse
|
11
|
Molecular Targets of Natural Products for Chondroprotection in Destructive Joint Diseases. Int J Mol Sci 2020; 21:ijms21144931. [PMID: 32668590 PMCID: PMC7404046 DOI: 10.3390/ijms21144931] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis that occurs in an aged population. It affects any joints in the body and degenerates the articular cartilage and the subchondral bone. Despite the pathophysiology of OA being different, cartilage resorption is still a symbol of osteoarthritis. Matrix metalloproteinases (MMPs) are important proteolytic enzymes that degrade extra-cellular matrix proteins (ECM) in the body. MMPs contribute to the turnover of cartilage and its break down; their levels have increased in the joint tissues of OA patients. Application of chondroprotective drugs neutralize the activities of MMPs. Natural products derived from herbs and plants developed as traditional medicine have been paid attention to, due to their potential biological effects. The therapeutic value of natural products in OA has increased in reputation due to their clinical impact and insignificant side effects. Several MMPs inhibitor have been used as therapeutic drugs, for a long time. Recently, different types of compounds were reviewed for their biological activities. In this review, we summarize numerous natural products for the development of MMPs inhibitors in arthritic diseases and describe the major signaling targets that were involved for the treatments of these destructive joint diseases.
Collapse
|
12
|
Berköz M, Krośniak M, Özkan-Yılmaz F, Özlüer-Hunt A. Prophylactic effect of Biochanin A in lipopolysaccharide-stimulated BV2 microglial cells. Immunopharmacol Immunotoxicol 2020; 42:330-339. [PMID: 32482108 DOI: 10.1080/08923973.2020.1769128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aim/Purpose of the study:Inhibition of microglial activation using phytochemicals may be a potential candidate for the prevention of neurodegenerative diseases caused by neuroinflammation and oxidative stress. The goal of this study was to investigate the protective role of Biochanin A on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. BV2 microglial cells were treated with LPS in the presence and absence of Biochanin A. Materials and methods: For this aim, nitric oxide production, nuclear factor kappa B (NF-κB), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, Prostaglandin E2 (PGE2), and reactive oxygen species (ROS) levels, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), myeloid differentiation factor-88 (MyD88), and toll like receptor-4 (TLR-4) protein expressions, Akt and ERK1/2 phosphorylation levels were measured. Results:Biochanin A pretreatment resulted in significant and concentration-dependently reduced the LPS-induced production of nitric oxide, NF-κB p65, TNF-α, IL-1β, IL-6, PGE2, and ROS compared to the untreated group. Biochanin A prophylaxis exerted an anti-inflammatory effect by suppressing iNOS, COX-2, MyD88, and TLR-4 protein expressions and Akt and ERK1/2 pathway activation. Conclusion:Taken together, these results show that Biochanin A exerts antioxidant and anti-inflammatory activities, thus may be beneficial for preventing neurodegenerative diseases mediated by microglial cells.
Collapse
Affiliation(s)
- Mehmet Berköz
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Cracow, Poland
| | - Ferbal Özkan-Yılmaz
- Department of Basic Sciences, Faculty of Fisheries, Mersin University, Mersin, Turkey
| | - Arzu Özlüer-Hunt
- Department of Aquaculture, Faculty of Fisheries, Mersin University, Mersin, Turkey
| |
Collapse
|
13
|
Oselladore E, Ongaro A, Zagotto G, Memo M, Ribaudo G, Gianoncelli A. Combinatorial library generation, molecular docking and molecular dynamics simulations for enhancing the isoflavone scaffold in phosphodiesterase inhibition. NEW J CHEM 2020. [DOI: 10.1039/d0nj02537b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isoflavones are listed among the most widely studied natural compounds in light of their several biological properties, one of which consists in their ability to inhibit phosphodiesterases (PDEs).
Collapse
Affiliation(s)
- Erika Oselladore
- Department of Pharmaceutical and Pharmacological Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine
- University of Brescia
- 25123 Brescia
- Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine
- University of Brescia
- 25123 Brescia
- Italy
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine
- University of Brescia
- 25123 Brescia
- Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine
- University of Brescia
- 25123 Brescia
- Italy
| |
Collapse
|
14
|
Govindasami S, Uddandrao VVS, Raveendran N, Sasikumar V. Therapeutic Potential of Biochanin-A Against Isoproterenol-Induced Myocardial Infarction in Rats. Cardiovasc Hematol Agents Med Chem 2020; 18:31-36. [PMID: 32026788 DOI: 10.2174/1871525718666200206114304] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/14/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND This study determined the effect of Biochanin A (BCA) on isoproterenol (ISO) induced Myocardial Infarction (MI) in male Wistar rats. METHODS Animals (weighing 150-180 g) were divided into four groups, with six animals in each group and pretreated with BCA (10mg/kg Body Weight [BW]) and ɑ-tocopherol (60mg/kg BW) for 30 days; and ISO (20mg/kg BW) was administrated subcutaneously on the 31st and 32nd day. RESULTS ISO-induced MI rats demonstrated the significant elevation of serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, lactate dehydrogenase, creatine kinase-MB and cardiac troponin; however, concomitant pretreatment with BCA protected the rats from cardiotoxicity caused by ISO. Activities of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase significantly reduced in the heart with ISO-induced MI. Pretreatment with BCA produced a marked reversal of these antioxidant enzymes related to MI-induced by ISO. CONCLUSION In conclusion, this study suggested that BCA exerts cardioprotective effects through modulating lipid peroxidation, enhancing antioxidants, and detoxifying enzyme systems.
Collapse
Affiliation(s)
| | - Veera Venkata Sathibabu Uddandrao
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science, Tiruchengode, Namakkal District, Tamilnadu-637215, India
| | - Nivedha Raveendran
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science, Tiruchengode, Namakkal District, Tamilnadu-637215, India
| | - Vadivukkarasi Sasikumar
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science, Tiruchengode, Namakkal District, Tamilnadu-637215, India
| |
Collapse
|
15
|
Yu C, Zhang P, Lou L, Wang Y. Perspectives Regarding the Role of Biochanin A in Humans. Front Pharmacol 2019; 10:793. [PMID: 31354500 PMCID: PMC6639423 DOI: 10.3389/fphar.2019.00793] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
Biochanin A (BCA) is an isoflavone mainly found in red clover with poor solubility and oral absorption that is known to have various effects, including anti-inflammatory, estrogen-like, and glucose and lipid metabolism modulatory activity, as well as cancer preventive, neuroprotective, and drug interaction effects. BCA is already commercially available and is among the main ingredients in many types of supplements used to alleviate postmenopausal symptoms in women. The activity of BCA has not been adequately evaluated in humans. However, the results of many in vitro and in vivo studies investigating the potential health benefits of BCA are available, and the complex mechanisms by which BCA modulates transcription, apoptosis, metabolism, and immune responses have been revealed. Many efforts have been exerted to improve the poor bioavailability of BCA, and very promising results have been reported. This review focuses on the major effects of BCA and its possible molecular targets, potential uses, and limitations in health maintenance and treatment.
Collapse
Affiliation(s)
- Chen Yu
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Peng Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Lixin Lou
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
16
|
|
17
|
Pawar S, Tandel R, Kunabevu R, Jaldappagari S. Spectroscopic and computational approaches to unravel the mode of binding between a isoflavone, biochanin-A and calf thymus DNA. J Biomol Struct Dyn 2018; 37:846-856. [DOI: 10.1080/07391102.2018.1442748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Suma Pawar
- Department of Chemistry, Karnatak University, Dharwad, 580 003, India
| | - Ranjita Tandel
- Department of Chemistry, Karnatak University, Dharwad, 580 003, India
| | - Ramesh Kunabevu
- Department of Chemistry, SJM College, Chitradurga, 577 501, India
| | | |
Collapse
|
18
|
Wang Y, Li JJ, Chen YM. Biochanin A extirpates the epithelial-mesenchymal transition in a human lung cancer. Exp Ther Med 2018; 15:2830-2836. [PMID: 29456686 PMCID: PMC5795497 DOI: 10.3892/etm.2018.5731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 03/31/2017] [Indexed: 12/16/2022] Open
Abstract
The natural iso-flavonoid, biochanin A, is categorized as a phytoestrogen and has been demonstrated to exhibit various pharmacological properties. However, no effects of biochanin A on lung cancer cell lines have been reported. Therefore, the present study aimed to demonstrate whether biochanin A has the ability to reduce lung cancer triggered pro-inflammatory effects from leukemic monocytes. We studied the release of cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-6, from the cocultured cells of A427:AML-193. In addition to this, epithelial-mesenchymal transition was also monitored. In the cocultured A427 and AML-193, AML-193 was stimulated by A427 cells assisting the release of TNF-α and IL-6 cytokines, but the addition of A427 with biochanin A reduced A427-triggered generation of cytokines by AML-193. Moreover, this non-functional A427:AML-193 coculture reduced the metastasis effects of A427 cells, as determined by wound healing assays and migration/invasion assays. These results were further confirmed by a reduction in Snail and E-cadherin expression levels, which are indicators of the epithelial-mesenchymal transition. These findings suggest the therapeutic effect of biochanin A against lung cancer evoked inflammation and pro-inflammatory functions from monocytic cells.
Collapse
Affiliation(s)
- Yan Wang
- Department of Cardiovascular and Thoracic Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jiao-Jiao Li
- Intensive Care Unit, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yu-Min Chen
- Department of Cardiovascular and Thoracic Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
19
|
Mbosso Teinkela JE, Siwe Noundou X, Nguemfo EL, Meyer F, Djoukoue A, Van Antwerpen P, Ngouela S, Tsamo E, Mpondo Mpondo EA, Vardamides JC, Azebaze GAB, Wintjens R. Identification of compounds with anti-proliferative activity from the wood of Ficus elastica Roxb. ex Hornem. aerial roots. Fitoterapia 2016; 112:65-73. [PMID: 27167182 DOI: 10.1016/j.fitote.2016.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 11/16/2022]
|
20
|
Taneja I, Raju KSR, Wahajuddin M. Dietary Isoflavones as Modulators of Drug Metabolizing Enzymes and Transporters: Effect on Prescription Medicines. Crit Rev Food Sci Nutr 2015; 56 Suppl 1:S95-S109. [DOI: 10.1080/10408398.2015.1045968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Wu DQ, Zhong HM, Ding QH, Ba L. Protective effects of biochanin A on articular cartilage: in vitro and in vivo studies. Altern Ther Health Med 2014; 14:444. [PMID: 25398247 PMCID: PMC4251671 DOI: 10.1186/1472-6882-14-444] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/29/2014] [Indexed: 01/28/2023]
Abstract
Background Increased production of matrix metalloproteinases (MMPs) is closely related to the progression of osteoarthritis (OA). The present study was performed to investigate the potential value of biochanin A in inhibition of MMP expression in both rabbit chondrocytes and an animal model of OA. Methods MTT assay was performed to assess chondrocyte survival in monolayers. The mRNA and protein expression of MMPs (including MMP-1, MMP-3, and MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in interleukin-1 < beta > (IL-1β)-induced rabbit chondrocytes were determined by quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA), respectively. The involvement of the NF-kappaB (NF-κB) pathway activated by IL-1β was determined by western blotting. The in vivo effects of biochanin A were evaluated by intra-articular injection in an experimental OA rabbit model induced by anterior cruciate ligament transection (ACLT). Results Biochanin A downregulated the expression of MMPs and upregulated TIMP-1 at both the mRNA and protein levels in IL-1β-induced chondrocytes in a dose-dependent manner. In addition, IL-1β-induced activation of NF-κB was attenuated by biochanin A, as determined by western blotting. Moreover, biochanin A decreased cartilage degradation as determined by both morphological and histological analyses in vivo. Conclusions Taken together, these findings suggest that biochanin A may be a useful agent in the treatment and prevention of OA.
Collapse
|
22
|
Pérez-Cano FJ, Massot-Cladera M, Franch À, Castellote C, Castell M. The effects of cocoa on the immune system. Front Pharmacol 2013; 4:71. [PMID: 23759861 PMCID: PMC3671179 DOI: 10.3389/fphar.2013.00071] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/16/2013] [Indexed: 01/09/2023] Open
Abstract
Cocoa is a food relatively rich in polyphenols, which makes it a potent antioxidant. Due to its activity as an antioxidant, as well as through other mechanisms, cocoa consumption has been reported to be beneficial for cardiovascular health, brain functions, and cancer prevention. Furthermore, cocoa influences the immune system, in particular the inflammatory innate response and the systemic and intestinal adaptive immune response. Preclinical studies have demonstrated that a cocoa-enriched diet modifies T cell functions that conduce to a modulation of the synthesis of systemic and gut antibodies. In this regard, it seems that a cocoa diet in rats produces changes in the lymphocyte composition of secondary lymphoid tissues and the cytokines secreted by T cells. These results suggest that it is possible that cocoa could inhibit the function of T helper type 2 cells, and in line with this, the preventive effect of cocoa on IgE synthesis in a rat allergy model has been reported, which opens up new perspectives when considering the beneficial effects of cocoa compounds. On the other hand, cocoa intake modifies the functionality of gut-associated lymphoid tissue by means of modulating IgA secretion and intestinal microbiota. The mechanisms involved in these influences are discussed here. Further research may elucidate the cocoa compounds involved in such an effect and also the possible medical approaches to these repercussions.
Collapse
Affiliation(s)
- Francisco J. Pérez-Cano
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de BarcelonaBarcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària, Universitat de BarcelonaBarcelona, Spain
| | - Malen Massot-Cladera
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de BarcelonaBarcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària, Universitat de BarcelonaBarcelona, Spain
| | - Àngels Franch
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de BarcelonaBarcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària, Universitat de BarcelonaBarcelona, Spain
| | - Cristina Castellote
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de BarcelonaBarcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària, Universitat de BarcelonaBarcelona, Spain
| | - Margarida Castell
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de BarcelonaBarcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària, Universitat de BarcelonaBarcelona, Spain
| |
Collapse
|
23
|
Biochanin A protects against acute carbon tetrachloride-induced hepatotoxicity in rats. Biosci Biotechnol Biochem 2013; 77:909-16. [PMID: 23649249 DOI: 10.1271/bbb.120675] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biochanin A (BCA) is an isoflavone found in red clover possessing multiple pharmacological activities including antimicrobial, antioxidant, and anticancer ones. The present study aimed to assess its hepatoprotective potential at different doses in a carbon tetrachloride (CCl4)-induced hepatotoxicity model in rats. The effects on hepatic injury were explored by measuring serum levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase. Furthermore, the serum levels of glucose, urea, creatinine, total bilirubin, total proteins, triglycerides, and total cholesterol were determined. The metabolic capacity of the liver was assessed by measuring changes in cytochrome P450 2E1 activity. The underlying mechanisms were substantiated by measuring oxidative stress markers as catalase, superoxide dismutase, glutathione peroxidase, glutathione transferase, glutathione reductase, reduced glutathione, total antioxidant capacity, and lipid peroxidation, as well as inflammation markers such as nitric oxide, inducible nitric oxide synthase, cyclooxygenase2, tumor necrosis factor-α, and leukocyte-common antigen. The results were confirmed by histopathological examination, and the median lethal dose was determined to confirm the safety of the drug. BCA successively protected against CCl4-induced damage, normalizing many parameters to that of the control group. The study indicates that BCA possesses multimechanistic hepatoprotective activity that can be attributed to its antioxidant, anti-inflammatory, and immunomodulatory actions.
Collapse
|
24
|
The Immunomodulatory Effect of You-Gui-Wan on Dermatogoides-pteronyssinus-Induced Asthma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:476060. [PMID: 22675381 PMCID: PMC3363355 DOI: 10.1155/2012/476060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 01/21/2023]
Abstract
The traditional Chinese medicine You-Gui-Wan (YGW) contains ten species of medicinal plants and has been used to improve health in remissive states of asthma for hundreds of years in Asia. However, little is known about the immunomodulatory mechanisms in vivo. Therefore, this study investigated the pathologic and immunologic responses to YGW in mice that had been repeatedly exposed to Dermatogoides-pteronyssinus (Der p). YGW reduced Der-p-induced airway hyperresponsiveness and total IgE in serum. It also inhibited eosinophil infiltration by downregulating the protein expression of IL-5 in serum and changed the Th2-bios in BALF by upregulating IL-12. Results of the collagen assay and histopathologic examination showed that YGW reduced airway remodeling in the lung. In addition, after YGW treatment there was a relative decrease in mRNA expression of TGF-β1, IL-13, eotaxin, RANTES, and MCP-1 in lung in the YGW group. The results of EMSA and immunohistochemistry revealed that YGW inhibited NF-κB expression in epithelial lung cells. YGW exerts its regulative effects in chronic allergic asthmatic mice via its anti-inflammatory activity and by inhibiting the progression of airway remodeling.
Collapse
|