1
|
Salucci S, Bavelloni A, Stella AB, Fabbri F, Vannini I, Piazzi M, Volkava K, Scotlandi K, Martinelli G, Faenza I, Blalock W. The Cytotoxic Effect of Curcumin in Rhabdomyosarcoma Is Associated with the Modulation of AMPK, AKT/mTOR, STAT, and p53 Signaling. Nutrients 2023; 15:nu15030740. [PMID: 36771452 PMCID: PMC9920154 DOI: 10.3390/nu15030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Approximately 7% of cancers arising in children and 1% of those arising in adults are soft tissue sarcomas (STS). Of these malignancies, rhabdomyosarcoma (RMS) is the most common. RMS survival rates using current therapeutic protocols have remained largely unchanged in the past decade. Thus, it is imperative that the main molecular drivers in RMS tumorigenesis are defined so that more precise, effective, and less toxic therapies can be designed. Curcumin, a common herbal supplement derived from plants of the Curcuma longa species, has an exceptionally low dietary biotoxicity profile and has demonstrated anti-tumorigenic benefits in vitro. In this study, the anti-tumorigenic activity of curcumin was assessed in rhabdomyosarcoma cell lines and used to identify the major pathways responsible for curcumin's anti-tumorigenic effects. Curcumin treatment resulted in cell cycle arrest, inhibited cell migration and colony forming potential, and induced apoptotic cell death. Proteome profiler array analysis demonstrated that curcumin treatment primarily influenced flux through the AKT-mammalian target of rapamycin (mTOR), signal transducer and activator of transcription (STAT), AMP-dependent kinase (AMPK), and p53 associated pathways in a rhabdomyosarcoma subtype-specific manner. Thus, the strategic, combinational therapeutic targeting of these pathways may present the best option to treat this group of tumors.
Collapse
Affiliation(s)
- Sara Salucci
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40126 Bologna, Italy
| | - Alberto Bavelloni
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Anna Bartoletti Stella
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università di Bologna, 40126 Bologna, Italy
| | - Francesco Fabbri
- Laboratorio di Bioscienze, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ivan Vannini
- Laboratorio di Bioscienze, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Manuela Piazzi
- ‘‘Luigi Luca Cavalli-Sforza’’ Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Karyna Volkava
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, 40126 Bologna, Italy
| | - Katia Scotlandi
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giovanni Martinelli
- Laboratorio di Bioscienze, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40126 Bologna, Italy
- Correspondence: (I.F.); (W.B.)
| | - William Blalock
- ‘‘Luigi Luca Cavalli-Sforza’’ Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: (I.F.); (W.B.)
| |
Collapse
|
2
|
Hebron KE, Wan X, Roth JS, Liewehr DJ, Sealover NE, Frye WJ, Kim A, Stauffer S, Perkins OL, Sun W, Isanogle KA, Robinson CM, James A, Awasthi P, Shankarappa P, Luo X, Lei H, Butcher D, Smith R, Edmondson EF, Chen JQ, Kedei N, Peer CJ, Shern JF, Figg WD, Chen L, Hall MD, Difilippantonio S, Barr FG, Kortum RL, Robey RW, Vaseva AV, Khan J, Yohe ME. The Combination of Trametinib and Ganitumab is Effective in RAS-Mutated PAX-Fusion Negative Rhabdomyosarcoma Models. Clin Cancer Res 2023; 29:472-487. [PMID: 36322002 PMCID: PMC9852065 DOI: 10.1158/1078-0432.ccr-22-1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE PAX-fusion negative rhabdomyosarcoma (FN RMS) is driven by alterations in the RAS/MAP kinase pathway and is partially responsive to MEK inhibition. Overexpression of IGF1R and its ligands is also observed in FN RMS. Preclinical and clinical studies have suggested that IGF1R is itself an important target in FN RMS. Our previous studies revealed preclinical efficacy of the MEK1/2 inhibitor, trametinib, and an IGF1R inhibitor, BMS-754807, but this combination was not pursued clinically due to intolerability in preclinical murine models. Here, we sought to identify a combination of an MEK1/2 inhibitor and IGF1R inhibitor, which would be tolerated in murine models and effective in both cell line and patient-derived xenograft models of RAS-mutant FN RMS. EXPERIMENTAL DESIGN Using proliferation and apoptosis assays, we studied the factorial effects of trametinib and ganitumab (AMG 479), a mAb with specificity for human and murine IGF1R, in a panel of RAS-mutant FN RMS cell lines. The molecular mechanism of the observed synergy was determined using conventional and capillary immunoassays. The efficacy and tolerability of trametinib/ganitumab was assessed using a panel of RAS-mutated cell-line and patient-derived RMS xenograft models. RESULTS Treatment with trametinib and ganitumab resulted in synergistic cellular growth inhibition in all cell lines tested and inhibition of tumor growth in four of six models of RAS-mutant RMS. The combination had little effect on body weight and did not produce thrombocytopenia, neutropenia, or hyperinsulinemia in tumor-bearing SCID beige mice. Mechanistically, ganitumab treatment prevented the phosphorylation of AKT induced by MEK inhibition alone. Therapeutic response to the combination was observed in models without a mutation in the PI3K/PTEN axis. CONCLUSIONS We demonstrate that combined trametinib and ganitumab is effective in a genomically diverse panel of RAS-mutated FN RMS preclinical models. Our data also show that the trametinib/ganitumab combination likely has a favorable tolerability profile. These data support testing this combination in a phase I/II clinical trial for pediatric patients with relapsed or refractory RAS-mutated FN RMS.
Collapse
Affiliation(s)
- Katie E. Hebron
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892,Laboratory of Cell and Developmental Signaling, Center for Cancer Research, 8560 Progress Drive, Frederick, MD 21701
| | - Xiaolin Wan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892
| | - Jacob S. Roth
- Early Translation Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD 20850
| | - David J. Liewehr
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892
| | - Nancy E. Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Services, Bethesda, MD 20814
| | - William J.E. Frye
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892
| | - Angela Kim
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, 8560 Progress Drive, Frederick, MD 21701
| | - Stacey Stauffer
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, 8560 Progress Drive, Frederick, MD 21701
| | - Olivia L. Perkins
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892
| | - Wenyue Sun
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892
| | - Kristine A. Isanogle
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Christina M. Robinson
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Amy James
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Priya Shankarappa
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892
| | - Xiaoling Luo
- Collaborative Protein Technology Resource, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892
| | - Donna Butcher
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Roberta Smith
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Elijah F. Edmondson
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Jin-Qiu Chen
- Collaborative Protein Technology Resource, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Noemi Kedei
- Collaborative Protein Technology Resource, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Cody J. Peer
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892
| | - W. Douglas Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892
| | - Lu Chen
- Early Translation Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD 20850
| | - Matthew D. Hall
- Early Translation Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD 20850
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Frederic G. Barr
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892
| | - Robert L. Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Services, Bethesda, MD 20814
| | - Robert W. Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892
| | - Angelina V. Vaseva
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892,Co-corresponding authors Correspondence: Marielle Yohe, M.D., Ph.D., Center for Cancer Research, National Cancer Institute, 8560 Progress Drive Room D3026, Frederick, MD 27101, Phone: (240) 760-7436,
| | - Marielle E. Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892,Laboratory of Cell and Developmental Signaling, Center for Cancer Research, 8560 Progress Drive, Frederick, MD 21701,Co-corresponding authors Correspondence: Marielle Yohe, M.D., Ph.D., Center for Cancer Research, National Cancer Institute, 8560 Progress Drive Room D3026, Frederick, MD 27101, Phone: (240) 760-7436,
| |
Collapse
|
3
|
PROX1 transcription factor controls rhabdomyosarcoma growth, stemness, myogenic properties and therapeutic targets. Proc Natl Acad Sci U S A 2022; 119:e2116220119. [PMID: 36459642 PMCID: PMC9894179 DOI: 10.1073/pnas.2116220119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive pediatric soft-tissue cancer with features of skeletal muscle. Because of poor survival of RMS patients and severe long-term side effects of RMS therapies, alternative RMS therapies are urgently needed. Here we show that the prospero-related homeobox 1 (PROX1) transcription factor is highly expressed in RMS tumors regardless of their cell type of origin. We demonstrate that PROX1 is needed for RMS cell clonogenicity, growth and tumor formation. PROX1 gene silencing repressed several myogenic and tumorigenic transcripts and transformed the RD cell transcriptome to resemble that of benign mesenchymal stem cells. Importantly, we found that fibroblast growth factor receptors (FGFR) mediated the growth effects of PROX1 in RMS. Because of receptor cross-compensation, paralog-specific FGFR inhibition did not mimic the effects of PROX1 silencing, whereas a pan-FGFR inhibitor ablated RMS cell proliferation and induced apoptosis. Our findings uncover the critical role of PROX1 in RMS and offer insights into the mechanisms that regulate RMS development and growth. As FGFR inhibitors have already been tested in clinical phase I/II trials in other cancer types, our findings provide an alternative option for RMS treatment.
Collapse
|
4
|
Vaccaro S, Rossetti A, Porrazzo A, Camero S, Cassandri M, Pomella S, Tomaciello M, Macioce G, Pedini F, Barillari G, Marchese C, Rota R, Cenci G, Tombolini M, Newman RA, Yang P, Codenotti S, Fanzani A, Megiorni F, Festuccia C, Minniti G, Gravina GL, Vulcano F, Milazzo L, Marampon F. The botanical drug PBI-05204, a supercritical CO2 extract of Nerium oleander, sensitizes alveolar and embryonal rhabdomyosarcoma to radiotherapy in vitro and in vivo. Front Pharmacol 2022; 13:1071176. [DOI: 10.3389/fphar.2022.1071176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Treatment of rhabdomyosarcoma (RMS), the most common a soft tissue sarcoma in childhood, provides intensive multimodal therapy, with radiotherapy (RT) playing a critical role for local tumor control. However, since RMS efficiently activates mechanisms of resistance to therapies, despite improvements, the prognosis remains still largely unsatisfactory, mainly in RMS expressing chimeric oncoproteins PAX3/PAX7-FOXO1, and fusion-positive (FP)-RMS. Cardiac glycosides (CGs), plant-derived steroid-like compounds with a selective inhibitory activity of the Na+/K+-ATPase pump (NKA), have shown antitumor and radio-sensitizing properties. Herein, the therapeutic properties of PBI-05204, an extract from Nerium oleander containing the CG oleandrin already studied in phase I and II clinical trials for cancer patients, were investigated, in vitro and in vivo, against FN- and FP-RMS cancer models. PBI-05204 induced growth arrest in a concentration dependent manner, with FP-RMS being more sensitive than FN-RMS, by differently regulating cell cycle regulators and commonly upregulating cell cycle inhibitors p21Waf1/Cip1 and p27Cip1/Kip1. Furthermore, PBI-05204 concomitantly induced cell death on both RMS types and senescence in FN-RMS. Notably, PBI-05204 counteracted in vitro migration and invasion abilities and suppressed the formation of spheroids enriched in CD133+ cancer stem cells (CSCs). PBI-05204 sensitized both cell types to RT by improving the ability of RT to induce G2 growth arrest and counteracting the RT-induced activation of both Non‐Homologous End‐Joining and homologous recombination DSBs repair pathways. Finally, the antitumor and radio-sensitizing proprieties of PBI-05204 were confirmed in vivo. Notably, both in vitro and in vivo evidence confirmed the higher sensitivity to PBI-05204 of FP-RMS. Thus, PBI-05204 represents a valid radio-sensitizing agent for the treatment of RMS, including the intrinsically radio-resistant FP-RMS.
Collapse
|
5
|
Krchniakova M, Paukovcekova S, Chlapek P, Neradil J, Skoda J, Veselska R. Thiosemicarbazones and selected tyrosine kinase inhibitors synergize in pediatric solid tumors: NDRG1 upregulation and impaired prosurvival signaling in neuroblastoma cells. Front Pharmacol 2022; 13:976955. [PMID: 36160437 PMCID: PMC9490180 DOI: 10.3389/fphar.2022.976955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are frequently used in combined therapy to enhance treatment efficacy and overcome drug resistance. The present study analyzed the effects of three inhibitors, sunitinib, gefitinib, and lapatinib, combined with iron-chelating agents, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) or di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC). Simultaneous administration of the drugs consistently resulted in synergistic and/or additive activities against the cell lines derived from the most frequent types of pediatric solid tumors. The results of a detailed analysis of cell signaling in the neuroblastoma cell lines revealed that TKIs inhibited the phosphorylation of the corresponding receptor tyrosine kinases, and thiosemicarbazones downregulated the expression of epidermal growth factor receptor, platelet-derived growth factor receptor, and insulin-like growth factor-1 receptor, leading to a strong induction of apoptosis. Marked upregulation of the metastasis suppressor N-myc downstream regulated gene-1 (NDRG1), which is known to be activated and upregulated by thiosemicarbazones in adult cancers, was also detected in thiosemicarbazone-treated neuroblastoma cells. Importantly, these effects were more pronounced in the cells treated with drug combinations, especially with the combinations of lapatinib with thiosemicarbazones. Therefore, these results provide a rationale for novel strategies combining iron-chelating agents with TKIs in therapy of pediatric solid tumors.
Collapse
Affiliation(s)
- Maria Krchniakova
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Silvia Paukovcekova
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petr Chlapek
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Jakub Neradil
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- *Correspondence: Jan Skoda, ; Renata Veselska,
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- *Correspondence: Jan Skoda, ; Renata Veselska,
| |
Collapse
|
6
|
Piazzi M, Bavelloni A, Cenni V, Salucci S, Bartoletti Stella A, Tomassini E, Scotlandi K, Blalock WL, Faenza I. Combined Treatment with PI3K Inhibitors BYL-719 and CAL-101 Is a Promising Antiproliferative Strategy in Human Rhabdomyosarcoma Cells. Molecules 2022; 27:molecules27092742. [PMID: 35566091 PMCID: PMC9104989 DOI: 10.3390/molecules27092742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a highly malignant and metastatic pediatric cancer arising from skeletal muscle myogenic progenitors. Recent studies have shown an important role for AKT signaling in RMS progression. Aberrant activation of the PI3K/AKT axis is one of the most frequent events occurring in human cancers and serves to disconnect the control of cell growth, survival, and metabolism from exogenous growth stimuli. In the study reported here, a panel of five compounds targeting the catalytic subunits of the four class I PI3K isoforms (p110α, BYL-719 inhibitor; p110β, TGX-221 inhibitor; p110γ, CZC24832; p110δ, CAL-101 inhibitor) and the dual p110α/p110δ, AZD8835 inhibitor, were tested on the RMS cell lines RD, A204, and SJCRH30. Cytotoxicity, cell cycle, apoptosis, and the activation of downstream targets were analyzed. Of the individual inhibitors, BYL-719 demonstrated the most anti-tumorgenic properties. BYL-719 treatment resulted in G1/G0 phase cell cycle arrest and apoptosis. When combined with CAL-101, BYL-719 decreased cell viability and induced apoptosis in a synergistic manner, equaling or surpassing results achieved with AZD8835. In conclusion, our findings indicate that BYL-719, either alone or in combination with the p110δ inhibitor, CAL-101, could represent an efficient treatment for human rhabdomyosarcoma presenting with aberrant upregulation of the PI3K signaling pathway.
Collapse
Affiliation(s)
- Manuela Piazzi
- Istituto di Genetica Molecolare ‘‘Luigi Luca Cavalli-Sforza’’, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Bavelloni
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.B.); (K.S.)
| | - Vittoria Cenni
- Istituto di Genetica Molecolare ‘‘Luigi Luca Cavalli-Sforza’’, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Sara Salucci
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40138 Bologna, Italy;
| | - Anna Bartoletti Stella
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università di Bologna, 40138 Bologna, Italy; (A.B.S.); (E.T.)
| | - Enrica Tomassini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università di Bologna, 40138 Bologna, Italy; (A.B.S.); (E.T.)
| | - Katia Scotlandi
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.B.); (K.S.)
| | - William L. Blalock
- Istituto di Genetica Molecolare ‘‘Luigi Luca Cavalli-Sforza’’, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: (W.L.B.); (I.F.)
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40138 Bologna, Italy;
- Correspondence: (W.L.B.); (I.F.)
| |
Collapse
|
7
|
Chen X, Zou C, Yang C, Gao L, Bi LK, Xie DD, Yu DX. Pleomorphic rhabdomyosarcoma of the spermatic cord and a secondary hydrocele testis: A case report. World J Clin Cases 2020; 8:2641-2646. [PMID: 32607344 PMCID: PMC7322420 DOI: 10.12998/wjcc.v8.i12.2641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pleomorphic rhabdomyosarcoma (RMS) of the spermatic cord is a group of rare neoplasms, and a secondary hydrocele testis occasionally occurs. The misdiagnosis of paratesticular mass may lead to a therapeutic delay.
CASE SUMMARY A 79-year-old man presented to our clinic complaining of a 1-mo history of painless scrotal swelling. Physical examination revealed approximately a 15 cm × 10 cm × 5 cm inguinal mass with limited mobility. Contrast-enhanced magnetic resonance imaging showed a hydrocele testis, several enlarged inguinal lymph nodes, and a heterogeneously enhanced lesion with a relatively well-defined margin in the left inguinal region. Due to the imaging findings, he was diagnosed with pleomorphic RMS and received a wide resection of the mass, an inguinal incision with a high section of the left spermatic cord, and a left radical orchiectomy. He experienced local relapse 1 mo postoperatively and received radiotherapy and anlotinib hydrochloride-based immunotherapy as adjuvant therapy. The patient died 3 mo after the surgery.
CONCLUSION The optimal interventions for advanced-stage pleomorphic RMS patients should be investigated by more preclinical studies and clinical trials. Physicians need to be aware of the occurrence of pleomorphic RMS in unusual locations, especially when accompanied by a hydrocele testis.
Collapse
Affiliation(s)
- Xin Chen
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Ci Zou
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Chao Yang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Liang Gao
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg 66421, Germany
| | - Liang-Kuan Bi
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Dong-Dong Xie
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei 230032, Anhui Province, China
| | - De-Xin Yu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei 230032, Anhui Province, China
| |
Collapse
|
8
|
Inhibition of anaplastic lymphoma kinase promotes apoptosis and suppresses proliferation in human hepatocellular carcinoma. Anticancer Drugs 2019; 29:513-519. [PMID: 29570100 DOI: 10.1097/cad.0000000000000616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Our study was to examine the roles of crizotinib and ceritinib in hepatocellular carcinoma (HCC) cells and explore the possible mechanisms. MTT assay was employed to examine the proliferation of five HCC cell lines treated with various concentrations of crizotinib or ceritinib. HepG2 and HCCLM3 cells were incubated with 2 nmol/l ceritinib for 1 week, followed by crystal violet staining and cell counting. Protein amounts of t-ALK, p-ALK, t-AKT, p-AKT, t-ERK, p-ERK, Mcl-1, survivin, and XIAP in HepG2 cells under different culture conditions were evaluated by western blot. HepG2 and HCCLM3 cells were treated with vehicle or ceritinib and measured by flow cytometry apoptosis analysis with Annexin-V/propidium iodide staining. MTT assay showed that both crizotinib and ceritinib suppressed the proliferation of various human HCC cells. Crystal violet staining analysis also indicated that ceritinib effectively inhibited human HCC cell proliferation. Western blot analysis indicated that both crizotinib and ceritinib inhibited ALK, AKT, and ERK phosphorylations. In addition, ceritinib reduced antiapoptotic gene expressions in HepG2 cells. Flow cytometry analysis indicated that ceritinib induced HepG2 and HCCLM3 cells apoptosis. ALK inhibitor exhibited antitumor effects by inhibiting ALK activation, repressing AKT and ERK pathways, and suppressing antiapoptotic gene expressions, which subsequently promoted apoptosis and suppressed HCC cell proliferations.
Collapse
|
9
|
Al-Ghabkari A, Qasrawi DO, Alshehri M, Narendran A. Focal adhesion kinase (FAK) phosphorylation is a key regulator of embryonal rhabdomyosarcoma (ERMS) cell viability and migration. J Cancer Res Clin Oncol 2019; 145:1461-1469. [PMID: 31006845 DOI: 10.1007/s00432-019-02913-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in children. Pathogenesis of RMS is associated with aggressive growth pattern and increased risk of morbidity and mortality. There are two main subtypes or RMS: embryonal and alveolar. The embryonal type is characterized by distinct molecular aberrations, including alterations in the activity of certain protein kinases. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that plays a vital role in focal adhesion (FA) assembly to promote cytoskeleton dynamics and regulation of cell motility. It is regulated by multiple phosphorylation sites: tyrosine 397, Tyr 576/577, and Tyr 925. Tyrosine 397 is the autophosphorylation site that regulates FAK localization at the cell periphery to facilitate the assembly and formation of the FA complex. The kinase activity of FAK is mediated by the phosphorylation of Tyr 576/577 within the kinase domain activation loop. Aberrations of FAK phosphorylation have been linked to the pathogenesis of different types of cancers. In this regard, pY397 upregulation is linked to increase ERMS cell motility, invasion, and tumorigenesis. METHODS In this study, we have used an established human embryonal muscle rhabdomyosarcoma cell line RD as a model to examine FAK phosphorylation profiles to characterize its role in the pathogenies of RMS. RESULTS Our findings revealed a significant increase of FAK phosphorylation at pY397 in RD cells compared to control cells (hTERT). On the other hand, Tyr 576/577 phosphorylation levels in RD cells displayed a pronounced reduction. Our data showed that Y925 residue exhibited no detectable change. The in vitro analysis showed that the FAK inhibitor, PF-562271 led to G1 cell-cycle arrest induced cell death (IC50, ~ 12 µM) compared to controls. Importantly, immunostaining analyses displayed a noticeable reduction of Y397 phosphorylation following PF-562271 treatment. Our data also showed that PF-562271 suppressed RD cell migration in a dose-dependent manner associated with a reduction in Y397 phosphorylation. CONCLUSIONS The data presented herein indicate that targeting FAK phosphorylation at distinct sites is a promising strategy in future treatment approaches for defined subgroups of rhabdomyosarcoma.
Collapse
Affiliation(s)
- Abdulhameed Al-Ghabkari
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
| | - Deema O Qasrawi
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Mana Alshehri
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Aru Narendran
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| |
Collapse
|
10
|
Glutamine synthetase is necessary for sarcoma adaptation to glutamine deprivation and tumor growth. Oncogenesis 2019; 8:20. [PMID: 30808861 PMCID: PMC6391386 DOI: 10.1038/s41389-019-0129-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/23/2019] [Accepted: 02/08/2019] [Indexed: 12/17/2022] Open
Abstract
Despite a growing body of knowledge about the genomic landscape and molecular pathogenesis of sarcomas, translation of basic discoveries into targeted therapies and significant clinical gains has remained elusive. Renewed interest in altered metabolic properties of cancer cells has led to an exploration of targeting metabolic dependencies as a novel therapeutic strategy. In this study, we have characterized the dependency of human pediatric sarcoma cells on key metabolic substrates and identified a mechanism of adaptation to metabolic stress by examining proliferation and bioenergetic properties of rhabdomyosarcoma and Ewing sarcoma cells under varying concentrations of glucose and glutamine. While all cell lines tested were completely growth-inhibited by lack of glucose, cells adapted to glutamine deprivation, and restored proliferation following an initial period of reduced growth. We show that expression of glutamine synthetase (GS), the enzyme responsible for de novo glutamine synthesis, increased during glutamine deprivation, and that pharmacological or shRNA-mediated GS inhibition abolished proliferation of glutamine-deprived cells, while having no effect on cells grown under normal culture conditions. Moreover, the GS substrates and glutamine precursors glutamate and ammonia restored proliferation of glutamine-deprived cells in a GS-dependent manner, further emphasizing the necessity of GS for adaptation to glutamine stress. Furthermore, pharmacological and shRNA-mediated GS inhibition significantly reduced orthotopic xenograft tumor growth. We also show that glutamine supports sarcoma nucleotide biosynthesis and optimal mitochondrial bioenergetics. Our findings demonstrate that GS mediates proliferation of glutamine-deprived pediatric sarcomas, and suggest that targeting metabolic dependencies of sarcomas should be further investigated as a potential therapeutic strategy.
Collapse
|
11
|
Han T, Chen J, Luan Y, Chen X, Yang X, Zhang Y, Li G, Wang D, Zheng Z. Successful treatment of relapsed testicular embryonal rhabdomyosarcoma with Endostar and traditional chemotherapy: a case report. Onco Targets Ther 2018; 11:5287-5291. [PMID: 30214234 PMCID: PMC6124800 DOI: 10.2147/ott.s170008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Embryonal rhabdomyosarcoma (ERMS) has a low prevalence, poor prognosis, and limited treatment efficacy. We report a case of an 18-year-old male whose disease relapsed in the abdominal cavity after a testicular ERMS curative resection. The patient received eight sequential cycles of rescue therapy using cisplatin and isocyclophosphamide in combination with a vascular targeted drug, Endostar. The therapeutic effect of the combination regimen has been evaluated for complete response. This is the first case to report using Endostar and chemotherapy in relapsed ERMS, and the curative effect results in complete response. Endostar, a new vascular targeted drug, combined with chemotherapy may play a synergistic role and provide a reference for the treatment of ERMS.
Collapse
Affiliation(s)
- Tao Han
- Department of Oncology, Cancer Center of People's Liberation Army, General Hospital of Shenyang Military Region, Shenyang 110840, People's Republic of China,
| | - Jianjun Chen
- Department of Oncology, Cancer Center of People's Liberation Army, General Hospital of Shenyang Military Region, Shenyang 110840, People's Republic of China,
| | - Yuting Luan
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang 110840, People's Republic of China
| | - Xiaoxia Chen
- Department of Oncology, Cancer Center of People's Liberation Army, General Hospital of Shenyang Military Region, Shenyang 110840, People's Republic of China,
| | - Xiaodan Yang
- Department of Oncology, Cancer Center of People's Liberation Army, General Hospital of Shenyang Military Region, Shenyang 110840, People's Republic of China,
| | - Yue Zhang
- Department of Oncology, Cancer Center of People's Liberation Army, General Hospital of Shenyang Military Region, Shenyang 110840, People's Republic of China,
| | - Gao Li
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang 110840, People's Republic of China
| | - Di Wang
- Department of Pathology, General Hospital of Shenyang Military Region, Shenyang 110840, People's Republic of China
| | - Zhendong Zheng
- Department of Oncology, Cancer Center of People's Liberation Army, General Hospital of Shenyang Military Region, Shenyang 110840, People's Republic of China,
| |
Collapse
|
12
|
Dolgikh N, Hugle M, Vogler M, Fulda S. NRAS-Mutated Rhabdomyosarcoma Cells Are Vulnerable to Mitochondrial Apoptosis Induced by Coinhibition of MEK and PI3K α. Cancer Res 2018; 78:2000-2013. [PMID: 29437705 DOI: 10.1158/0008-5472.can-17-1737] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/06/2017] [Accepted: 01/30/2018] [Indexed: 11/16/2022]
Abstract
Sequencing studies have revealed recurrent mutations in the RAS pathway in rhabdomyosarcoma (RMS). However, RAS effector pathways in RMS are poorly defined. Here, we report that coinhibition of NRAS or MEK plus PI3Kα triggers widespread apoptosis in NRAS-mutated RMS cells. Subtoxic concentrations of the MEK inhibitor MEK162 and the PI3Kα-specific inhibitor BYL719 synergized to trigger apoptosis in NRAS-mutated RMS cells in vitro and in vivoNRAS- or HRAS-mutated cell lines were more vulnerable to MEK162/BYL719 cotreatment than RAS wild-type cell lines, and MEK162/BYL719 cotreatment was more effective to trigger apoptosis in NRAS-mutated than RAS wild-type RMS tumors in vivo We identified BCL-2-modifying factor (BMF) as an inhibitory target of oncogenic NRAS, with either NRAS silencing or MEK inhibition upregulating BMF mRNA and protein levels, which BYL719 further increased. BMF silencing ablated MEK162/BYL719-induced apoptosis. Mechanistic investigations implicated a proapoptotic rebalancing of BCL-2 family members and suppression of cap-dependent translation in apoptotic sensitivity upon MEK162/BYL719 cotreatment. Our results offer a rationale for combining MEK- and PI3Kα-specific inhibitors in clinical treatment of RAS-mutated RMS.Significance: These findings offer a mechanistic rationale for combining MEK- and PI3Kα-specific inhibitors in the clinical treatment of RAS-mutated forms of often untreatable rhabdomyosarcomas. Cancer Res; 78(8); 2000-13. ©2018 AACR.
Collapse
Affiliation(s)
- Nadezda Dolgikh
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| | - Manuela Hugle
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| | - Meike Vogler
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany. .,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
Abstract
Rhabdomyosarcoma (RMS) is a myogenic tumor classified as the most frequent soft tissue sarcoma affecting children and adolescents. The histopathological classification includes 5 different histotypes, with 2 most predominant referred as to embryonal and alveolar, the latter being characterized by adverse outcome. The current molecular classification identifies 2 major subsets, those harboring the fused Pax3-Foxo1 transcription factor generating from a recurrent specific translocation (fusion-positive RMS), and those lacking this signature but harboring mutations in the RAS/PI3K/AKT signaling axis (fusion-negative RMS). Since little attention has been devoted to RMS metabolism until now, in this review we summarize the "state of art" of metabolism and discuss how some of the molecular signatures found in this cancer, as observed in other more common tumors, can predict important metabolic challenges underlying continuous cell growth, oxidative stress resistance and metastasis, which could be the subject of future targeted therapies.
Collapse
Affiliation(s)
- Eugenio Monti
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| | - Alessandro Fanzani
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy.,b Interuniversity Institute of Myology , Rome , Italy
| |
Collapse
|
14
|
Jaaks P, D’Alessandro V, Grob N, Büel S, Hajdin K, Schäfer BW, Bernasconi M. The Proprotein Convertase Furin Contributes to Rhabdomyosarcoma Malignancy by Promoting Vascularization, Migration and Invasion. PLoS One 2016; 11:e0161396. [PMID: 27548722 PMCID: PMC4993484 DOI: 10.1371/journal.pone.0161396] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022] Open
Abstract
The proprotein convertase (PC) furin cleaves precursor proteins, an important step in the activation of many cancer-associated proteins. Substrates of furin and furin-like PCs play a role in proliferation, metastasis and invasion. Some of them are involved in the progression of the pediatric soft tissue sarcoma rhabdomyosarcoma (RMS). In this study, we show that PCs, and in particular furin, are expressed in RMS cell lines. To investigate the functional role of furin, we generated RMS cell lines with modulated furin activity. Silencing or stable inhibition of furin delayed tumor growth in Rh30 and RD xenografts in vivo, and was correlated with lower microvessel density. Reduced furin activity also decreased migration and invasion abilities in vitro, and inhibition of furin in RMS cells diminished processing of IGF1R, VEGF-C, PDGF-B and MT1-MMP, leading to lower levels of mature proteins. Furthermore, we found that furin activity is required for proper IGF signaling in RMS cells, as furin silencing resulted in reduced phosphorylation of Akt upon IGF1 stimulation. Taken together, our results suggest that furin plays an important role in the malignant phenotype of RMS cells by activating proteins involved in tumor growth and vascularization, metastasis and invasion.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Movement
- Furin/antagonists & inhibitors
- Furin/genetics
- Furin/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Matrix Metalloproteinase 14/genetics
- Matrix Metalloproteinase 14/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Invasiveness
- Neoplasm Transplantation
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Phosphorylation
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-sis/genetics
- Proto-Oncogene Proteins c-sis/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptor, IGF Type 1
- Receptors, Somatomedin/genetics
- Receptors, Somatomedin/metabolism
- Rhabdomyosarcoma/genetics
- Rhabdomyosarcoma/metabolism
- Rhabdomyosarcoma/pathology
- Signal Transduction
- Soft Tissue Neoplasms/genetics
- Soft Tissue Neoplasms/metabolism
- Soft Tissue Neoplasms/pathology
- Transplantation, Heterologous
- Vascular Endothelial Growth Factor C/genetics
- Vascular Endothelial Growth Factor C/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Patricia Jaaks
- Department of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Valentina D’Alessandro
- Department of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Nicole Grob
- Department of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Sina Büel
- Department of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Katarina Hajdin
- Department of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Beat W. Schäfer
- Department of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Michele Bernasconi
- Department of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
15
|
Babichev Y, Kabaroff L, Datti A, Uehling D, Isaac M, Al-Awar R, Prakesch M, Sun RX, Boutros PC, Venier R, Dickson BC, Gladdy RA. PI3K/AKT/mTOR inhibition in combination with doxorubicin is an effective therapy for leiomyosarcoma. J Transl Med 2016; 14:67. [PMID: 26952093 PMCID: PMC4782390 DOI: 10.1186/s12967-016-0814-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/11/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Leiomyosarcoma (LMS) is a common type of soft tissue sarcoma that responds poorly to standard chemotherapy. Thus the goal of this study was to identify novel selective therapies that may be effective in leiomyosarcoma by screening cell lines with a small molecule library comprised of 480 kinase inhibitors to functionally determine which signalling pathways may be critical for LMS growth. METHODS LMS cell lines were screened with the OICR kinase library and a cell viability assay was used to identify potentially effective compounds. The top 10 % of hits underwent secondary validation to determine their EC50 and immunoblots were performed to confirm selective drug action. The efficacy of combination drug therapy with doxorubicin (Dox) in vitro was analyzed using the Calcusyn program after treatment with one of three dosing schedules: concurrent treatment, initial treatment with a selective compound followed by Dox, or initial treatment with Dox followed by the selective compound. Single and combination drug therapy were then validated in vivo using LMS xenografts. RESULTS Compounds that targeted PI3K/AKT/mTOR pathways (52 %) were most effective. EC50s were determined to validate these initial hits, and of the 11 confirmed hits, 10 targeted PI3K and/or mTOR pathways with EC50 values <1 μM. We therefore examined if BEZ235 and BKM120, two selective compounds in these pathways, would inhibit leiomyosarcoma growth in vitro. Immunoblots confirmed on-target effects of these compounds in the PI3K and/or mTOR pathways. We next investigated if there was synergy with these agents and first line chemotherapy doxorubicin (Dox), which would allow for earlier introduction into patient care. Only combined treatment of BEZ235 and Dox was synergistic in vitro. To validate these findings in pre-clinical models, leiomyosarcoma xenografts were treated with single agent and combination therapy. BEZ235 treated xenografts (n = 8) demonstrated a decrease in tumor volume of 42 % whereas combining BEZ235 with Dox (n = 8) decreased tumor volume 68 % compared to vehicle alone. CONCLUSIONS In summary, this study supports further investigation into the use of PI3K and mTOR inhibitors alone and in combination with standard treatment in leiomyosarcoma patients.
Collapse
Affiliation(s)
- Yael Babichev
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, M5G 1X5, Canada.
| | - Leah Kabaroff
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, M5G 1X5, Canada.
| | - Alessandro Datti
- Sinai-McLaughlin Assay and Robotic Technologies Facility, Lunenfeld-Tanenbaum Research Institute, Toronto, M5G 1X5, Canada.
- Department of Agricultural, Food, and Environmental Sciences, University of Perugia, 06121, Perugia, Italy.
| | - David Uehling
- Drug Discovery Group, Ontario Institute for Cancer Research, Toronto, M5G 0A3, Canada.
| | - Methvin Isaac
- Drug Discovery Group, Ontario Institute for Cancer Research, Toronto, M5G 0A3, Canada.
| | - Rima Al-Awar
- Drug Discovery Group, Ontario Institute for Cancer Research, Toronto, M5G 0A3, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada.
| | - Michael Prakesch
- Drug Discovery Group, Ontario Institute for Cancer Research, Toronto, M5G 0A3, Canada.
| | - Ren X Sun
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada.
- Informatics and Biocomputing Program, Ontario Institute for Cancer Research, Toronto, M5G 0A3, ON, Canada.
| | - Paul C Boutros
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada.
- Informatics and Biocomputing Program, Ontario Institute for Cancer Research, Toronto, M5G 0A3, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, M5S 1A1, ON, Canada.
| | - Rosemarie Venier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, M5G 1X5, Canada.
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, M5G 1X5, ON, Canada.
| | - Rebecca A Gladdy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, M5G 1X5, Canada.
- Department of Surgery, University of Toronto, Toronto, M5S 1A1, Canada.
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A1, Canada.
- Cancer Stem Cell Program, Ontario Institute for Cancer Research, Toronto, M5G 0A3, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, 25 Orde Street, Room 5-1015-2, Toronto, ON, M5T 3H7, Canada.
| |
Collapse
|
16
|
Liu J, Jin H, Tian H, Lian G, Chen S, Li J, Zhang X, Ma D. Anaplastic lymphoma kinase protein expression predicts micrometastases and prognosis for patients with hepatocellular carcinoma. Oncol Lett 2015; 11:213-223. [PMID: 26870191 PMCID: PMC4727030 DOI: 10.3892/ol.2015.3859] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 09/24/2015] [Indexed: 12/21/2022] Open
Abstract
The present study aimed to investigate anaplastic lymphoma kinase (ALK) status in hepatocellular carcinoma (HCC) and to evaluate whether abnormalities in expression were associated with patient prognosis. ALK status was investigated using immunohistochemistry (IHC), reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and fluorescence in situ hybridization (FISH) assays in 342 HCC patients. In addition, rapid amplification of complementary DNA ends-coupled PCR sequencing was performed, in order to confirm the presence of ALK abnormalities in patients exhibiting ALK messenger RNA (mRNA) overexpression. The correlation between ALK expression and the clinicopathological features and prognosis of the HCC patients was statistically analyzed. The results of the present study revealed overexpression of ALK protein and mRNA; furthermore, ALK gene copy number gains were observed via IHC (44.7%; 153/342), RT-qPCR (47.4%; 162/342) and FISH (32.7%; 112/342) analyses, although ALK rearrangement or mutation was not demonstrated in the results of any of these assays. ALK protein expression levels were significantly associated with hepatitis C virus (HCV) status (P<0.001) and the presence of micrometastases (P=0.011). Within the entire patient cohort, ALK expression was associated with poor progression-free survival (PFS; P=0.041). Subsequent analysis in patient subgroups that demonstrated hepatitis B surface antigen positivity, HCV negativity, stage III-IV disease, recurrence and micrometastasis positivity revealed that overall survival (OS) and PFS were significantly reduced in those patients exhibiting ALK expression compared with those patients who were negative for ALK expression. Multivariate analysis revealed that ALK expression was an independent risk factor for OS (P=0.042) and PFS (P=0.033), particularly for patients with stage III-IV tumors. Thus, ALK may serve as a novel indicator for the metastatic behavior and prognosis of HCC.
Collapse
Affiliation(s)
- Jianhua Liu
- Department of Oncology, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510180, P.R. China
| | - Haosheng Jin
- Department of Hepatobiliary Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510180, P.R. China
| | - Hongxia Tian
- Medical Research Center, Lung Cancer Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510180, P.R. China
| | - Guoda Lian
- Department of Gastroenterology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shaojie Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jiayu Li
- Department of Gastroenterology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xuchao Zhang
- Medical Research Center, Lung Cancer Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510180, P.R. China
| | - Dong Ma
- Department of Oncology, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
17
|
Peron M, Lovisa F, Poli E, Basso G, Bonvini P. Understanding the Interplay between Expression, Mutation and Activity of ALK Receptor in Rhabdomyosarcoma Cells for Clinical Application of Small-Molecule Inhibitors. PLoS One 2015; 10:e0132330. [PMID: 26147305 PMCID: PMC4493009 DOI: 10.1371/journal.pone.0132330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/14/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Receptor tyrosine kinases (RTKs) have a central role in cancer initiation and progression, since changes in their expression and activity potentially results in cell transformation. This concept is essential from a therapeutic standpoint, as clinical evidence indicates that tumours carrying deregulated RTKs are particularly susceptible to their activity but also to their inhibition. Rhabdomyosarcoma (RMS) is an aggressive childhood cancer where emerging therapies rely on the use kinase inhibitors, and among druggable kinases ALK represents a potential therapeutic target to commit efforts against. However, the functional relevance of ALK in RMS is not known, likewise the multi-component deregulated RTK profile to which ALK belongs. METHODS In this study we used RMS cell lines representative of the alveolar and embrional histotype and looked at ALK intracellular localization, activity and cell signalling. RESULTS We found that ALK was properly located at the plasma membrane of RMS cells, though in an unphosphorylated and inactive state due to intracellular tyrosine phosphatases (PTPases) activity. Indeed, increase of ALK phosphorylation was observed upon PTPase inhibition, as well as after ligand binding or protein overexpression. In these conditions, ALK signalling proceeded through the MAPK/ERK and PI3K/AKT pathways, and it was susceptible to ATP-competitive inhibitors exposure. However, drug-induced growth inhibition, cell cycle arrest and apoptosis did not correlate with ALK expression only, but relied also on the expression of other RTKs with akin drug binding affinity. Indeed, analysis of baseline and inducible RTK phosphorylation confirmed that RMS cells were susceptible to ALK kinase inhibitors even in the absence of the primary intended target, due to the presence of compensatory RTKs signalling pathways. CONCLUSIONS These data, hence, provided evidences of a potentially active role of ALK in RMS cells, but also suggest caution in considering ALK a major therapeutic target in this malignancy, particularly if expression and activity cannot be accurately determined.
Collapse
Affiliation(s)
- Marica Peron
- Clinica di Oncoematologia Pediatrica di Padova, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Federica Lovisa
- Clinica di Oncoematologia Pediatrica di Padova, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Elena Poli
- Clinica di Oncoematologia Pediatrica di Padova, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Giuseppe Basso
- Clinica di Oncoematologia Pediatrica di Padova, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Paolo Bonvini
- Clinica di Oncoematologia Pediatrica di Padova, Azienda Ospedaliera-Università di Padova, Padua, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- * E-mail:
| |
Collapse
|
18
|
Zhan XK, Zhang S, Cao BW, Wang JW, Li JL, Sun YK, Zhang W, Yang L, Zhou AP, Chi YHB, Li YX, Ma JH, Li CL. Clinicopathological characteristics and treatment outcomes of Chinese patients with genitourinary embryonal rhabdomyosarcoma. World J Surg Oncol 2015; 13:190. [PMID: 26018798 PMCID: PMC4475326 DOI: 10.1186/s12957-015-0574-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 04/06/2015] [Indexed: 12/22/2022] Open
Abstract
Background Genitourinary embryonal rhabdomyosarcoma is rarely reported in China. This retrospective analysis aimed to characterize the clinicopathologic features and treatment outcomes of genitourinary embryonal rhabdomyosarcoma in a sample of Chinese patients. Methods Basic demographic and clinical data of 29 patients, who were diagnosed with genitourinary embryonal rhabdomyosarcoma between January 2000 and December 2011, were retrieved and analyzed. Results In these patients, 25 were males and 4 were females with a median age of 12 years. Paratesticule was the most common lesion site, followed by the prostate, bladder, and vagina. The median tumor size was 5.80 cm. Six patients had clinically positive regional nodes. At the initial diagnosis, patients had a metastatic disease. According to the TNM staging classification for the IRS-IV, phase I lesions were detected in ten cases, phase II lesions in six cases, phase III lesions in four cases, and phase IV lesions in nine cases. The median survival of all patients was 63 (range from 6 to 118) months. The 1-, 3-, and 5-year survival rates for these patients were 93%, 83%, and 52%, respectively. Multivariate analyses demonstrated that staging and anemia were significant predictors of prognosis. Conclusions Our findings suggest that metastasis predicts a poor prognosis. Chemotherapy played an important role in comprehensive treatment. Palliative and neo-adjuvant chemotherapy could increase median survival time.
Collapse
Affiliation(s)
- Xiao-kai Zhan
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China. .,Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Bang-wei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Jin-wan Wang
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jun-ling Li
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yong-kun Sun
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Wen Zhang
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Lin Yang
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Ai-ping Zhou
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yi-he Bali Chi
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Ye-xiong Li
- Department of Radiation Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jian-hui Ma
- Department of Urological Surgical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Chang-ling Li
- Department of Urological Surgical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
19
|
Codenotti S, Battistelli M, Burattini S, Salucci S, Falcieri E, Rezzani R, Faggi F, Colombi M, Monti E, Fanzani A. Melatonin decreases cell proliferation, impairs myogenic differentiation and triggers apoptotic cell death in rhabdomyosarcoma cell lines. Oncol Rep 2015; 34:279-87. [PMID: 25998836 DOI: 10.3892/or.2015.3987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/30/2015] [Indexed: 11/06/2022] Open
Abstract
Melatonin is a small indole produced by the pineal gland and other tissues, and has numerous functions that aid in the maintenance of the whole body homeostasis, ranging from the regulation of circadian rhythms and sleep to protection from oxidative stress. Melatonin has also been reported to counteract cell growth and chemoresistance in different types of cancer. In the present study, we investigated the effects of exogenous melatonin administration on different human cell lines and primary mouse tumor cultures of rhabdomyosarcoma (RMS), the most frequent soft tissue sarcoma affecting childhood. The results showed that melatonin significantly affected the behavior of RMS cells, leading to inhibition of cell proliferation and impairment of myogenic differentiation followed by increased apoptotic cell death, as observed by immunoblotting analysis of apoptosis-related markers including Bax, Bcl-2 and caspase-3. Similar findings were observed using a combination of microscopy techniques, including scanning/transmission electron and confocal microscopy. Furthermore, melatonin in combination with doxorubicin or cisplatin, two compounds commonly used for the treatment of solid tumors, increased the sensitivity of RMS cells to apoptosis. These data indicated that melatonin may be effective in counteracting RMS tumor growth and chemoresistance.
Collapse
Affiliation(s)
- Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Michela Battistelli
- Department of Earth, Life and Environmental Sciences (DiSTeVA), University Carlo Bo, I-61029 Urbino, Italy
| | - Sabrina Burattini
- Department of Earth, Life and Environmental Sciences (DiSTeVA), University Carlo Bo, I-61029 Urbino, Italy
| | - Sara Salucci
- Department of Earth, Life and Environmental Sciences (DiSTeVA), University Carlo Bo, I-61029 Urbino, Italy
| | - Elisabetta Falcieri
- Department of Earth, Life and Environmental Sciences (DiSTeVA), University Carlo Bo, I-61029 Urbino, Italy
| | - Rita Rezzani
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Fiorella Faggi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Marina Colombi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| |
Collapse
|
20
|
Brehm H, Niesen J, Mladenov R, Stein C, Pardo A, Fey G, Helfrich W, Fischer R, Gattenlöhner S, Barth S. A CSPG4-specific immunotoxin kills rhabdomyosarcoma cells and binds to primary tumor tissues. Cancer Lett 2014; 352:228-35. [PMID: 25016058 DOI: 10.1016/j.canlet.2014.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 11/15/2022]
Abstract
The treatment of rhabdomyosarcoma (RMS) remains challenging, with metastatic and alveolar RMS offering a particularly poor prognosis. Therefore, the identification and evaluation of novel antigens, which are suitable targets for immunotherapy, is one attractive possibility to improve the treatment of this disease. Here we show that chondroitin sulfate proteoglycan 4 (CSPG4) is expressed on RMS cell lines and RMS patient material. We evaluated the immunotoxin (IT) αMCSP-ETA', which specifically recognizes CSPG4 on the RMS cell lines RD, FL-OH1, TE-671 and Rh30. It is internalized rapidly, induces apoptosis and thus kills RMS cells selectively. We also demonstrate the specific binding of this IT to RMS primary tumor material from three different patients.
Collapse
Affiliation(s)
- Hannes Brehm
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Judith Niesen
- Department of Pharmaceutical Product Development, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Radoslav Mladenov
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany; Department of Pharmaceutical Product Development, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Christoph Stein
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany; Department of Pharmaceutical Product Development, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Alessa Pardo
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Georg Fey
- Department of Biology, Friedrich Alexander Universität Erlangen-Nürnberg, Germany
| | - Wijnand Helfrich
- Laboratory for Translational Surgical Oncology, Department of Surgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Rainer Fischer
- Department of Pharmaceutical Product Development, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany; Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Aachen, Germany
| | | | - Stefan Barth
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany; Department of Pharmaceutical Product Development, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
| |
Collapse
|
21
|
Monsma DJ, Cherba DM, Richardson PJ, Vance S, Rangarajan S, Dylewski D, Eugster E, Scott SB, Beuschel NL, Davidson PJ, Axtell R, Mitchell D, Lester EP, Junewick JJ, Webb CP, Monks NR. Using a rhabdomyosarcoma patient-derived xenograft to examine precision medicine approaches and model acquired resistance. Pediatr Blood Cancer 2014; 61:1570-7. [PMID: 24687871 DOI: 10.1002/pbc.25039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/05/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Precision (Personalized) medicine has the potential to revolutionize patient health care especially for many cancers where the fundamental disease etiology remains either elusive or has no available therapy. Here we outline a study in alveolar rhabdomyosarcoma, in which we use gene expression profiling and a series of drug prediction algorithms combined with a matched patient-derived xenograft (PDX) model to test bioinformatically predicted therapies. PROCEDURE A PDX model was developed from a patient biopsy and a number of drugs identified using gene expression analysis in combination with drug prediction algorithms. Drugs chosen from each of the predictive methodologies, along with the patient's standard-of-care therapy (ICE-T), were tested in vivo in the PDX tumor. A second study was initiated using the tumors that re-grew following the ICE-T treatment. Further expression analysis identified additional therapies with potential anti-tumor efficacy. RESULTS A number of the predicted therapies were found to be active against the tumors in particular BGJ398 (FGFR2) and ICE-T. Re-transplanted ICE-T treated tumorgrafts demonstrated a decreased response to ICE-T recapitulating the patient's refractory disease. Gene expression profiling of the ICE-T treated tumorgrafts identified cytarabine (SLC29A1) as a potential therapy, which was shown, along with BGJ398, to be highly active in vivo. CONCLUSIONS This study illustrates that PDX models are suitable surrogates for testing potential therapeutic strategies based on gene expression analysis, modeling clinical drug resistance and hold the potential to assist in guiding prospective patient care.
Collapse
Affiliation(s)
- David J Monsma
- Van Andel Research Institute, Center for Translational Medicine, Grand Rapids, Michigan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Issaq SH, Teicher BA, Monks A. Bioenergetic properties of human sarcoma cells help define sensitivity to metabolic inhibitors. Cell Cycle 2014; 13:1152-61. [PMID: 24553119 PMCID: PMC4013165 DOI: 10.4161/cc.28010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 12/22/2022] Open
Abstract
Sarcomas represent a diverse group of malignancies with distinct molecular and pathological features. A better understanding of the alterations associated with specific sarcoma subtypes is critically important to improve sarcoma treatment. Renewed interest in the metabolic properties of cancer cells has led to an exploration of targeting metabolic dependencies as a therapeutic strategy. In this study, we have characterized key bioenergetic properties of human sarcoma cells in order to identify metabolic vulnerabilities between sarcoma subtypes. We have also investigated the effects of compounds that inhibit glycolysis or mitochondrial respiration, either alone or in combination, and examined relationships between bioenergetic parameters and sensitivity to metabolic inhibitors. Using 2-deoxy-D-glucose (2-DG), a competitive inhibitor of glycolysis, oligomycin, an inhibitor of mitochondrial ATP synthase, and metformin, a widely used anti-diabetes drug and inhibitor of complex I of the mitochondrial respiratory chain, we evaluated the effects of metabolic inhibition on sarcoma cell growth and bioenergetic function. Inhibition of glycolysis by 2-DG effectively reduced the viability of alveolar rhabdomyosarcoma cells vs. embryonal rhabdomyosarcoma, osteosarcoma, and normal cells. Interestingly, inhibitors of mitochondrial respiration did not significantly affect viability, but were able to increase sensitivity of sarcomas to inhibition of glycolysis. Additionally, inhibition of glycolysis significantly reduced intracellular ATP levels, and sensitivity to 2-DG-induced growth inhibition was related to respiratory rates and glycolytic dependency. Our findings demonstrate novel relationships between sarcoma bioenergetics and sensitivity to metabolic inhibitors, and suggest that inhibition of metabolic pathways in sarcomas should be further investigated as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Sameer H Issaq
- Molecular Pharmacology Branch; Leidos Biomedical Research, Inc.; Frederick National Laboratory for Cancer Research; Frederick, MD USA
| | - Beverly A Teicher
- Division of Cancer Treatment and Diagnosis; National Cancer Institute; Rockville, MD USA
| | - Anne Monks
- Molecular Pharmacology Branch; Leidos Biomedical Research, Inc.; Frederick National Laboratory for Cancer Research; Frederick, MD USA
| |
Collapse
|
23
|
Faggi F, Mitola S, Sorci G, Riuzzi F, Donato R, Codenotti S, Poliani PL, Cominelli M, Vescovi R, Rossi S, Calza S, Colombi M, Penna F, Costelli P, Perini I, Sampaolesi M, Monti E, Fanzani A. Phosphocaveolin-1 enforces tumor growth and chemoresistance in rhabdomyosarcoma. PLoS One 2014; 9:e84618. [PMID: 24427291 PMCID: PMC3888403 DOI: 10.1371/journal.pone.0084618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 11/15/2013] [Indexed: 12/24/2022] Open
Abstract
Caveolin-1 (Cav-1) can ambiguously behave as either tumor suppressor or oncogene depending on its phosphorylation state and the type of cancer. In this study we show that Cav-1 was phosphorylated on tyrosine 14 (pCav-1) by Src-kinase family members in various human cell lines and primary mouse cultures of rhabdomyosarcoma (RMS), the most frequent soft-tissue sarcoma affecting childhood. Cav-1 overexpression in the human embryonal RD or alveolar RH30 cells yielded increased pCav-1 levels and reinforced the phosphorylation state of either ERK or AKT kinase, respectively, in turn enhancing in vitro cell proliferation, migration, invasiveness and chemoresistance. In contrast, reducing the pCav-1 levels by administration of a Src-kinase inhibitor or through targeted Cav-1 silencing counteracted the malignant in vitro phenotype of RMS cells. Consistent with these results, xenotransplantation of Cav-1 overexpressing RD cells into nude mice resulted in substantial tumor growth in comparison to control cells. Taken together, these data point to pCav-1 as an important and therapeutically valuable target for overcoming the progression and multidrug resistance of RMS.
Collapse
Affiliation(s)
- Fiorella Faggi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Rosario Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Manuela Cominelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Vescovi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefania Rossi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Colombi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabio Penna
- Department of Experimental Medicine and Oncology, University of Torino, Torino, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Paola Costelli
- Department of Experimental Medicine and Oncology, University of Torino, Torino, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Ilaria Perini
- Stem Cell Research Institute, University Hospital Gasthuisberg, Leuven, Belgium
| | - Maurilio Sampaolesi
- Stem Cell Research Institute, University Hospital Gasthuisberg, Leuven, Belgium
- Human Anatomy Section, University of Pavia, Pavia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Italy
- * E-mail:
| |
Collapse
|
24
|
Reuveni H, Flashner-Abramson E, Steiner L, Makedonski K, Song R, Shir A, Herlyn M, Bar-Eli M, Levitzki A. Therapeutic destruction of insulin receptor substrates for cancer treatment. Cancer Res 2013; 73:4383-94. [PMID: 23651636 DOI: 10.1158/0008-5472.can-12-3385] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Insulin receptor substrates 1 and 2 (IRS1/2) mediate mitogenic and antiapoptotic signaling from insulin-like growth factor 1 receptor (IGF-IR), insulin receptor (IR), and other oncoproteins. IRS1 plays a central role in cancer cell proliferation, its expression is increased in many human malignancies, and its upregulation mediates resistance to anticancer drugs. IRS2 is associated with cancer cell motility and metastasis. Currently, there are no anticancer agents that target IRS1/2. We present new IGF-IR/IRS-targeted agents (NT compounds) that promote inhibitory Ser-phosphorylation and degradation of IRS1 and IRS2. Elimination of IRS1/2 results in long-term inhibition of IRS1/2-mediated signaling. The therapeutic significance of this inhibition in cancer cells was shown while unraveling a novel mechanism of resistance to B-RAF(V600E/K) inhibitors. We found that IRS1 is upregulated in PLX4032-resistant melanoma cells and in cell lines derived from patients whose tumors developed PLX4032 resistance. In both settings, NT compounds led to the elimination of IRS proteins and evoked cell death. Treatment with NT compounds in vivo significantly inhibited the growth of PLX4032-resistant tumors and displayed potent antitumor effects in ovarian and prostate cancers. Our findings offer preclinical proof-of-concept for IRS1/2 inhibitors as cancer therapeutics including PLX4032-resistant melanoma. By the elimination of IRS proteins, such agents should prevent acquisition of resistance to mutated-B-RAF inhibitors and possibly restore drug sensitivity in resistant tumors.
Collapse
Affiliation(s)
- Hadas Reuveni
- NovoTyr Therapeutics Ltd., Israel; Unit of Cellular Signaling, Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Olanich ME, Barr FG. A call to ARMS: targeting the PAX3-FOXO1 gene in alveolar rhabdomyosarcoma. Expert Opin Ther Targets 2013; 17:607-23. [PMID: 23432728 DOI: 10.1517/14728222.2013.772136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Expression of fusion oncoproteins generated by recurrent chromosomal translocations represents a major tumorigenic mechanism characteristic of multiple cancers, including one-third of all sarcomas. Oncogenic fusion genes provide novel targets for therapeutic intervention. The PAX3-FOXO1 oncoprotein in alveolar rhabdomyosarcoma (ARMS) is presented as a paradigm to examine therapeutic strategies for targeting sarcoma-associated fusion genes. AREAS COVERED This review discusses the role of PAX3-FOXO1 in ARMS tumors. Besides evaluating various approaches to molecularly target PAX3-FOXO1 itself, this review highlights therapeutically attractive downstream genes activated by PAX3-FOXO1. EXPERT OPINION Oncogenic fusion proteins represent desirable therapeutic targets because their expression is specific to tumor cells, but these fusions generally characterize rare malignancies. Full development and testing of potential drugs targeted to these fusions are complicated by the small numbers of patients in these disease categories. Although efforts to develop targeted therapies against fusion proteins should continue, molecular targets that are applicable to a broader tumor landscape should be pursued. A shift of the traditional paradigm to view therapeutic intervention as target-specific rather than tumor-specific will help to circumvent the challenges posed by rare tumors and maximize the possibility of developing successful new treatments for patients with these rare translocation-associated sarcomas.
Collapse
Affiliation(s)
- Mary E Olanich
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Laboratory of Pathology , Bethesda, MD 20892, USA
| | | |
Collapse
|
26
|
Marklein D, Graab U, Naumann I, Yan T, Ridzewski R, Nitzki F, Rosenberger A, Dittmann K, Wienands J, Wojnowski L, Fulda S, Hahn H. PI3K inhibition enhances doxorubicin-induced apoptosis in sarcoma cells. PLoS One 2012; 7:e52898. [PMID: 23300809 PMCID: PMC3534123 DOI: 10.1371/journal.pone.0052898] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 11/22/2012] [Indexed: 01/14/2023] Open
Abstract
We searched for a drug capable of sensitization of sarcoma cells to doxorubicin (DOX). We report that the dual PI3K/mTOR inhibitor PI103 enhances the efficacy of DOX in several sarcoma cell lines and interacts with DOX in the induction of apoptosis. PI103 decreased the expression of MDR1 and MRP1, which resulted in DOX accumulation. However, the enhancement of DOX-induced apoptosis was unrelated to DOX accumulation. Neither did it involve inhibition of mTOR. Instead, the combination treatment of DOX plus PI103 activated Bax, the mitochondrial apoptosis pathway, and caspase 3. Caspase 3 activation was also observed in xenografts of sarcoma cells in nude mice upon combination of DOX with the specific PI3K inhibitor GDC-0941. Although the increase in apoptosis did not further impact on tumor growth when compared to the efficient growth inhibition by GDC-0941 alone, these findings suggest that inhibition of PI3K may improve DOX-induced proapoptotic effects in sarcoma. Taken together with similar recent studies of neuroblastoma- and glioblastoma-derived cells, PI3K inhibition seems to be a more general option to sensitize tumor cells to anthracyclines.
Collapse
Affiliation(s)
- Diana Marklein
- Institute of Human Genetics, University Medical Center, Goettingen, Germany
| | - Ulrike Graab
- Institute for Experimental Cancer Research in Pediatrics, University Frankfurt, Frankfurt, Germany
| | - Ivonne Naumann
- Institute for Experimental Cancer Research in Pediatrics, University Frankfurt, Frankfurt, Germany
| | - Tiandong Yan
- Department of Pharmacology, University Medical Center, Mainz, Germany
| | - Rosalie Ridzewski
- Institute of Human Genetics, University Medical Center, Goettingen, Germany
| | - Frauke Nitzki
- Institute of Human Genetics, University Medical Center, Goettingen, Germany
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Goettingen, Germany
| | - Kai Dittmann
- Department of Cellular and Molecular Immunology, University Medical Center, Goettingen, Germany
| | - Jürgen Wienands
- Department of Cellular and Molecular Immunology, University Medical Center, Goettingen, Germany
| | - Leszek Wojnowski
- Department of Pharmacology, University Medical Center, Mainz, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, University Frankfurt, Frankfurt, Germany
| | - Heidi Hahn
- Institute of Human Genetics, University Medical Center, Goettingen, Germany
- * E-mail:
| |
Collapse
|
27
|
Kang Z, Sun SY, Cao L. Activating Death Receptor DR5 as a Therapeutic Strategy for Rhabdomyosarcoma. ISRN ONCOLOGY 2012; 2012:395952. [PMID: 22577581 PMCID: PMC3345273 DOI: 10.5402/2012/395952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/24/2012] [Indexed: 11/23/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. It is believed to arise from skeletal muscle progenitors, preserving the expression of genes critical for embryonic myogenic development such as MYOD1 and myogenin. RMS is classified as embryonal, which is more common in younger children, or alveolar, which is more prevalent in elder children and adults. Despite aggressive management including surgery, radiation, and chemotherapy, the outcome for children with metastatic RMS is dismal, and the prognosis has remained unchanged for decades. Apoptosis is a highly regulated process critical for embryonic development and tissue and organ homeostasis. Like other types of cancers, RMS develops by evading intrinsic apoptosis via mutations in the p53 tumor suppressor gene. However, the ability to induce apoptosis via the death receptor-dependent extrinsic pathway remains largely intact in tumors with p53 mutations. This paper focuses on activating extrinsic apoptosis as a therapeutic strategy for RMS by targeting the death receptor DR5 with a recombinant TRAIL ligand or agonistic antibodies directed against DR5.
Collapse
Affiliation(s)
- Zhigang Kang
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
28
|
Bai Y, Li J, Fang B, Edwards A, Zhang G, Bui M, Eschrich S, Altiok S, Koomen J, Haura EB. Phosphoproteomics identifies driver tyrosine kinases in sarcoma cell lines and tumors. Cancer Res 2012; 72:2501-11. [PMID: 22461510 DOI: 10.1158/0008-5472.can-11-3015] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Driver tyrosine kinase mutations are rare in sarcomas, and patterns of tyrosine phosphorylation are poorly understood. To better understand the signaling pathways active in sarcoma, we examined global tyrosine phosphorylation in sarcoma cell lines and human tumor samples. Anti-phosphotyrosine antibodies were used to purify tyrosine phosphorylated peptides, which were then identified by liquid chromatography and tandem mass spectrometry. The findings were validated with RNA interference, rescue, and small-molecule tyrosine kinase inhibitors. We identified 1,936 unique tyrosine phosphorylated peptides, corresponding to 844 unique phosphotyrosine proteins. In sarcoma cells alone, peptides corresponding to 39 tyrosine kinases were found. Four of 10 cell lines showed dependence on tyrosine kinases for growth and/or survival, including platelet-derived growth factor receptor (PDGFR)α, MET, insulin receptor/insulin-like growth factor receptor signaling, and SRC family kinase signaling. Rhabdomyosarcoma samples showed overexpression of PDGFRα in 13% of examined cases, and sarcomas showed abundant tyrosine phosphorylation and expression of a number of tyrosine phosphorylated tyrosine kinases, including DDR2, EphB4, TYR2, AXL, SRC, LYN, and FAK. Together, our findings suggest that integrating global phosphoproteomics with functional analyses with kinase inhibitors can identify drivers of sarcoma growth and survival.
Collapse
Affiliation(s)
- Yun Bai
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Rhabdomyosarcoma (RMS) is a morphologically and clinically heterogeneous group of malignant tumors that resemble developing skeletal muscle and is the most common soft-tissue sarcoma in children and adolescents. The most prominent sites involve head and neck structures (~40%), genito-urinary track (~25%), and extremities (~20%). Embryonal (ERMS) and alveolar (ARMS) are the two major RMS subtypes that are distinct in their morphology and genetic make-up. The prognosis for this cancer depends strongly on tumor size, location, staging, and child's age. In general, ERMS has a more favorable outcome, whereas the mortality rate remains high in patients with ARMS, because of its aggressive and metastatic nature. Over the past two decades, researchers have made concerted efforts to delineate genetic and epigenetic changes associated with RMS pathogenesis. These molecular signatures have presented golden opportunities to design targeted therapies for treating this aggressive cancer. This article highlights recent advances in understanding the molecular pathogenesis of RMS, and addresses promising research areas for further exploration.
Collapse
Affiliation(s)
- C Wang
- Department of Oral Biology and Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, 801 South Paulina Street, RM530CB, m/c 860, Chicago, IL 60612, USA.
| |
Collapse
|