1
|
Wu H, Shu M, Liu C, Zhao W, Li Q, Song Y, Zhang T, Chen X, Shi Y, Shi P, Fang L, Wang R, Xu C. Identification and characterization of novel carboxyl ester lipase gene variants in patients with different subtypes of diabetes. BMJ Open Diabetes Res Care 2023; 11:11/1/e003127. [PMID: 36634979 PMCID: PMC9843195 DOI: 10.1136/bmjdrc-2022-003127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Mutations of CEL gene were first reported to cause a new type of maturity-onset diabetes of the young (MODY) denoted as MODY8 and then were also found in patients with type 1 (T1D) and type 2 diabetes (T2D). However, its genotype-phenotype relationship has not been fully determined and how carboxyl ester lipase (CEL) variants result in diabetes remains unclear. The aim of our study was to identify pathogenic variants of CEL in patients with diabetes and confirm their pathogenicity. RESEARCH DESIGN AND METHODS All five patients enrolled in our study were admitted to Shandong Provincial Hospital and diagnosed with diabetes in the past year. Whole-exome sequencing was performed to identify pathogenic variants in three patients with MODY-like diabetes, one newborn baby with T1D and one patient with atypical T2D, as well as their immediate family members. Then the consequences of the identified variants were predicted by bioinformatic analysis. Furthermore, pathogenic effects of two novel CEL variants were evaluated in HEK293 cells transfected with wild-type and mutant plasmids. Finally, we summarized all CEL gene variants recorded in Human Gene Mutation Database and analyzed the mutation distribution of CEL. RESULTS Five novel heterozygous variants were identified in CEL gene and they were predicted to be pathogenic by bioinformatic analysis. Moreover, in vitro studies indicated that the expression of CELR540C was remarkably increased, while p.G729_T739del variant did not significantly affect the expression of CEL. Both novel variants obviously abrogated the secretion of CEL. Furthermore, we summarized all reported CEL variants and found that 74.3% of missense mutations were located in exons 1, 3, 4, 10 and 11 and most missense variants clustered near catalytic triad, Arg-83 and Arg-443. CONCLUSION Our study identified five novel CEL variants in patients with different subtypes of diabetes, expanding the gene mutation spectrum of CEL and confirmed the pathogenicity of several novel variants.
Collapse
Affiliation(s)
- Huixiao Wu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People's Republic of China
| | - Meng Shu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People's Republic of China
| | - Changmei Liu
- Department of Endocrinology, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong, China
| | - Wanyi Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People's Republic of China
| | - Qiu Li
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People's Republic of China
| | - Yuling Song
- Department of Endocrinology, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong, China
| | - Ting Zhang
- Department of Endocrinology, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong, China
| | - Xinyu Chen
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People's Republic of China
| | - Yingzhou Shi
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People's Republic of China
| | - Ping Shi
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People's Republic of China
| | - Li Fang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People's Republic of China
| | - Runbo Wang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People's Republic of China
| | - Chao Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, Shandong, People's Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People's Republic of China
| |
Collapse
|
2
|
Tang SL, Liang XF, He S, Li L, Alam MS, Wu J. Comparative Study of the Molecular Characterization, Evolution, and Structure Modeling of Digestive Lipase Genes Reveals the Different Evolutionary Selection Between Mammals and Fishes. Front Genet 2022; 13:909091. [PMID: 35991544 PMCID: PMC9386070 DOI: 10.3389/fgene.2022.909091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Vertebrates need suitable lipases to digest lipids for the requirement of energy and essential nutrients; however, the main digestive lipase genes of fishes have certain controversies. In this study, two types of digestive lipase genes (pancreatic lipase (pl) and bile salt-activated lipase (bsal)) were identified in mammals and fishes. The neighborhood genes and key active sites of the two lipase genes were conserved in mammals and fishes. Three copies of PL genes were found in mammals, but only one copy of the pl gene was found in most of the fish species, and the pl gene was even completely absent in some fish species (e.g., zebrafish, medaka, and common carp). Additionally, the hydrophobic amino acid residues (Ile and Leu) which are important to pancreatic lipase activity were also absent in most of the fish species. The PL was the main digestive lipase gene in mammals, but the pl gene seemed not to be the main digestive lipase gene in fish due to the absence of the pl gene sequence and the important amino acid residues. In contrast, the bsal gene existed in all fish species, even two to five copies of bsal genes were found in most of the fishes, but only one copy of the BSAL gene was found in mammals. The amino acid residues of bile salt-binding sites and the three-dimensional (3D) structure modeling of Bsal proteins were conserved in most of the fish species, so bsal might be the main digestive lipase gene in fish. The phylogenetic analysis also indicated that pl or bsal showed an independent evolution between mammals and fishes. Therefore, we inferred that the evolutionary selection of the main digestive lipase genes diverged into two types between mammals and fishes. These findings will provide valuable evidence for the study of lipid digestion in fish.
Collapse
Affiliation(s)
- Shu-Lin Tang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
- *Correspondence: Xu-Fang Liang,
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Ling Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Muhammad Shoaib Alam
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| |
Collapse
|
3
|
Mao XT, Zou WB, Cao Y, Wang YC, Deng SJ, Cooper DN, Férec C, Li ZS, Chen JM, Liao Z. The CEL-HYB1 Hybrid Allele Promotes Digestive Enzyme Misfolding and Pancreatitis in Mice. Cell Mol Gastroenterol Hepatol 2022; 14:55-74. [PMID: 35398595 PMCID: PMC9117557 DOI: 10.1016/j.jcmgh.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS A hybrid allele that originated from homologous recombination between CEL and its pseudogene (CELP), CEL-HYB1 increases the risk of chronic pancreatitis (CP). Although suggested to cause digestive enzyme misfolding, definitive in vivo evidence for this postulate has been lacking. METHODS CRISPR-Cas9 was used to generate humanized mice harboring the CEL-HYB1 allele on a C57BL/6J background. Humanized CEL mice and C57BL/6J mice were used as controls. Pancreata were collected and analyzed by histology, immunohistochemistry, immunoblotting, and transcriptomics. Isolated pancreatic acini were cultured in vitro to measure the secretion and aggregation of CEL-HYB1 protein. Mice were given caerulein injections to induce acute pancreatitis (AP) and CP. RESULTS Pancreata from mice expressing CEL-HYB1 developed pathological features characteristic of focal pancreatitis that included acinar atrophy and vacuolization, inflammatory infiltrates, and fibrosis in a time-dependent manner. CEL-HYB1 expression in pancreatic acini led to decreased secretion and increased intracellular aggregation and triggered endoplasmic reticulum stress compared with CEL. The autophagy levels of pancreata from mice expressing CEL-HYB1 changed at different developmental stages; some aged CEL-HYB1 mice exhibited an accumulation of large autophagic vesicles and impaired autophagy in acinar cells. Administration of caerulein increased the severity of AP/CP in mice expressing CEL-HYB1 compared with control mice, accompanied by higher levels of endoplasmic reticulum stress. CONCLUSIONS Expression of a humanized form of CEL-HYB1 in mice promotes endoplasmic reticulum stress and pancreatitis through a misfolding-dependent pathway. Impaired autophagy appears to be involved in the pancreatic injury in aged CEL-HYB1 mice. These mice have the potential to be used as a model to identify therapeutic targets for CP.
Collapse
Affiliation(s)
- Xiao-Tong Mao
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China,Shanghai Institute of Pancreatic Diseases, Shanghai, China,Wen-Bin Zou, Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Shanghai 200433, China. tel: 0086-21-31161353; fax: 0086-21-55621735.
| | - Yu Cao
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Yuan-Chen Wang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | | | - David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China,Shanghai Institute of Pancreatic Diseases, Shanghai, China,Correspondence Address correspondence to: Zhuan Liao, Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Shanghai 200433, China. tel: 0086-21-31161004; fax: 0086-21-55621735.
| |
Collapse
|
4
|
Mao XT, Deng SJ, Kang RL, Wang YC, Li ZS, Zou WB, Liao Z. Homozygosity of short VNTR lengths in the CEL gene may confer susceptibility to idiopathic chronic pancreatitis. Pancreatology 2021; 21:1311-1316. [PMID: 34507899 DOI: 10.1016/j.pan.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The carboxyl-ester lipase (CEL) gene contains a variable number of tandem repeats (VNTR) region. It remains unclear whether the number of repeats in the CEL VNTR is related to the risk of pancreatic diseases. The aim of this study was to investigate whether CEL VNTR length is associated with idiopathic chronic pancreatitis (ICP), alcoholic chronic pancreatitis (ACP), or pancreatic cancer in a cohort of Chinese patients. METHODS CEL VNTRs were genotyped in patients diagnosed with ICP (n = 771), ACP (n = 222), or pancreatic cancer (n = 263), and in healthy controls (n = 927). CEL VNTR lengths were determined using a screening method combining PCR and DNA fragment analysis. RESULTS Overall, the CEL VNTR lengths ranged from 5 to 22 repeats, with the 16-repeat allele ('normal' size, N) accounting for 73.82% of all observed alleles. The VNTR allele frequencies and genotype distributions were not significantly different between healthy controls and patients with ACP or pancreatic cancer. For the ICP group, allele frequencies did not differ significantly from the controls, while the frequency of the SS genotype (homozygosity for 5-15 repeats) was significantly higher in the patients (4.67%) than in the controls (1.94%) (p = 0.0014; OR = 2.47; 95% CI = 1.39-4.39). CONCLUSIONS There were no associations between the CEL VNTR length and ACP or pancreatic cancer. However, homozygosity for short VNTR lengths may confer susceptibility to ICP.
Collapse
Affiliation(s)
- Xiao-Tong Mao
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, The Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Shun-Jiang Deng
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, The Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | | | - Yuan-Chen Wang
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, The Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Wen-Bin Zou
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, The Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| | - Zhuan Liao
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, The Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| |
Collapse
|
5
|
Association of a new 99-bp indel of the CEL gene promoter region with phenotypic traits in chickens. Sci Rep 2020; 10:3215. [PMID: 32081917 PMCID: PMC7035288 DOI: 10.1038/s41598-020-60168-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
Carboxyl ester lipase (CEL) encodes a cholesterol ester hydrolase that is secreted into the duodenum as a component of pancreatic juice. The objective of this study was to characterize the CEL gene, investigate the association between the CEL promoter variants and chicken phenotypic traits, and explore the CEL gene regulatory mechanism. An insertion/deletion (indel) caused by a 99-bp insertion fragment was shown for the first time in the chicken CEL promoter, and large differences in allelic frequency were found among commercial breeds, indigenous and feral birds. Association analysis demonstrated that this indel site had significant effects on shank length, shank girth, chest breadth at 8 weeks (p < 0.01), evisceration weight, sebum weight, breast muscle weight, and leg weight (p < 0.05). Tissue expression profiles showed extremely high levels of the CEL gene in pancreatic tissue. Moreover, the expression levels of the genes APOB, MTTP, APOV1 and SREBF1, which are involved in lipid transport, were significantly reduced by adding a 4% oxidized soybean oil diet treatment at the individual level and transfecting the embryonic primary hepatocytes with a CEL-overexpression vector. Interestingly, the results showed that the expression level of the II homozygous genotype was significantly higher than that of the ID and DD genotypes, while individuals with DD genotypes had higher phenotypic values. Therefore, these data suggested that the CEL gene might affect body growth by participating in hepatic lipoprotein metabolism and that the 99-bp indel polymorphism could be a potentially useful genetic marker for improving the economically important traits of chickens.
Collapse
|
6
|
Qiu Y, Sun S, Yu X, Zhou J, Cai W, Qian L. Carboxyl ester lipase is highly conserved in utilizing maternal supplied lipids during early development of zebrafish and human. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158663. [PMID: 32061751 DOI: 10.1016/j.bbalip.2020.158663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/13/2020] [Accepted: 02/10/2020] [Indexed: 01/05/2023]
Abstract
Carboxyl ester lipase (Cel), is a lipolytic enzyme secreted by the pancreas, which hydrolyzes various species of lipids in the gut. Cel is also secreted by mammary gland during lactation and exists in breast milk. It facilitates dietary fat digestion and absorption, thus contributing to normal infant development. This study aimed to examine whether the Cel in zebrafish embryos has a similar role of maternal lipid utilization as in human infants, and how Cel contributes to the utilization of yolk lipids in zebrafish. The cel1 and cel2 genes were expressed ubiquitously in the blastodisc and yolk syncytial layer before 24 hpf, and in the exocrine pancreas after 72 hpf. The cel1 and cel2 morphants exhibited developmental retardation and yolk sac retention. The total cholesterol, cholesterol ester, free cholesterol, and triglyceride were reduced in the morphants' body while accumulated in the yolk (except triglyceride). The FFA content of whole embryos was much lower in morphants than in standard controls. Moreover, the delayed development in cel (cel1/cel2) double morphants was partially rescued by FFA and cholesterol supplementation. Delayed and weakened cholesterol ester transport to the brain and eyes was observed in cel morphants. Correspondingly, shrunken midbrain tectum, microphthalmia, pigmentation-delayed eyes as well as down-regulated Shh target genes were observed in the CNS of double morphants. Interestingly, cholesterol injections reversed these CNS alterations. Our findings suggested that cel genes participate in the lipid releasing from yolk sac to developing body, thereby contributing to the normal growth rate and CNS development in zebrafish.
Collapse
Affiliation(s)
- Yaqi Qiu
- Xinhua Hospital, Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Shuna Sun
- Cardiovascular Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Xianxian Yu
- Xinhua Hospital, Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Jiefei Zhou
- Xinhua Hospital, Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Wei Cai
- Xinhua Hospital, Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China.
| | - Linxi Qian
- Xinhua Hospital, Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China.
| |
Collapse
|
7
|
Gilannejad N, Paykan Heyrati F, Dorafshan S, Martos-Sitcha JA, Yúfera M, Martínez-Rodríguez G. Molecular basis of the digestive functionality in developing Persian sturgeon (Acipenser persicus) larvae: additional clues for its phylogenetic status. J Comp Physiol B 2019; 189:367-383. [DOI: 10.1007/s00360-019-01215-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 03/10/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
|
8
|
El Jellas K, Johansson BB, Fjeld K, Antonopoulos A, Immervoll H, Choi MH, Hoem D, Lowe ME, Lombardo D, Njølstad PR, Dell A, Mas E, Haslam SM, Molven A. The mucinous domain of pancreatic carboxyl-ester lipase (CEL) contains core 1/core 2 O-glycans that can be modified by ABO blood group determinants. J Biol Chem 2018; 293:19476-19491. [PMID: 30315106 DOI: 10.1074/jbc.ra118.001934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Carboxyl-ester lipase (CEL) is a pancreatic fat-digesting enzyme associated with human disease. Rare mutations in the CEL gene cause a syndrome of pancreatic exocrine and endocrine dysfunction denoted MODY8, whereas a recombined CEL allele increases the risk for chronic pancreatitis. Moreover, CEL has been linked to pancreatic ductal adenocarcinoma (PDAC) through a postulated oncofetal CEL variant termed feto-acinar pancreatic protein (FAPP). The monoclonal antibody mAb16D10 was previously reported to detect a glycotope in the highly O-glycosylated, mucin-like C terminus of CEL/FAPP. We here assessed the expression of human CEL in malignant pancreatic lesions and cell lines. CEL was not detectably expressed in neoplastic cells, implying that FAPP is unlikely to be a glycoisoform of CEL in pancreatic cancer. Testing of the mAb16D10 antibody in glycan microarrays then demonstrated that it recognized structures containing terminal GalNAc-α1,3(Fuc-α1,2)Gal (blood group A antigen) and also repeated protein sequences containing GalNAc residues linked to Ser/Thr (Tn antigen), findings that were supported by immunostainings of human pancreatic tissue. To examine whether the CEL glycoprotein might be modified by blood group antigens, we used high-sensitivity MALDI-TOF MS to characterize the released O-glycan pool of CEL immunoprecipitated from human pancreatic juice. We found that the O-glycome of CEL consisted mainly of core 1/core 2 structures with a composition depending on the subject's FUT2 and ABO gene polymorphisms. Thus, among digestive enzymes secreted by the pancreas, CEL is a glycoprotein with some unique characteristics, supporting the view that it could serve additional biological functions to its cholesteryl esterase activity in the duodenum.
Collapse
Affiliation(s)
- Khadija El Jellas
- From the Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway.,Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway.,KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Bente B Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway.,Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Karianne Fjeld
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway.,Center for Medical Genetics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Aristotelis Antonopoulos
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Heike Immervoll
- From the Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway.,Department of Pathology, Ålesund Hospital, N-6017 Ålesund, Norway
| | - Man H Choi
- From the Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway.,Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Dag Hoem
- Department of Gastrointestinal Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Mark E Lowe
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Dominique Lombardo
- INSERM, CRO2, Center for Research in Biological Oncology and Oncopharmacology, Aix-Marseille University, 13284 Marseille Cedex 07, France
| | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway.,Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Anne Dell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Eric Mas
- INSERM, CRO2, Center for Research in Biological Oncology and Oncopharmacology, Aix-Marseille University, 13284 Marseille Cedex 07, France
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Anders Molven
- From the Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway, .,Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway.,KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
9
|
Lombardo D, Silvy F, Crenon I, Martinez E, Collignon A, Beraud E, Mas E. Pancreatic adenocarcinoma, chronic pancreatitis, and MODY-8 diabetes: is bile salt-dependent lipase (or carboxyl ester lipase) at the crossroads of pancreatic pathologies? Oncotarget 2018; 9:12513-12533. [PMID: 29552330 PMCID: PMC5844766 DOI: 10.18632/oncotarget.23619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Pancreatic adenocarcinomas and diabetes mellitus are responsible for the deaths of around two million people each year worldwide. Patients with chronic pancreatitis do not die directly of this disease, except where the pathology is hereditary. Much current literature supports the involvement of bile salt-dependent lipase (BSDL), also known as carboxyl ester lipase (CEL), in the pathophysiology of these pancreatic diseases. The purpose of this review is to shed light on connections between chronic pancreatitis, diabetes, and pancreatic adenocarcinomas by gaining an insight into BSDL and its variants. This enzyme is normally secreted by the exocrine pancreas, and is diverted within the intestinal lumen to participate in the hydrolysis of dietary lipids. However, BSDL is also expressed by other cells and tissues, where it participates in lipid homeostasis. Variants of BSDL resulting from germline and/or somatic mutations (nucleotide insertion/deletion or nonallelic homologous recombination) are expressed in the pancreas of patients with pancreatic pathologies such as chronic pancreatitis, MODY-8, and pancreatic adenocarcinomas. We discuss the possible link between the expression of BSDL variants and these dramatic pancreatic pathologies, putting forward the suggestion that BSDL and its variants are implicated in the cell lipid metabolism/reprogramming that leads to the dyslipidemia observed in chronic pancreatitis, MODY-8, and pancreatic adenocarcinomas. We also propose potential strategies for translation to therapeutic applications.
Collapse
Affiliation(s)
- Dominique Lombardo
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Françoise Silvy
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Isabelle Crenon
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Emmanuelle Martinez
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Aurélie Collignon
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Evelyne Beraud
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Eric Mas
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| |
Collapse
|
10
|
Johansson BB, Fjeld K, El Jellas K, Gravdal A, Dalva M, Tjora E, Ræder H, Kulkarni RN, Johansson S, Njølstad PR, Molven A. The role of the carboxyl ester lipase (CEL) gene in pancreatic disease. Pancreatology 2018; 18:12-19. [PMID: 29233499 DOI: 10.1016/j.pan.2017.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 12/11/2022]
Abstract
The enzyme carboxyl ester lipase (CEL), also known as bile salt-dependent or -stimulated lipase (BSDL, BSSL), hydrolyzes dietary fat, cholesteryl esters and fat-soluble vitamins in the duodenum. CEL is mainly expressed in pancreatic acinar cells and lactating mammary glands. The human CEL gene resides on chromosome 9q34.3 and contains a variable number of tandem repeats (VNTR) region that encodes a mucin-like protein tail. Although the number of normal repeats does not appear to significantly influence the risk for pancreatic disease, single-base pair deletions in the first VNTR repeat cause a syndrome of endocrine and exocrine dysfunction denoted MODY8. Hallmarks are low fecal elastase levels and pancreatic lipomatosis manifesting before the age of twenty, followed by development of diabetes and pancreatic cysts later in life. The mutant protein forms intracellular and extracellular aggregates, suggesting that MODY8 is a protein misfolding disease. Recently, a recombined allele between CEL and its pseudogene CELP was discovered. This allele (CEL-HYB) encodes a chimeric protein with impaired secretion increasing five-fold the risk for chronic pancreatitis. The CEL gene has proven to be exceptionally polymorphic due to copy number variants of the CEL-CELP locus and alterations involving the VNTR. Genome-wide association studies or deep sequencing cannot easily pick up this wealth of genetic variation. CEL is therefore an attractive candidate gene for further exploration of links to pancreatic disease.
Collapse
Affiliation(s)
- Bente B Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karianne Fjeld
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Khadija El Jellas
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Anny Gravdal
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway; Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Monica Dalva
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway; Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Erling Tjora
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Helge Ræder
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anders Molven
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
11
|
Zou WB, Boulling A, Masamune A, Issarapu P, Masson E, Wu H, Sun XT, Hu LH, Zhou DZ, He L, Fichou Y, Nakano E, Hamada S, Kakuta Y, Kume K, Isayama H, Paliwal S, Mani R, Bhaskar S, Cooper D, Férec C, Shimosegawa T, Chandak G, Chen JM, Li ZS, Liao Z. No Association Between CEL-HYB Hybrid Allele and Chronic Pancreatitis in Asian Populations. Gastroenterology 2016; 150:1558-1560.e5. [PMID: 26946345 PMCID: PMC5380763 DOI: 10.1053/j.gastro.2016.02.071] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 01/10/2023]
Abstract
A hybrid allele between the carboxyl ester lipase gene (CEL) and its pseudogene, CELP (called CEL-HYB), generated by nonallelic homologous recombination between CEL intron 10 and CELP intron 10', was found to increase susceptibility to chronic pancreatitis in a case-control study of patients of European ancestry. We attempted to replicate this finding in 3 independent cohorts from China, Japan, and India, but failed to detect the CEL-HYB allele in any of these populations. The CEL-HYB allele might therefore be an ethnic-specific risk factor for chronic pancreatitis. An alternative hybrid allele (CEL-HYB2) was identified in all 3 Asian populations (1.7% combined carrier frequency), but was not associated with chronic pancreatitis.
Collapse
Affiliation(s)
- Wen-Bin Zou
- Génétique, génomique fonctionnelle et biotechnologies
EFS - Université de Bretagne Occidentale - Institut National de la Santé et de la Recherche Médicale - U1078EFS Bretagne, 46 rue Félix le Dantec 29218 Brest Cedex 2,Shanghai Institute of Pancreatic Diseases, Shanghai, China
Shanghai Institute of Pancreatic Diseases - ,Department of Gastroenterology [Shanghai]
Changhai Hospital of Shanghai - Second Military Medical University [Shanghai] - 168 Changhai Rd, Yangpu, Shanghai
| | - Arnaud Boulling
- Génétique, génomique fonctionnelle et biotechnologies
EFS - Université de Bretagne Occidentale - Institut National de la Santé et de la Recherche Médicale - U1078EFS Bretagne, 46 rue Félix le Dantec 29218 Brest Cedex 2
| | - Atsushi Masamune
- Division of Gastroenterology [Tohoku]
Tohoku University Graduate School of Medicine - 2 Chome-1-1 Katahira, Aoba Ward, Sendai, Miyagi Prefecture 980-8577
| | - Prachand Issarapu
- Genomic Research on Complex Diseases [Hyderabad]
Centre for Cellular and Molecular Biology (CSIR-CCMB) - Habsiguda, Uppal Road - Hyderabad - 500 007 Andhra Pradesh
| | - Emmanuelle Masson
- Génétique, génomique fonctionnelle et biotechnologies
EFS - Université de Bretagne Occidentale - Institut National de la Santé et de la Recherche Médicale - U1078EFS Bretagne, 46 rue Félix le Dantec 29218 Brest Cedex 2,Laboratoire de Génétique Moléculaire et d’Histocompatibilité [Morvan]
Hôpital Morvan - CHRU de Brest - 2 Avenue Maréchal Foch, 29200 Brest
| | - Hao Wu
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
Shanghai Institute of Pancreatic Diseases - ,Department of Gastroenterology [Shanghai]
Changhai Hospital of Shanghai - Second Military Medical University [Shanghai] - 168 Changhai Rd, Yangpu, Shanghai
| | - Xiao-Tian Sun
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
Shanghai Institute of Pancreatic Diseases - ,Department of Gastroenterology [Shanghai]
Changhai Hospital of Shanghai - Second Military Medical University [Shanghai] - 168 Changhai Rd, Yangpu, Shanghai
| | - Liang-Hao Hu
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
Shanghai Institute of Pancreatic Diseases - ,Department of Gastroenterology [Shanghai]
Changhai Hospital of Shanghai - Second Military Medical University [Shanghai] - 168 Changhai Rd, Yangpu, Shanghai
| | - Dai-Zhan Zhou
- Key Laboratory of Developmental Genetics and Neuropsychiatric Diseases [Ministry of Education, Shanghai]
Bio-X Institutes [Shanghai] - Shanghai Jiao Tong University - 800 Dongchuan Rd, Minhang, 200240 Shanghai
| | - Lin He
- Key Laboratory of Developmental Genetics and Neuropsychiatric Diseases [Ministry of Education, Shanghai]
Bio-X Institutes [Shanghai] - Shanghai Jiao Tong University - 800 Dongchuan Rd, Minhang, 200240 Shanghai
| | - Yann Fichou
- Génétique, génomique fonctionnelle et biotechnologies
EFS - Université de Bretagne Occidentale - Institut National de la Santé et de la Recherche Médicale - U1078EFS Bretagne, 46 rue Félix le Dantec 29218 Brest Cedex 2
| | - Eriko Nakano
- Division of Gastroenterology [Tohoku]
Tohoku University Graduate School of Medicine - 2 Chome-1-1 Katahira, Aoba Ward, Sendai, Miyagi Prefecture 980-8577
| | - Shin Hamada
- Division of Gastroenterology [Tohoku]
Tohoku University Graduate School of Medicine - 2 Chome-1-1 Katahira, Aoba Ward, Sendai, Miyagi Prefecture 980-8577
| | - Yoichi Kakuta
- Division of Gastroenterology [Tohoku]
Tohoku University Graduate School of Medicine - 2 Chome-1-1 Katahira, Aoba Ward, Sendai, Miyagi Prefecture 980-8577
| | - Kiyoshi Kume
- Division of Gastroenterology [Tohoku]
Tohoku University Graduate School of Medicine - 2 Chome-1-1 Katahira, Aoba Ward, Sendai, Miyagi Prefecture 980-8577
| | - Hiroyuki Isayama
- Department of Gastroenterology [Tokyo]
The University of Tokyo - Faculty of Medicine, Graduate School of Medicine [Tokyo] - 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033
| | - Sumit Paliwal
- Genomic Research on Complex Diseases [Hyderabad]
Centre for Cellular and Molecular Biology (CSIR-CCMB) - Habsiguda, Uppal Road - Hyderabad - 500 007 Andhra Pradesh
| | - Radha Mani
- Genomic Research on Complex Diseases [Hyderabad]
Centre for Cellular and Molecular Biology (CSIR-CCMB) - Habsiguda, Uppal Road - Hyderabad - 500 007 Andhra Pradesh
| | - Seema Bhaskar
- Genomic Research on Complex Diseases [Hyderabad]
Centre for Cellular and Molecular Biology (CSIR-CCMB) - Habsiguda, Uppal Road - Hyderabad - 500 007 Andhra Pradesh
| | - David Cooper
- School of Medicine [Cardiff]
Cardiff University - Institute of Medical Genetics [Cardiff] - UHW Main Building - Heath Park - Cardiff CF14 4XN
| | - Claude Férec
- Génétique, génomique fonctionnelle et biotechnologies
EFS - Université de Bretagne Occidentale - Institut National de la Santé et de la Recherche Médicale - U1078EFS Bretagne, 46 rue Félix le Dantec 29218 Brest Cedex 2,Laboratoire de Génétique Moléculaire et d’Histocompatibilité [Morvan]
Hôpital Morvan - CHRU de Brest - 2 Avenue Maréchal Foch, 29200 Brest
| | - Tooru Shimosegawa
- Division of Gastroenterology [Tohoku]
Tohoku University Graduate School of Medicine - 2 Chome-1-1 Katahira, Aoba Ward, Sendai, Miyagi Prefecture 980-8577
| | - Giriraj Chandak
- Human Genetics Division [Singapore]
Genome Institute of Singapore - 60 Biopolis St, #02-01, Singapour 138672
| | - Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France; Etablissement Français du Sang (EFS)-Bretagne, Brest, France; Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France.
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| |
Collapse
|
12
|
Hatzios SK, Abel S, Martell J, Hubbard T, Sasabe J, Munera D, Clark L, Bachovchin DA, Qadri F, Ryan ET, Davis BM, Weerapana E, Waldor MK. Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nat Chem Biol 2016; 12:268-274. [PMID: 26900865 PMCID: PMC4765928 DOI: 10.1038/nchembio.2025] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/31/2015] [Indexed: 12/15/2022]
Abstract
Activity-based protein profiling (ABPP) is a chemoproteomic tool for detecting active enzymes in complex biological systems. We used ABPP to identify secreted bacterial and host serine hydrolases that are active in animals infected with the cholera pathogen Vibrio cholerae. Four V. cholerae proteases were consistently active in infected rabbits, and one, VC0157 (renamed IvaP), was also active in human choleric stool. Inactivation of IvaP influenced the activity of other secreted V. cholerae and rabbit enzymes in vivo, and genetic disruption of all four proteases increased the abundance of intelectin, an intestinal lectin, and its binding to V. cholerae in infected rabbits. Intelectin also bound to other enteric bacterial pathogens, suggesting that it may constitute a previously unrecognized mechanism of bacterial surveillance in the intestine that is inhibited by pathogen-secreted proteases. Our work demonstrates the power of activity-based proteomics to reveal host-pathogen enzymatic dialog in an animal model of infection.
Collapse
Affiliation(s)
- Stavroula K. Hatzios
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Sören Abel
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Department of Pharmacy, University of Tromsø (UiT), The Arctic University of Norway, Tromsø, Norway
| | | | - Troy Hubbard
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Jumpei Sasabe
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Diana Munera
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Lars Clark
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | | | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Brigid M. Davis
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | | | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
13
|
Benedito-Palos L, Ballester-Lozano G, Pérez-Sánchez J. Wide-gene expression analysis of lipid-relevant genes in nutritionally challenged gilthead sea bream (Sparus aurata). Gene 2014; 547:34-42. [DOI: 10.1016/j.gene.2014.05.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/26/2014] [Accepted: 05/31/2014] [Indexed: 12/22/2022]
|
14
|
Ræder H, Vesterhus M, El Ouaamari A, Paulo JA, McAllister FE, Liew CW, Hu J, Kawamori D, Molven A, Gygi SP, Njølstad PR, Kahn CR, Kulkarni RN. Absence of diabetes and pancreatic exocrine dysfunction in a transgenic model of carboxyl-ester lipase-MODY (maturity-onset diabetes of the young). PLoS One 2013; 8:e60229. [PMID: 23565203 PMCID: PMC3615023 DOI: 10.1371/journal.pone.0060229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/23/2013] [Indexed: 01/04/2023] Open
Abstract
Background CEL-MODY is a monogenic form of diabetes with exocrine pancreatic insufficiency caused by mutations in CARBOXYL-ESTER LIPASE (CEL). The pathogenic processes underlying CEL-MODY are poorly understood, and the global knockout mouse model of the CEL gene (CELKO) did not recapitulate the disease. We therefore aimed to create and phenotype a mouse model specifically over-expressing mutated CEL in the pancreas. Methods We established a monotransgenic floxed (flanking LOX sequences) mouse line carrying the human CEL mutation c.1686delT and crossed it with an elastase-Cre mouse to derive a bitransgenic mouse line with pancreas-specific over-expression of CEL carrying this disease-associated mutation (TgCEL). Following confirmation of murine pancreatic expression of the human transgene by real-time quantitative PCR, we phenotyped the mouse model fed a normal chow and compared it with mice fed a 60% high fat diet (HFD) as well as the effects of short-term and long-term cerulein exposure. Results Pancreatic exocrine function was normal in TgCEL mice on normal chow as assessed by serum lipid and lipid-soluble vitamin levels, fecal elastase and fecal fat absorption, and the normoglycemic mice exhibited normal pancreatic morphology. On 60% HFD, the mice gained weight to the same extent as controls, had normal pancreatic exocrine function and comparable glucose tolerance even after resuming normal diet and follow up up to 22 months of age. The cerulein-exposed TgCEL mice gained weight and remained glucose tolerant, and there were no detectable mutation-specific differences in serum amylase, islet hormones or the extent of pancreatic tissue inflammation. Conclusions In this murine model of human CEL-MODY diabetes, we did not detect mutation-specific endocrine or exocrine pancreatic phenotypes, in response to altered diets or exposure to cerulein.
Collapse
Affiliation(s)
- Helge Ræder
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Burchardt P, Zurawski J, Zuchowski B, Kubacki T, Murawa D, Wiktorowicz K, Wysocki H. Low-density lipoprotein, its susceptibility to oxidation and the role of lipoprotein-associated phospholipase A2 and carboxyl ester lipase lipases in atherosclerotic plaque formation. Arch Med Sci 2013; 9:151-8. [PMID: 23515030 PMCID: PMC3598136 DOI: 10.5114/aoms.2013.33176] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 05/23/2011] [Accepted: 09/04/2011] [Indexed: 12/13/2022] Open
Abstract
An increased level of low-density lipoprotein (LDL) is a very well established risk factor of coronary artery disease (CAD). Unoxidized LDL is an inert transport vehicle of cholesterol and other lipids in the body and is thought to be atherogenic. Recently it has been appreciated that oxidized products of LDL are responsible for plaque formation properties previously attributed to the intact particle. The goal of this article is to review the recent understanding of the LDL oxidation pathway. The role of oxidized products and key enzymes (lipoprotein-associated phospholipase A2 and carboxyl ester lipase) are also extensively discussed in the context of clinical conditions.
Collapse
Affiliation(s)
- Paweł Burchardt
- Division of Cardiology-Intensive Therapy, Department of Internal Medicine, Poznan University of Medical Sciences, Poland
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X, Wynne JW, Xiong Z, Baker ML, Zhao W, Tachedjian M, Zhu Y, Zhou P, Jiang X, Ng J, Yang L, Wu L, Xiao J, Feng Y, Chen Y, Sun X, Zhang Y, Marsh GA, Crameri G, Broder CC, Frey KG, Wang LF, Wang J. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 2013; 339:456-60. [PMID: 23258410 PMCID: PMC8782153 DOI: 10.1126/science.1230835] [Citation(s) in RCA: 433] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bats are the only mammals capable of sustained flight and are notorious reservoir hosts for some of the world's most highly pathogenic viruses, including Nipah, Hendra, Ebola, and severe acute respiratory syndrome (SARS). To identify genetic changes associated with the development of bat-specific traits, we performed whole-genome sequencing and comparative analyses of two distantly related species, fruit bat Pteropus alecto and insectivorous bat Myotis davidii. We discovered an unexpected concentration of positively selected genes in the DNA damage checkpoint and nuclear factor κB pathways that may be related to the origin of flight, as well as expansion and contraction of important gene families. Comparison of bat genomes with other mammalian species has provided new insights into bat biology and evolution.
Collapse
Affiliation(s)
- Guojie Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Christopher Cowled
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Zhengli Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | - James W. Wynne
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | | | - Michelle L. Baker
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Wei Zhao
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Mary Tachedjian
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | | | - Peng Zhou
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | - Justin Ng
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Lan Yang
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Lijun Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jin Xiao
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yue Feng
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | | | | | - Glenn A. Marsh
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Gary Crameri
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Kenneth G. Frey
- Naval Medical Research Center and Henry M. Jackson Foundation, Fort Detrick, MD 21702, USA
| | - Lin-Fa Wang
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, DK-2200, Copenhagen, Denmark
| |
Collapse
|
17
|
Jones RD, Taylor AM, Tong EY, Repa JJ. Carboxylesterases are uniquely expressed among tissues and regulated by nuclear hormone receptors in the mouse. Drug Metab Dispos 2012; 41:40-9. [PMID: 23011759 DOI: 10.1124/dmd.112.048397] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carboxylesterases (CES) are a well recognized, yet incompletely characterized family of proteins that catalyze neutral lipid hydrolysis. Some CES have well-defined roles in xenobiotic clearance, pharmacologic prodrug activation, and narcotic detoxification. In addition, emerging evidence suggests other CES may have roles in lipid metabolism. Humans have six CES genes, whereas mice have 20 Ces genes grouped into five isoenzyme classes. Perhaps due to the high sequence similarity shared by the mouse Ces genes, the tissue-specific distribution of expression for these enzymes has not been fully addressed. Therefore, we performed studies to provide a comprehensive tissue distribution analysis of mouse Ces mRNAs. These data demonstrated that while the mouse Ces family 1 is highly expressed in liver and family 2 in intestine, many Ces genes have a wide and unique tissue distribution defined by relative mRNA levels. Furthermore, evaluating Ces gene expression in response to pharmacologic activation of lipid- and xenobiotic-sensing nuclear hormone receptors showed differential regulation. Finally, specific shifts in Ces gene expression were seen in peritoneal macrophages following lipopolysaccharide treatment and in a steatotic liver model induced by high-fat feeding, two model systems relevant to disease. Overall these data show that each mouse Ces gene has its own distinctive tissue expression pattern and suggest that some CES may have tissue-specific roles in lipid metabolism and xenobiotic clearance.
Collapse
Affiliation(s)
- Ryan D Jones
- Departments of Physiology, UT Southwestern Medical Center, Dallas, TX 75390-9077, USA
| | | | | | | |
Collapse
|