1
|
Ma CY, Yu AC, Sheng XH, Wang XG, Xing K, Xiao LF, Lv XZ, Guo Y, Long C, Qi XL. Supplementing ageing male laying breeders with lycopene alleviates oxidative stress in testis and improves testosterone secretion. Theriogenology 2024; 230:220-232. [PMID: 39341034 DOI: 10.1016/j.theriogenology.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Reproductive performance is a crucial aspect of poultry production and is carefully controlled by endocrine, paracrine, and autocrine factors. This study aimed to investigate the effect of lycopene on testosterone synthesis in Leydig cells of laying breeder roosters, clarify the mechanism of lycopene improving Leydig cells function and promoting testosterone production, and explore the role of related signal transduction pathways in testosterone synthesis. RESULTS A total of 96 healthy 55-week-old breeding roosters were randomly assigned to one of five dietary treatments. They were provided with a corn-soybean meal-based diet containing different levels of lycopene: 0 mg/kg (control), 50 mg/kg, 100 mg/kg, or 200 mg/kg. The experiment lasted for 6 weeks. With the increase in lycopene levels, the testosterone content in the plasma was significantly higher than in the control group. Testicular Leydig cells were isolated and cultured from fresh testicular tissue of 45-wk-old to 60-wk-old breeding roosters. Various doses of lycopene were administered to Leydig cells, and subsequently, cells were collected for the detection of cell viability and testosterone content. The optimal concentration of lycopene to be added was determined, and changes in mRNA expression and protein levels of key proteins involved in testosterone synthesis were investigated. The results showed that lycopene treatment significantly increased testosterone secretion, mRNA expression, and protein levels of steroid-producing enzymes. Cells were collected to measure the activity of antioxidant enzymes, the mRNA transcription level of apoptotic factors, and the protein expression of apoptotic factors after treatment with lycopene. The results showed that lycopene significantly increased the activities of antioxidant enzymes, and the ability to inhibit oxygen radicals, and decreased the content of malondialdehyde. Apoptosis was inhibited by regulating the expression of apoptosis-inducing and anti-apoptosis factors. After that, the MAPK signaling pathway and downstream SF-1, Nrf2 gene, and protein expression levels were detected. The results showed that lycopene treatment significantly increased the gene and protein expression of JNK, SF-1, and Nrf2, and significantly decreased the gene and protein expression of p38. CONCLUSIONS Lycopene treatment could promote testosterone synthesis of testicular Leydig cells by activating MAPK-SF-1 (increasing steroid-producing enzyme level) and MAPK-Nrf2 pathways (resisting oxidative damage).
Collapse
Affiliation(s)
- Chun-Yu Ma
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Ao-Chuan Yu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xi-Hui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiang-Guo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Long-Fei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xue-Ze Lv
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing, 100107, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Xiao-Long Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
2
|
Izichkis LS, Basque A, Martin LJ. High concentrations of progesterone inhibit the expression of genes related to steroid metabolism in MA-10 Leydig cells. Mol Cell Endocrinol 2024; 594:112375. [PMID: 39307342 DOI: 10.1016/j.mce.2024.112375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Leydig cells are the main testosterone-producing cells in males. During androgen synthesis, cholesterol enters the mitochondria via the STAR protein and is converted into pregnenolone by the CYP11A1 enzyme. This steroid is then exported from the mitochondria to be metabolized to progesterone by the HSD3B1 enzyme in the endoplasmic reticulum. In this study, we used 3'Tag-RNA-Seq to identify progesterone-regulated genes in MA-10 Leydig cells. Our results indicate that high concentrations of progesterone (30 μM) are involved in a negative feedback loop that inhibits cAMP/PKA-dependent activation of Star and Cyp11a1 expression and participate in cAMP/PKA-dependent down-regulation of genes related to the metabolism of steroid hormones. Linked to activation of the MAPK signaling pathway, endoplasmic reticulum stress and apoptosis, most of the genes encoding bZIP transcription factors are upregulated by progesterone in MA-10 Leydig cells. However, only DDIT3 protein levels are increased in response to progesterone in MA-10 Leydig cells. Like normal Leydig cells, MA-10 cells very weakly express the classical nuclear receptor for progesterone, suggesting that gene regulation by progesterone is rather mediated by one of the non-classical membrane receptors for progesterone However, current findings suggest that the inhibitory effect of progesterone on STAR protein increase in response to forskolin is not dependent on PGRMC1/2 or PAQR9. Furthermore, the increase in progesterone synthesis in response to activation of the cAMP/PKA pathway is rather inhibited by siRNA-mediated knockdown of PAQR9. Overall, this study shows that progesterone produced by Leydig cells participates in the regulation of steroidogenesis through autocrine action involving negative feedback upon activation of the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Liel-Sarah Izichkis
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada, E1A 3E9
| | - Audrey Basque
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada, E1A 3E9
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, New Brunswick, Canada, E1A 3E9.
| |
Collapse
|
3
|
Zavvarian MM, Modi AD, Sadat S, Hong J, Fehlings MG. Translational Relevance of Secondary Intracellular Signaling Cascades Following Traumatic Spinal Cord Injury. Int J Mol Sci 2024; 25:5708. [PMID: 38891894 PMCID: PMC11172219 DOI: 10.3390/ijms25115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a life-threatening and life-altering condition that results in debilitating sensorimotor and autonomic impairments. Despite significant advances in the clinical management of traumatic SCI, many patients continue to suffer due to a lack of effective therapies. The initial mechanical injury to the spinal cord results in a series of secondary molecular processes and intracellular signaling cascades in immune, vascular, glial, and neuronal cell populations, which further damage the injured spinal cord. These intracellular cascades present promising translationally relevant targets for therapeutic intervention due to their high ubiquity and conservation across eukaryotic evolution. To date, many therapeutics have shown either direct or indirect involvement of these pathways in improving recovery after SCI. However, the complex, multifaceted, and heterogeneous nature of traumatic SCI requires better elucidation of the underlying secondary intracellular signaling cascades to minimize off-target effects and maximize effectiveness. Recent advances in transcriptional and molecular neuroscience provide a closer characterization of these pathways in the injured spinal cord. This narrative review article aims to survey the MAPK, PI3K-AKT-mTOR, Rho-ROCK, NF-κB, and JAK-STAT signaling cascades, in addition to providing a comprehensive overview of the involvement and therapeutic potential of these secondary intracellular pathways following traumatic SCI.
Collapse
Affiliation(s)
- Mohammad-Masoud Zavvarian
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Akshat D. Modi
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Department of Biological Sciences, University of Toronto, Scarborough, ON M1C 1A4, Canada
- Department of Human Biology, University of Toronto, Toronto, ON M5S 3J6, Canada
| | - Sarah Sadat
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - James Hong
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
| | - Michael G. Fehlings
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
4
|
Yan S, Wang Y, Wang B, Zuo S, Yu Y. Thromboxane A 2 Modulates de novo Synthesis of Adrenal Corticosterone in Mice via p38/14-3-3γ/StAR Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307926. [PMID: 38460156 PMCID: PMC11095200 DOI: 10.1002/advs.202307926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/21/2024] [Indexed: 03/11/2024]
Abstract
Prostanoids are endogenous lipid bioactive mediators that play essential roles in physiological processes such as glucocorticoid secretion. Here, it is found that the thromboxane (Tx)A2 receptor (TP) is highly expressed in the adrenal cortex of mice. Both global and adrenocortical-specific deletion of the TP receptor lead to increased adiposity in mice by elevating corticosterone synthesis. Mechanistically, the TP receptor deletion increases the phosphorylation of steroidogenic acute regulatory protein (StAR) and corticosterone synthesis in adrenal cortical cells by suppressing p-p38-mediated phosphorylation of 14-3-3γ adapter protein at S71. The activation of the p38 in the adrenal cortical cells by forced expression of the MKK6EE gene attenuates hypercortisolism in TP-deficient mice. These observations suggest that the TxA2/TP signaling regulates adrenal corticosterone homeostasis independent of the hypothalamic-pituitary-adrenal axis and the TP receptor may serve as a promising therapeutic target for hypercortisolism.
Collapse
Affiliation(s)
- Shuai Yan
- Department of PharmacologyTianjin Key Laboratory of Inflammatory BiologyState Key Laboratory of Experimental HematologyKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070P. R. China
- Division of Endocrinology, Diabetes, and MetabolismBeth Israel Deaconess Medical CenterHarvard Medical School330 Brookline AvenueBostonMassachusetts02115USA
| | - Yuanyang Wang
- Department of PharmacologyTianjin Key Laboratory of Inflammatory BiologyState Key Laboratory of Experimental HematologyKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070P. R. China
| | - Bei Wang
- Department of PharmacologyTianjin Key Laboratory of Inflammatory BiologyState Key Laboratory of Experimental HematologyKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070P. R. China
| | - Shengkai Zuo
- Department of PharmacologyTianjin Key Laboratory of Inflammatory BiologyState Key Laboratory of Experimental HematologyKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070P. R. China
- Department of BiopharmaceuticsTianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070P. R. China
| | - Ying Yu
- Department of PharmacologyTianjin Key Laboratory of Inflammatory BiologyState Key Laboratory of Experimental HematologyKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070P. R. China
| |
Collapse
|
5
|
Zhang X, Zhang X, Shi Y, Zhang Z, Wang J, Ru S, Tian H. Interacting with luteinizing hormone receptor provides a new elucidation of the mechanism of anti-androgenicity of bisphenol S. CHEMOSPHERE 2024; 350:141056. [PMID: 38158086 DOI: 10.1016/j.chemosphere.2023.141056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol S (BPS) exhibited inhibitory effects on androgen synthesis, but its target of action remains unclear. We investigated the effects of BPS exposure at environmentally relevant concentrations (1 μg/L, 10 μg/L and 100 μg/L) for 48 h on androgen synthesis in rat ovarian theca cells and explored the underlying mechanisms, target site and target molecule. The results showed that BPS exposure inhibited the transcript levels of steroidogenic genes and reduced the contents of androgen precursors, testosterone and dihydrotestosterone. BPS exposure decreased the phosphorylation levels of extracellular signal-related kinase 1/2 (ERK1/2), and the inhibitory effects of BPS on testosterone content and steroidogenic gene expression were blocked by ERK1/2 agonist LY2828360, suggesting that ERK1/2 signaling pathway mediates the inhibitory effects of BPS on androgen synthesis. BPS mainly accumulated on the cell membrane, impermeable BPS-bovine serum albumin exposure still inhibited androgen synthesis, BPS interacted with rat luteinizing hormone receptor (LHR) via formation of hydrogen bonds in the transmembrane region, and the inhibitory effects of BPS on ERK1/2 phosphorylation were blocked by luteinizing hormone (the natural agonist of LHR), indicating that LHR located on the cell membrane is the target of action of BPS. This paper provides a new elucidation of the mechanism of anti-androgenicity of BPS, especially for the non-genomic pathways.
Collapse
Affiliation(s)
- Xinda Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaorong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yijiao Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
6
|
Tang L, Li J, Hu C, Zhou B, Lam PKS, Chen L. Isothiazolinone dysregulates the pattern of miRNA secretion: Endocrine implications for neurogenesis. ENVIRONMENT INTERNATIONAL 2023; 181:108308. [PMID: 37939439 DOI: 10.1016/j.envint.2023.108308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Isothiazolinones are extensively used as preservatives and disinfectants in personal care products and household items. The unintended exposure of humans and animals to isothiazolinones has led to increasing concerns about their health hazards. The compound 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), a representative isothiazolinone, can simultaneously induce endocrine disruption and neurotoxicity. However, the underlying mechanisms and linkages remain unclear. Our purpose was to elucidate the role of miRNAs as the signaling communicator during the crosstalk between endocrine and nervous systems in response to DCOIT stress. H295R cells were exposed to DCOIT, after which the alterations in intracellular miRNA composition, exosome secretory machinery, and extracellular miRNA composition were examined. Then, a PC12 cell line of neuronal differentiation potential was cultured with the extract of extracellular miRNAs from DCOIT-exposed H295R cell media to explore the functional implications in neurogenesis. The results showed that DCOIT exposure resulted in 349 differentially expressed miRNAs (DEMs) in H295R cells, which were closely related to the regulation of multiple endocrine pathways. In the media of H295R cells exposed to DCOIT, 66 DEMs were identified, showing distinct compositions compared to intracellular DEMs with only 2 common DEMs (e.g., novel-m0541-5p of inverse changes in the cell and medium). Functional annotation showed that extracellular DEMs were not only associated with sex endocrine synchronization, but were also implicated in nervous system development, morphogenesis, and tumor. Incubating PC12 cells with the extracellular exosomes (containing miRNAs) from DCOIT-exposed H295R cells significantly increased the neurite growth, promoted neuronal differentiation, and shaped the transcriptomic fingerprint, implying that miRNAs may communicate transduction of toxic information of DCOIT in endocrine system to neurons. Overall, the present findings provide novel insight into the endocrine disrupting and neural toxicity of DCOIT. The miRNAs have the potential to serve as the epigenetic mechanism of systems toxicology.
Collapse
Affiliation(s)
- Lizhu Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Paul K S Lam
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Kowloon, Hong Kong, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
7
|
Paula VG, Sinzato YK, Gallego FQ, Cruz LL, Aquino AMD, Scarano WR, Corrente JE, Volpato GT, Damasceno DC. Intergenerational Hyperglycemia Impairs Mitochondrial Function and Follicular Development and Causes Oxidative Stress in Rat Ovaries Independent of the Consumption of a High-Fat Diet. Nutrients 2023; 15:4407. [PMID: 37892483 PMCID: PMC10609718 DOI: 10.3390/nu15204407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
We analyzed the influence of maternal hyperglycemia and the post-weaning consumption of a high-fat diet on the mitochondrial function and ovarian development of the adult pups of diabetic rats. Female rats received citrate buffer (Control-C) or Streptozotocin (for diabetes induction-D) on postnatal day 5. These adult rats were mated to obtain female pups (O) from control dams (OC) or from diabetic dams (OD), and they received a standard diet (SD) or high-fat diet (HFD) from weaning to adulthood and were distributed into OC/SD, OC/HFD, OD/SD, and OD/HFD. In adulthood, the OGTT and AUC were performed. These rats were anesthetized and euthanized for sample collection. A high percentage of diabetic rats were found to be in the OD/HFD group (OD/HFD 40% vs. OC/SD 0% p < 0.05). Progesterone concentrations were lower in the experimental groups (OC/HFD 0.40 ± 0.04; OD/SD 0.30 ± 0.03; OD/HFD 0.24 ± 0.04 vs. OC/SD 0.45 ± 0.03 p < 0.0001). There was a lower expression of MFF (OD/SD 0.34 ± 0.33; OD/HFD 0.29 ± 0.2 vs. OC/SD 1.0 ± 0.41 p = 0.0015) and MFN2 in the OD/SD and OD/HFD groups (OD/SD 0.41 ± 0.21; OD/HFD 0.77 ± 0.18 vs. OC/SD 1.0 ± 0.45 p = 0.0037). The number of follicles was lower in the OD/SD and OD/HFD groups. A lower staining intensity for SOD and Catalase and higher staining intensity for MDA were found in ovarian cells in the OC/HFD, OD/SD, and OD/HFD groups. Fetal programming was responsible for mitochondrial dysfunction, ovarian reserve loss, and oxidative stress; the association of maternal diabetes with an HFD was responsible for the higher occurrence of diabetes in female adult pups.
Collapse
Affiliation(s)
- Verônyca Gonçalves Paula
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Franciane Quintanilha Gallego
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Larissa Lopes Cruz
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Ariana Musa de Aquino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - José Eduardo Corrente
- Research Support Office, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças 78600-000, MG, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| |
Collapse
|
8
|
Wu X, Zhou C, Li X, Lin J, Aguila LCR, Wen F, Wang L. Genome-wide identification and immune response analysis of mitogen-activated protein kinase cascades in tea geometrid, Ectropis grisescens Warren (Geometridae, Lepidoptera). BMC Genomics 2023; 24:344. [PMID: 37349677 DOI: 10.1186/s12864-023-09446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Tea geometrid Ectropis grisescens (Geometridae: Lepidoptera), is one of the most destructive defoliators in tea plantations in China. The MAPK cascade is known to be an evolutionarily conserved signaling module, acting as pivotal cores of host-pathogen interactions. Although the chromosome-level reference genome of E. grisescens was published, the whole MAPK cascade gene family has not been fully identified yet, especially the expression patterns of MAPK cascade gene family members upon an ecological biopesticide, Metarhizium anisopliae, remains to be understood. RESULTS In this study, we have identified 19 MAPK cascade gene family members in E. grisescens, including 5 MAPKs, 4 MAP2Ks, 8 MAP3Ks, and 2 MAP4Ks. The molecular evolution characteristics of the whole Eg-MAPK cascade gene family, including gene structures, protein structural organization, chromosomal localization, orthologs construction and gene duplication, were systematically investigated. Our results showed that the members of Eg-MAPK cascade gene family were unevenly distributed in 13 chromosomes, and the clustered members in each group shared similar structures of the genes and proteins. Gene expression data revealed that MAPK cascade genes were expressed in all four developmental stages of E. grisescens and were fairly and evenly distributed in four different larva tissues. Importantly, most of the MAPK cascade genes were induced or constitutively expressed upon M. anisopliae infection. CONCLUSIONS In summary, the present study was one of few studies on MAPK cascade gene in E. grisescens. The characterization and expression profiles of Eg-MAPK cascades genes might help develop new ecofriendly biological insecticides to protect tea trees.
Collapse
Affiliation(s)
- Xiaozhu Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, 239099, China
| | - Chenghua Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaofang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingyi Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Luis Carlos Ramos Aguila
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, 332000, China.
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
9
|
Zheng X, Chen J, Kang L, Wei Y, Wu Y, Hong Y, Wang X, Li D, Shen L, Long C, Wei G, Wu S. Prepubertal exposure to copper oxide nanoparticles induces Leydig cell injury with steroidogenesis disorders in mouse testes. Biochem Biophys Res Commun 2023; 654:62-72. [PMID: 36889036 DOI: 10.1016/j.bbrc.2023.02.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
Copper oxide nanoparticles (CuONPs) are metallic multifunctional nanoparticles with good conductive, catalytic and antibacterial characteristics that have shown to cause reproductive dysfunction. However, the toxic effect and potential mechanisms of prepubertal exposure to CuONPs on male testicular development have not been clarified. In this study, healthy male C57BL/6 mice received 0, 10, and 25 mg/kg/d CuONPs by oral gavage for 2 weeks (postnatal day 22-35). The testicular weight was decreased, testicular histology was disturbed and the number of Leydig cells was reduced in all CuONPs-exposure groups. Transcriptome profiling suggested steroidogenesis was impaired after exposure to CuONPs. The steroidogenesis-related genes mRNA expression level, concentration of serum steroids hormones and the HSD17B3-, STAR- and CYP11A1-positive Leydig cell numbers were dramatically reduced. In vitro, we exposed TM3 Leydig cells to CuONPs. Bioinformatic analysis, flow cytometry analysis and western blotting analysis confirmed that CuONPs can dramatically reduce Leydig cells viability, enhance apoptosis, trigger cell cycle arrest and reduce cell testosterone levels. U0126 (ERK1/2 inhibitor) significantly reversed TM3 Leydig cells injury and testosterone level decrease induced by CuONPs. These outcomes indicate that CuONPs exposure activates the ERK1/2 signaling pathway, which further promotes apoptosis and cell cycle arrest in TM3 Leydig cells, and ultimately leads to Leydig cells injury and steroidogenesis disorders.
Collapse
Affiliation(s)
- Xiangqin Zheng
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Jiadong Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Lian Kang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Yuhao Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Xia Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Dinggang Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Lianju Shen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Chunlan Long
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.
| |
Collapse
|
10
|
Belani MA, Shah P, Banker M, Gupta SS. Investigating the potential role of swertiamarin on insulin resistant and non-insulin resistant granulosa cells of poly cystic ovarian syndrome patients. J Ovarian Res 2023; 16:55. [PMID: 36932437 PMCID: PMC10024427 DOI: 10.1186/s13048-023-01126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND AND AIM Conventional drugs have limitations due to prevalence of contraindications in PCOS patients. To explore the potential effects of swertiamarin, on abrupted insulin and steroidogenic signaling in human luteinized granulosa cells from PCOS patients with or without insulin resistance. EXPERIMENTAL PROCEDURE hLGCs from 8 controls and 16 PCOS patients were classified for insulin resistance based on down regulation of protein expression of insulin receptor-β (INSR- β) as shown in our previous paper. Cells were grouped as control, PCOS-IR and PCOS-NIR, treated with swertiamarin (66 µM) and metformin (1 mM). Expression of key molecules involved in insulin signaling, fat metabolism, IGF system and steroidogenesis were compared between groups. RESULTS Swertiamarin significantly (P < 0.05) reversed the expression of INSR-β, PI(3)K, p-Akt, PKC-ζ, PPARγ, (P < 0.01) IRS (Ser 307) and IGF system in PCOS-IR group and was equally potent to metformin. In the same group, candidate genes viz SREBP1c, FAS, ACC-1 and CPT-1 were down regulated by swertiamarin (P < 0.001) and metformin (P < 0.001). Significant upregulation was demonstrated in expression of StAR, CYP19A1, 17β-HSD and 3β-HSD when treated with swertiamarin (P < 0.01) and metformin (P < 0.01) in PCOS-IR followed by increase in 17β-HSD and 3β-HSD enzyme activity along with estradiol and progesterone secretions. However, swertiamarin did not reveal any effect on PCOS-NIR group as compared to metformin that significantly (P < 0.01) reversed all the parameters related to steroidogenesis and down regulated basal expression of insulin signaling genes. CONCLUSION Swertiamarin, presents itself as a potential fertility drug in hLGCs from PCOS-IR patients.
Collapse
Affiliation(s)
- Muskaan A. Belani
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390 002 India
| | - Preeti Shah
- Nova IVI Fertility, Behind Xavier’s Ladies Hostel, 108, Swastik Society Rd, Navrangpura, Ahmedabad, 390009 Gujarat India
| | - Manish Banker
- Nova IVI Fertility, Behind Xavier’s Ladies Hostel, 108, Swastik Society Rd, Navrangpura, Ahmedabad, 390009 Gujarat India
| | - Sarita S. Gupta
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390 002 India
| |
Collapse
|
11
|
Barrera SS, Naranjo-Gomez JS, Rondón-Barragán IS. Thermoprotective molecules: Effect of insulin-like growth factor type I (IGF-1) in cattle oocytes exposed to high temperatures. Heliyon 2023; 9:e14375. [PMID: 36967889 PMCID: PMC10036656 DOI: 10.1016/j.heliyon.2023.e14375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023] Open
Abstract
The adverse effects of heat stress (HS) on the welfare and productivity of cattle are the result of the associated hyperthermia and the physiological and behavioral mechanisms performed by the animal to regulate body temperature. The negative effects of HS on in vitro oocyte maturation and in vitro bovine embryo production have been reported; being one of the major concerns due to economic and productive losses, and several mechanisms have been implemented to reduce its impact. These mechanisms include supplementation of the medium with hormones, adjuvants, identification of protective genes, among others. This review aims to explore the cellular and molecular mechanisms of insulin-like growth factor-1 (IGF-1) during in vitro and in vivo maturation of bovine oocytes and its thermoprotective effect under HS. Although the supplementation of the culture medium during oocyte maturation with IGF-1 has been implemented during the last years, there are still controversial results, however, supplementation with low concentration showed a positive effect on maturation and thermoprotection of oocytes exposed to higher temperatures. Additionally, IGF-1 is involved in multiple cellular pathways, and it may regulate cell apoptosis in cases of HS and protect oocyte competence under in vitro conditions.
Collapse
|
12
|
Zhang J, Zhu X, Xu W, Hu J, Shen Q, Zhu D, Xu X, Wei Z, Zhou P, Cao Y. Exposure to acrylamide inhibits testosterone production in mice testes and Leydig cells by activating ERK1/2 phosphorylation. Food Chem Toxicol 2023; 172:113576. [PMID: 36565847 DOI: 10.1016/j.fct.2022.113576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Acrylamide (ACR) is formed during the cooking of starchy foods at high temperatures. Accumulating evidence has shown that ACR has toxic effects, but the mechanism of its potential reproductive toxicity remains unclear. In this study, we observed that ACR caused weight loss in mice. There was no significant difference in the weight of testis and epididymis between the low/medium-dose ACR group and the control group. And the number of epididymal sperms, testicular Leydig cells, serum testosterone level, testicular steroidogenic genes and enzymes, including cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and cytochrome P450 family 17 subfamily A member 1 (CYP17A1), were decreased in the medium/high-dose ACR group. Additional cell experiments showed that the apoptosis rate and the level of reactive oxygen species (ROS) were increased, and testosterone levels and CYP17A1 protein expression were reduced in Leydig cells with treated ACR. Furthermore, the phosphorylation levels of extracellular signal-regulated kinases (ERK1/2) increased significantly; however, there was no significant difference in the levels of serine-threonine protein kinase (AKT) phosphorylation in the testis of mice and Leydig cells treated with ACR. These results suggest that ACR exposure leads to the damage of testicular structure and function and a decline in testosterone synthesis in Leydig cells and mouse testis, which may be related to the activated phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Junqiang Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaoqian Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wenjuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jingjing Hu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, 230032, China
| | - Qunshan Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, 230032, China
| | - Damin Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaofeng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
13
|
Yang M, Ji Y, Yong T, Liu T, Yang S, Guo S, Meng F, Han X, Liang Q, Cao X, Huang L, Du X, Huang A, Kong F, Zeng X, Bu G. Corticosterone stage-dependently inhibits progesterone production presumably via impeding the cAMP-StAR cascade in granulosa cells of chicken preovulatory follicles. Poult Sci 2022; 102:102379. [PMID: 36608454 PMCID: PMC9829700 DOI: 10.1016/j.psj.2022.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Stress can suppress reproduction capacity in either wild or domestic animals, but the exact mechanism behind it, especially in terms of steroidogenesis, remains under-investigated so far. Considering the important roles of progesterone in avian breeding, we investigated the modulation of corticosterone on progesterone production in cultured granulosa cells of chicken follicles at different developmental stages. Using enzyme immunoassays, our study showed that corticosterone could only inhibit progesterone synthesis in granulosa cells from F5-6, F4, and F3 follicles, but not F2 and F1 follicles. Coincidentally, both quantitative real-time PCR and western blotting revealed that corticosterone could downregulate steroidogenic acute regulatory protein (StAR) expression, suggesting the importance of StAR in corticosterone-related actions. Using the dual-luciferase reporter system, we found that corticosterone can potentially enhance, rather than inhibit, the activity of StAR promoter. Of note, combining high-throughput transcriptomic analysis and quantitative real-time PCR, phosphodiesterase 10A (PDE10A), protein kinase cAMP-dependent type II regulatory subunit alpha (PRKAR2A) and cAMP responsive element modulator (CREM) were identified to exhibit the differential expression patterns consistent with cAMP blocking in granulosa cells from F5-6, F4, and F3, but not F2 and F1 follicles. Afterward, the expression profiles of these genes in granulosa cells of distinct developmental-stage follicles were examined by quantitative real-time PCR, in which all of them expressed correspondingly with progesterone levels of granulosa cells during development. Collectively, these findings indicate that corticosterone can stage-dependently inhibit progesterone production in granulosa cells of chicken preovulatory follicles, through impeding cAMP-induced StAR activity presumptively.
Collapse
Affiliation(s)
- Ming Yang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Yu Ji
- Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Tao Yong
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Tuoyuan Liu
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Shuai Yang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Shasha Guo
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Fengyan Meng
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Xingfa Han
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Qiuxia Liang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Xiaohan Cao
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Linyan Huang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Xiaogang Du
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Anqi Huang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Fanli Kong
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Xianyin Zeng
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Guixian Bu
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China,Corresponding author:
| |
Collapse
|
14
|
Seasonal Change in Adiponectin Associated with Ovarian Morphology and Function in Wild Ground Squirrels ( Citellus dauricus Brandt). Int J Mol Sci 2022; 23:ijms232314698. [PMID: 36499026 PMCID: PMC9741246 DOI: 10.3390/ijms232314698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
The goal of this study is to explore the relationship between altered circulating adiponectin concentration, ovarian tissue morphology, ovarian steroidogenesis, and sex hormone production in ovaries of wild ground squirrels. The ovarian mass differed significantly during the breeding and non-breeding seasons, and the circulating estradiol and progesterone concentrations were significantly higher in the breeding season, while the circulating adiponectin level was significantly lower. The expression levels of gonadotropin receptors (FSHR and LHR) and steroidogenic enzymes (StAR, P450scc, P450arom, and 3β-HSD) were significantly higher during the breeding season. Comparing the ovarian transcriptome data of wild ground squirrels between the two periods, we found that some differentially expressed genes were enriched for ovarian steroidogenesis and the adipocytokine signaling pathway, which correlated with our present results. Notably, the MAPK signaling pathway was also enriched and its related genes (Erk1, p38 Mapk, Jnk) were up-regulated by qPCR during the non-breeding season. These findings suggested that adiponectin may be involved in the regulation of seasonal changes in the ovarian function of wild ground squirrels, possibly by acting on the MAPK signaling pathway to regulate sex steroidogenesis in the ovaries.
Collapse
|
15
|
HSD3B1 Expression Is Upregulated by Interleukin 4 in HT-29 Colon Cancer Cells via Multiple Signaling Pathways. Int J Mol Sci 2022; 23:ijms232113572. [DOI: 10.3390/ijms232113572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
3β-Hydroxysteroid dehydrogenase/isomerase is essential for the synthesis of active steroid hormones. Interleukin 4 (IL4) induces the expression of HSD3B1 in various human cancer cell lines. Here, we demonstrated that administration of IL4 to an HT-29 colon cancer cell line induced high expression of HSD3B1 at the mRNA and protein levels. In the HT-29 cells, IL4 stimulated the activity of signal transducer and activator of transcription 6 (STAT6) and promoted its binding to the STAT6-binding site in the HSD3B1 promoter. The STAT6 inhibitor significantly suppressed HSD3B1 induction by IL4 in a dose-dependent manner. Moreover, inhibition of the PI3-kinase/AKT pathway strongly suppressed the IL4-induced HSD3B1 expression. Glycogen synthase kinase 3 (GSK3), a downstream target of AKT, had a stimulatory effect on the IL4-induced HSD3B1 expression. However, IL4 stimulated the phosphorylation of AKT, which inhibited the GSK3 activity at the early stage. Hence, GSK3 potentiated the HSD3B1 levels at the late stage of the IL4 stimulation. Additionally, inhibitors of mitogen-activated protein kinases (MAPKs), ERK1/2 and p38, but not of JNK, partly reduced the HSD3B1 expression following the IL4 stimulation. We further demonstrated that IL4 potently promoted steroid synthesis. Our results indicate that IL4 induces HSD3B1 expression via multiple signaling pathways in HT-29 cells and may play a role in the regulation of steroid synthesis.
Collapse
|
16
|
Knowledge Gap in Understanding the Steroidogenic Acute Regulatory Protein Regulation in Steroidogenesis Following Exposure to Bisphenol A and Its Analogues. Biomedicines 2022; 10:biomedicines10061281. [PMID: 35740303 PMCID: PMC9219931 DOI: 10.3390/biomedicines10061281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
The use of bisphenols has become extremely common in our daily lives. Due to the extensive toxic effects of Bisphenol A (BPA), the industry has replaced this endocrine-disrupting chemical (EDC) with its analogues, which have been proven to decrease testosterone levels via several mechanisms, including targeting the steroidogenic acute regulatory (StAR) protein. However, when exposed to BPA and its analogues, the specific mechanism that emerges to target StAR protein regulations remains uncertain. Hence, this review discusses the effects of BPA and its analogues in StAR protein regulation by targeting cAMP-PKA, PLC-PKC, EGFR-MAPK/ERK and Ca2+-Nur77. BPA and its analogues mainly lead to decreased LH in blood and increased ERK expression and Ca2+ influx, with no relationship with the StAR protein regulation in testicular steroidogenesis. Furthermore, the involvement of the cAMP-PKA, PLC-PKC, and Nur77 molecules in StAR regulation in Leydig cells exposed to BPA and its analogues remains questionable. In conclusion, although BPA and its analogues have been found to disrupt the StAR protein, the evidence in connecting the signaling pathways with the StAR regulations in testicular steroidogenesis is still lacking, and more research is needed to draw a solid conclusion.
Collapse
|
17
|
Etchevers L, Belotti EM, Díaz PU, Rodríguez FM, Rey F, Salvetti NR, Ortega HH, Amweg AN. MC2R/MRAP2 activation could affect bovine ovarian steroidogenesis potential after ACTH treatment. Theriogenology 2021; 174:102-113. [PMID: 34425302 DOI: 10.1016/j.theriogenology.2021.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023]
Abstract
Stressors activate the hypothalamic-pituitary-adrenal (HPA) axis, reducing fertility by interfering with the mechanisms that regulate the timing of events within the follicular phase of the estrous cycle. In the HPA axis, melanocortin 2 receptor (MC2R) mediates responses to adrenocorticotropic hormone (ACTH) in concert with melanocortin receptor accessory protein 2 (MRAP2). The aims of the present study were: (1) to evaluate the effects of ACTH administered in cows in the preovulatory period on the expression of the MC2R/MRAP2 complex in the dominant follicle; and (2) to analyze the involvement of Extracellular signal Regulated Kinase 1 (ERK1) signaling in the activation of MC2R and the expression of key enzymes involved in the biosynthesis of glucocorticoids (GCs) in the dominant follicle. To this end, 100 IU ACTH was administered to Holstein cows from a local dairy farm during pro-estrus every 12 h for four days until ovariectomy, which was performed before ovulation. Protein immunostaining of MC2R was higher in the dominant follicles of ACTH-treated cows (p < 0.05). Also, Western blot analysis showed higher activation of the ERK1 signaling pathway in ACTH-treated cows (p < 0.05). Finally, immunohistochemistry performed in the dominant follicles of ACTH-treated cows detected higher expression of CYP17A1 and CYP21A2 (p < 0.05). These results suggest that the bovine ovary is able to respond locally to ACTH as a consequence of stress altering the expression of relevant steroidogenic enzymes. The results also confirm that the complete GC biosynthesis pathway is present in bovine dominant follicle and therefore GCs could be produced locally.
Collapse
Affiliation(s)
- L Etchevers
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias Del Litoral (ICiVet-Litoral), Universidad Nacional Del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina
| | - E M Belotti
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias Del Litoral (ICiVet-Litoral), Universidad Nacional Del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional Del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - P U Díaz
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias Del Litoral (ICiVet-Litoral), Universidad Nacional Del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional Del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - F M Rodríguez
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias Del Litoral (ICiVet-Litoral), Universidad Nacional Del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional Del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - F Rey
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias Del Litoral (ICiVet-Litoral), Universidad Nacional Del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional Del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - N R Salvetti
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias Del Litoral (ICiVet-Litoral), Universidad Nacional Del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional Del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - H H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias Del Litoral (ICiVet-Litoral), Universidad Nacional Del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional Del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - A N Amweg
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias Del Litoral (ICiVet-Litoral), Universidad Nacional Del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional Del Litoral (UNL), Esperanza, Santa Fe, Argentina.
| |
Collapse
|
18
|
Diabetes Mellitus Promotes Smooth Muscle Cell Proliferation in Mouse Ureteral Tissue through the P-ERK/P-JNK/VEGF/PKC Signaling Pathway. ACTA ACUST UNITED AC 2021; 57:medicina57060560. [PMID: 34206139 PMCID: PMC8230221 DOI: 10.3390/medicina57060560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022]
Abstract
Background and objectives: The aim of our study was to evaluate the role of diabetes mellitus (DM) as a significant factor affecting spontaneous stone expulsion, as suggested by previous research. Materials and methods: We investigated the influence of DM on the ureter using a murine model. The mouse-model arm of this study used 20 15 -week-old mice, including 10 normal (control) mice and 10 DM mice. We measured the proximal, middle and distal ureteral smooth muscle thickness in each mouse and the differences among ureteral sections were analyzed. Mouse ureteral specimens were also analyzed via western blotting to detect relative protein expression of phosphor–extracellular signal regulated kinases (P–ERK), phosphor–C–Jun N–terminal kinase (P–JNK), vascular endothelial growth factor (VEGF), and protein kinase C (PKC), which are representative factors involved in cell regulation. Results: We observed significant hyperproliferation of ureteral smooth muscle in DM mice compared to normal mice, which may provoke reduced peristalsis. The ureteral smooth muscle of DM mice was significantly thicker than that of normal mice in all ureteral tissues: proximal (p = 0.040), mid (p = 0.010), and distal (p = 0.028). The relative protein expression of P-ERK (p = 0.005) and P–JNK (p = 0.001) was higher in the diabetic group compared to the normal group. Additionally, protein expression of VEGF (p = 0.002) and PKC (p = 0.001) were remarkably up-regulated in DM mice. Conclusions: Hyperproliferation of ureteral smooth muscle was observed in DM mice, but not in normal mice. The pathways mediated by P–ERK, P–JNK, VEGF, and PKC may play an important role in pathological ureteral conditions.
Collapse
|
19
|
Moaddel R, Ubaida‐Mohien C, Tanaka T, Lyashkov A, Basisty N, Schilling B, Semba RD, Franceschi C, Gorospe M, Ferrucci L. Proteomics in aging research: A roadmap to clinical, translational research. Aging Cell 2021; 20:e13325. [PMID: 33730416 PMCID: PMC8045948 DOI: 10.1111/acel.13325] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/31/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
The identification of plasma proteins that systematically change with age and, independent of chronological age, predict accelerated decline of health is an expanding area of research. Circulating proteins are ideal translational "omics" since they are final effectors of physiological pathways and because physicians are accustomed to use information of plasma proteins as biomarkers for diagnosis, prognosis, and tracking the effectiveness of treatments. Recent technological advancements, including mass spectrometry (MS)-based proteomics, multiplexed proteomic assay using modified aptamers (SOMAscan), and Proximity Extension Assay (PEA, O-Link), have allowed for the assessment of thousands of proteins in plasma or other biological matrices, which are potentially translatable into new clinical biomarkers and provide new clues about the mechanisms by which aging is associated with health deterioration and functional decline. We carried out a detailed literature search for proteomic studies performed in different matrices (plasma, serum, urine, saliva, tissues) and species using multiple platforms. Herein, we identified 232 proteins that were age-associated across studies. Enrichment analysis of the 232 age-associated proteins revealed metabolic pathways previously connected with biological aging both in animal models and in humans, most remarkably insulin-like growth factor (IGF) signaling, mitogen-activated protein kinases (MAPK), hypoxia-inducible factor 1 (HIF1), cytokine signaling, Forkhead Box O (FOXO) metabolic pathways, folate metabolism, advance glycation end products (AGE), and receptor AGE (RAGE) metabolic pathway. Information on these age-relevant proteins, likely expanded and validated in longitudinal studies and examined in mechanistic studies, will be essential for patient stratification and the development of new treatments aimed at improving health expectancy.
Collapse
Affiliation(s)
- Ruin Moaddel
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| | | | - Toshiko Tanaka
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| | - Alexey Lyashkov
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| | | | | | - Richard D Semba
- Wilmer Eye Institute Johns Hopkins University School of Medicine Baltimore MD USA
| | - Claudio Franceschi
- University of Bologna and IRCCS Institute of Neurological Sciences Bologna Italy
| | - Myriam Gorospe
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| | - Luigi Ferrucci
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| |
Collapse
|
20
|
Machtinger R, Baccarelli AA, Wu H. Extracellular vesicles and female reproduction. J Assist Reprod Genet 2021; 38:549-557. [PMID: 33471231 PMCID: PMC7910356 DOI: 10.1007/s10815-020-02048-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/21/2020] [Indexed: 01/28/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized membrane bound complexes that have been identified as a mean for intercellular communication between cells and tissues both in physiological and pathological conditions. These vesicles contain numerous molecules involved in signal transduction including microRNAs, mRNAs, DNA, proteins, lipids, and cytokines and can affect the behavior of recipient cells. Female reproduction is dependent on extremely fine-tuned endocrine regulation, and EVs may represent an added layer that contributes to this regulation. This narrative review article provides an update on the research of the role of EVs in female reproduction including folliculogenesis, fertilization, embryo quality, and implantation. We also highlight potential pitfalls in typical EV studies and discuss gaps in the current literature.
Collapse
Affiliation(s)
- Ronit Machtinger
- Sheba Medical Center, Ramat Gan and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Infertility and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, 52621, Tel Hashomer, Israel.
| | - Andrea A Baccarelli
- Environmental Precision Biosciences Laboratory, Columbia University, Mailman School of Public Health, New York, NY, USA
| | - Haotian Wu
- Environmental Precision Biosciences Laboratory, Columbia University, Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
21
|
Tokmakov AA, Stefanov VE, Sato KI. Dissection of the Ovulatory Process Using ex vivo Approaches. Front Cell Dev Biol 2020; 8:605379. [PMID: 33363163 PMCID: PMC7755606 DOI: 10.3389/fcell.2020.605379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Ovulation is a unique physiological phenomenon that is essential for sexual reproduction. It refers to the entire process of ovarian follicle responses to hormonal stimulation resulting in the release of mature fertilization-competent oocytes from the follicles and ovaries. Remarkably, ovulation in different species can be reproduced out-of-body with high fidelity. Moreover, most of the molecular mechanisms and signaling pathways engaged in this process have been delineated using in vitro ovulation models. Here, we provide an overview of the major molecular and cytological events of ovulation observed in frogs, primarily in the African clawed frog Xenopus laevis, using mainly ex vivo approaches, with the focus on meiotic oocyte maturation and follicle rupture. For the purpose of comparison and generalization, we also refer extensively to ovulation in other biological species, most notoriously, in mammals.
Collapse
Affiliation(s)
| | - Vasily E Stefanov
- Department of Biochemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Ken-Ichi Sato
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
22
|
Bakhtyukov AA, Derkach KV, Dar’in DV, Sorokoumov VN, Shpakov AO. Differential Stimulation of Testicular Steroidogenesis by Orthosteric and Allosteric Agonists of Luteinizing Hormone Receptor. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020050075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Xiao B, Liu F, Jin YH, Jin YQ, Wang L, Lu JC, Yang XC. Renal sympathetic denervation attenuates left ventricle hypertrophy in spontaneously hypertensive rats by suppressing the Raf/MEK/ERK signaling pathway. Clin Exp Hypertens 2020; 43:142-150. [PMID: 33070656 DOI: 10.1080/10641963.2020.1833022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To explore the effect of renal sympathetic denervation (RSD) on left ventricle hypertrophy and the Raf/MEK/ERK signaling pathway in spontaneously hypertensive rats (SHRs). METHODS SHRs were divided into SHR, SHR + Sham, SHR + RSD and SHR + U0126 groups, with WKY rats as the baseline controls. The blood pressure of rats was observed, while myocardial fibrosis was evaluated through Masson staining. Thereafter, real-time quantitative polymerase chain reaction (qRT-PCR) was carried out to determine the levels of myocardial-hypertrophy-related markers, and Western blotting was used to measure the activity of the Raf/MEK/ERK signaling pathway. RESULTS In comparison with the WKY group, significant increases were observed in the systolic pressure and diastolic pressure of rats from the other four groups at different time points after surgery. In addition, rats in these groups had obvious increases in LVMI, renal NE and IVSd and decreases in LVEDd, LVEF and LVFS. In addition, the CVF of myocardial tissues was increased, with the upregulation of ANP, BNP and β-MHC and the downregulation of α-MHC. For the activity of the Raf/MEK/ERK signaling pathway, the levels of p-Raf/Raf, p-MEK/MEK and p-ERK1/2/ERK1/2 were all remarkably elevated (all P < .05). Further comparison with the SHR group showed that the above indexes in the rats were significantly improved in the RSD group and SHR + U0126 group (all P < .05). CONCLUSION RSD may decrease blood pressure, mitigate hypertension-induced left ventricle hypertrophy and improve cardiac function efficiently in SHRs via the suppression of the Raf/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Bing Xiao
- Department of Cardiology, The Second Hospital of Hebei Medical University , Shijiazhuang, China
| | - Fan Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University , Shijiazhuang, China
| | - Ye-Hui Jin
- Department of Cardiology, The Second Hospital of Hebei Medical University , Shijiazhuang, China
| | - Ya-Qiong Jin
- Department of Cardiology, The Second Hospital of Hebei Medical University , Shijiazhuang, China
| | - Li Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University , Shijiazhuang, China
| | - Jing-Chao Lu
- Department of Cardiology, The Second Hospital of Hebei Medical University , Shijiazhuang, China
| | - Xiu-Chun Yang
- Department of Cardiology, The Second Hospital of Hebei Medical University , Shijiazhuang, China
| |
Collapse
|
24
|
Huang XB, Song KJ, Chen GB, Liu R, Jiang ZF, He YL. Circular RNA hsa_circ_0003204 promotes cervical cancer cell proliferation, migration, and invasion by regulating MAPK pathway. Cancer Biol Ther 2020; 21:972-982. [PMID: 33047994 PMCID: PMC7583705 DOI: 10.1080/15384047.2020.1824513] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer (CC) is the second most common malignancy in women worldwide. The mechanism underlying CC development remains unclear. Recently, Circular RNAs (circRNAs)have attracted attention because of its role in tumorigenesis. To investigate circRNAsin CC, RNA sequencing was employed to characterize circRNA expression profile between CC tissues and matched adjacent normal tissues. The expression of hsa_circ_0003204 was examined in CC tissues and cell lines by real-time PCR. Migration assay and invasion assay were used to verify the effect of hsa_circ_0003204 on migration and invasion ability in CC cell lines. Tumor formation assay in nude mice was used to analyze the effect of hsa_circ_0003204 on the tumorigenicity of CC cell lines in vitro. Western blotting analyzes were performed to investigate the role of hsa_circ_0003204 in the regulation of MAPK signaling activation. We found that circRNA hsa_circ_0003204 was significantly upregulated in CC tissues. The function and potential molecular mechanisms of hsa_circ_0003204 were also investigated in vitro and in vivo. Hsa_circ_0003204 knockdown reduced cell growth, migration, and invasion but promoted cells apoptosis. However, the over-expression of hsa_circ_0003204 had the opposite effect. The MAPK pathway was different in hsa_circ_0003204 over-expression or down-expression cells, compared to parental cells. In addition, over-expression of hsa_circ_0003204 significantly increased tumor volume and tumor weight in vivo.Taken together, results indicated hsa_circ_0003204 may serve as a potential therapeutic target for patients with CC.
Collapse
Affiliation(s)
- Xiao-Bin Huang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University , Guangzhou, Guangdong, China
| | - Kai-Jing Song
- Department of Gynecology, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan , Foshan, Guangdong, China
| | - Guo-Bin Chen
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University , Guangzhou, Guangdong, China
| | - Rui Liu
- Department of Gynecology, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan , Foshan, Guangdong, China
| | - Zhuo-Fei Jiang
- Department of Gynecology, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan , Foshan, Guangdong, China
| | - Yuan-Li He
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University , Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Yawer A, Sychrová E, Labohá P, Raška J, Jambor T, Babica P, Sovadinová I. Endocrine-disrupting chemicals rapidly affect intercellular signaling in Leydig cells. Toxicol Appl Pharmacol 2020; 404:115177. [PMID: 32739526 DOI: 10.1016/j.taap.2020.115177] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 01/25/2023]
Abstract
A decline in male fertility possibly caused by environmental contaminants, namely endocrine-disrupting chemicals (EDCs), is a topic of public concern and scientific interest. This study addresses a specific role of testicular gap junctional intercellular communication (GJIC) between adjacent prepubertal Leydig cells in endocrine disruption and male reproductive toxicity. Organochlorine pesticides (lindane, methoxychlor, DDT), industrial chemicals (PCB153, bisphenol A, nonylphenol and octylphenol) as well as personal care product components (triclosan, triclocarban) rapidly dysregulated GJIC in murine Leydig TM3 cells. The selected GJIC-inhibiting EDCs (methoxychlor, triclosan, triclocarban, lindane, DDT) caused the immediate GJIC disruption by the relocation of gap junctional protein connexin 43 (Cx43) from the plasma membrane and the alternation of Cx43 phosphorylation pattern (Ser368, Ser279, Ser282) of its full-length and two N-truncated isoforms. After more prolonged exposure (24 h), EDCs decreased steady-state levels of full-length Cx43 protein and its two N-truncated isoforms, and eventually (triclosan, triclocarban) also tight junction protein Tjp-1. The disturbance of GJIC was accompanied by altered activity of mitogen-activated protein kinases MAPK-Erk1/2 and MAPK-p38, and a decrease in stimulated progesterone production. Our results indicate that EDCs might disrupt testicular homeostasis and development via disruption of testicular GJIC, a dysregulation of junctional and non-junctional functions of Cx43, activation of MAPKs, and disruption of an early stage of steroidogenesis in prepubertal Leydig cells. These critical disturbances of Leydig cell development and functions during a prepubertal period might be contributing to impaired male reproduction health later on.
Collapse
Affiliation(s)
- Affiefa Yawer
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, building A29, 625 00 Brno, Czech Republic
| | - Eliška Sychrová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, building A29, 625 00 Brno, Czech Republic
| | - Petra Labohá
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, building A29, 625 00 Brno, Czech Republic
| | - Jan Raška
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, building A29, 625 00 Brno, Czech Republic
| | - Tomáš Jambor
- BioFood Centre, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovac Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, building A29, 625 00 Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, building A29, 625 00 Brno, Czech Republic.
| |
Collapse
|
26
|
Renin-Angiotensin System in Lung Tumor and Microenvironment Interactions. Cancers (Basel) 2020; 12:cancers12061457. [PMID: 32503281 PMCID: PMC7352181 DOI: 10.3390/cancers12061457] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
The mechanistic involvement of the renin-angiotensin system (RAS) reaches beyond cardiovascular physiopathology. Recent knowledge pinpoints a pleiotropic role for this system, particularly in the lung, and mainly through locally regulated alternative molecules and secondary pathways. Angiotensin peptides play a role in cell proliferation, immunoinflammatory response, hypoxia and angiogenesis, which are critical biological processes in lung cancer. This manuscript reviews the literature supporting a role for the renin-angiotensin system in the lung tumor microenvironment and discusses whether blockade of this pathway in clinical settings may serve as an adjuvant therapy in lung cancer.
Collapse
|
27
|
Bildik G, Akin N, Esmaeilian Y, Hela F, Yakin K, Onder T, Urman B, Oktem O. hCG Improves Luteal Function and Promotes Progesterone Output through the Activation of JNK Pathway in the Luteal Granulosa Cells of the Stimulated IVF Cycles†. Biol Reprod 2020; 102:1270-1280. [PMID: 32163131 DOI: 10.1093/biolre/ioaa034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/01/2020] [Accepted: 03/11/2020] [Indexed: 11/13/2022] Open
Abstract
Human chorionic gonadotropin (hCG) is a luteotropic hormone that promotes the survival and steroidogenic activity of corpus luteum (CL) by acting through luteinizing hormone receptors (LHRs) expressed on luteinized theca and granulosa cells (GCs). Therefore, it is used to support luteal phase in in vitro fertilization (IVF) cycles to improve clinical pregnancy rates and prevent miscarriage. However, the molecular mechanism underlying this action of hCG is not well characterized. To address this question, we designed an in vitro translational research study on the luteal GCs obtained from 58 IVF patients. hCG treatment at different concentrations and time points activated c-Jun N-terminal kinase (JNK) pathway and significantly increased its endogenous kinase activity along with upregulated expression of steroidogenic enzymes (steroidogenic acute regulatory protein (stAR), 3β-Hydroxysteroid dehydrogenase (3β-HSD)) in a dose-dependent manner in the luteal GCs. As a result, in vitro P production of the cells was significantly enhanced after hCG. When JNK pathway was inhibited pharmacologically or knocked-down with small interfering RNA luteal function was compromised, P4 production was declined along with the expression of stAR and 3β-HSD in the cells. Further, hCG treatment after JNK inhibition failed to correct the luteal defect and promote P4 output. Similar to hCG, luteinizing hormone (LH) treatment improved luteal function as well and this action of LH was associated with JNK activation in the luteal GCs. These findings could be important from the perspective of CL biology and luteal phase in human because we for the first time identify a critical role for JNK signaling pathway downstream LHR activation by hCG/LH in luteal GCs. SUMMARY SENTENCE JNK signaling pathway plays a central role in the upregulated expression of the steroidogenic enzymes StAR and 3b-HSD and augmented progesterone production by hCG/LH in human luteal granulosa cells.
Collapse
Affiliation(s)
- Gamze Bildik
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey
| | - Nazli Akin
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey
| | - Yashar Esmaeilian
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey
| | - Francesko Hela
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey
| | - Kayhan Yakin
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey.,Department of Obstetrics and Gynecology, Koc University School of Medicine, Istanbul, Turkey
| | - Tamer Onder
- Department of Molecular Biology and Genetics, School of Medicine, Koc University, Istanbul, Turkey
| | - Bulent Urman
- Department of Obstetrics and Gynecology, Koc University School of Medicine, Istanbul, Turkey
| | - Ozgur Oktem
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey.,Department of Obstetrics and Gynecology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
28
|
Gusev EY, Zotova NV. Cellular Stress and General Pathological Processes. Curr Pharm Des 2020; 25:251-297. [PMID: 31198111 DOI: 10.2174/1381612825666190319114641] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
From the viewpoint of the general pathology, most of the human diseases are associated with a limited number of pathogenic processes such as inflammation, tumor growth, thrombosis, necrosis, fibrosis, atrophy, pathological hypertrophy, dysplasia and metaplasia. The phenomenon of chronic low-grade inflammation could be attributed to non-classical forms of inflammation, which include many neurodegenerative processes, pathological variants of insulin resistance, atherosclerosis, and other manifestations of the endothelial dysfunction. Individual and universal manifestations of cellular stress could be considered as a basic element of all these pathologies, which has both physiological and pathophysiological significance. The review examines the causes, main phenomena, developmental directions and outcomes of cellular stress using a phylogenetically conservative set of genes and their activation pathways, as well as tissue stress and its role in inflammatory and para-inflammatory processes. The main ways towards the realization of cellular stress and its functional blocks were outlined. The main stages of tissue stress and the classification of its typical manifestations, as well as its participation in the development of the classical and non-classical variants of the inflammatory process, were also described. The mechanisms of cellular and tissue stress are structured into the complex systems, which include networks that enable the exchange of information with multidirectional signaling pathways which together make these systems internally contradictory, and the result of their effects is often unpredictable. However, the possible solutions require new theoretical and methodological approaches, one of which includes the transition to integral criteria, which plausibly reflect the holistic image of these processes.
Collapse
Affiliation(s)
- Eugeny Yu Gusev
- Laboratory of the Immunology of Inflammation, Institute of Immunology and Physiology, Yekaterinburg, Russian Federation
| | - Natalia V Zotova
- Laboratory of the Immunology of Inflammation, Institute of Immunology and Physiology, Yekaterinburg, Russian Federation.,Department of Medical Biochemistry and Biophysics, Ural Federal University named after B.N.Yeltsin, Yekaterinburg, Russian Federation
| |
Collapse
|
29
|
E Q, Wang C, Gu X, Gan X, Zhang X, Wang S, Ma J, Zhang L, Zhang R, Su L. Competitive endogenous RNA (ceRNA) regulation network of lncRNA-miRNA-mRNA during the process of the nickel-induced steroidogenesis disturbance in rat Leydig cells. Toxicol In Vitro 2019; 63:104721. [PMID: 31734292 DOI: 10.1016/j.tiv.2019.104721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/14/2023]
Abstract
Nickel (Ni) is a ubiquitous environmental pollutant, which can disrupt the production of steroid in rat Leydig cells. Steroidogenesis can be affected by non-coding RNAs (ncRNAs), which operate in normal physiological processes. To date, however, very few studies have focused on whether ncRNAs are involved in Ni-induced steroidogenesis disturbance. The present study was designed to investigate the impact of NiSO4 on the regulation of RNA networks including long non-coding RNA (lncRNA), microRNA (miRNA), and mRNA in rat Leydig cells. After treatment with 1000 μmol/L NiSO4 for 24 h, 372 lncRNAs, 27 miRNAs (fold change>2, p < .05) and 3666 mRNAs (fold change>2, p < .01, and FDR < 0.01) were identified to be markedly altered by high-throughput sequencing analysis in rat Leydig cells. Functional analysis showed that the differentially expressed mRNAs were annotated into some steroid-related pathways. A dysregulated competing endogenous RNA (ceRNA) network of lncRNA-miRNA-mRNA was constructed based on bioinformatic analysis. Furthermore, a ceRNA network related to steroidogenesis was selected to analyze further and after the validation by qRT-PCR. The LOC102549726/miR-760-3p/Atf6, LOC102549726/miR-760-3p/Ets1, LOC102549726/miR-760-3p/Sik1 and AABR07037489.1/miR-708-5p/MAPK14 ceRNA networks were eventually confirmed. Collectively, our study provided a systematic perspective on the potential role of ncRNAs in steroidogenesis disturbance induced by Ni in rat Leydig cells.
Collapse
Affiliation(s)
- Qiannan E
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Caixia Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xueyan Gu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaoqin Gan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaotian Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shuang Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jianhua Ma
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Li Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Rui Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Li Su
- School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
30
|
Liu L, Panzitt K, Racedo S, Wagner M, Platzer W, Zaufel A, Theiler‐Schwetz V, Obermayer‐Pietsch B, Müller H, Höfler G, Heinemann A, Zollner G, Fickert P. Bile acids increase steroidogenesis in cholemic mice and induce cortisol secretion in adrenocortical H295R cells via S1PR2, ERK and SF-1. Liver Int 2019; 39:2112-2123. [PMID: 30664326 PMCID: PMC6899711 DOI: 10.1111/liv.14052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Bile acids are now accepted as central signalling molecules for the regulation of glucose, amino acid and lipid metabolism. Adrenal gland cortex cells express the bile acid receptors farnesoid X receptor (FXR), the G protein-coupled bile acid receptor (TGR5) and the sphingosine-1-phosphate receptor 2 (S1PR2). We aimed to determine the effects of cholestasis and more specifically of bile acids on cortisol production. METHODS FXR and TGR5 knockout mice and controls were subjected to common bile duct ligation (CBDL) or chenodeoxycholic acid (CDCA) feeding to model cholestasis. Human adrenocortical H295R cells were challenged with bile acids for mechanistic studies. RESULTS We found that CBDL and CDCA feeding increased the levels of corticosterone, the rodent equivalent to human cortisol and mRNA and protein levels of steroidogenesis-related enzymes in adrenals independent of FXR and TGR5. Taurine-conjugated CDCA (TCDCA) significantly stimulated cortisol secretion, phosphorylation of extracellular signal-regulated kinase (ERK) and expression of steroidogenesis-related genes in human adrenocortical H295R cells. FXR and TGR5 agonists failed to induce cortisol secretion in H295R cells. S1PR2 inhibition significantly abolished TCDCA-induced cortisol secretion, lowered phosphorylation of ERK and abrogated enhanced transcription of steroidogenesis-related genes in H295R cells. Likewise, siRNA S1PR2 treatment reduced the phosphorylation of ERK and cortisol secretion. Steroidogenic factor-1 (SF-1) transactivation activity was increased upon TCDCA treatment suggesting that bile acid signalling is linked to SF-1. Treatment with SF-1 inverse agonist AC45594 also reduced TCDCA-induced steroidogenesis. CONCLUSIONS Our findings indicate that supraphysiological bile acid levels as observed in cholestasis stimulate steroidogenesis via an S1PR2-ERK-SF-1 signalling pathway.
Collapse
Affiliation(s)
- Lei Liu
- Research Unit for Experimental and Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal MedicineMedical University of GrazGrazAustria
| | - Katrin Panzitt
- Research Unit for Translational Nuclear Receptor Research in Liver MetabolismDivision of Gastroenterology and HepatologyDepartment of Internal MedicineMedical University of GrazGrazAustria
| | - Silvia Racedo
- Research Unit for Experimental and Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal MedicineMedical University of GrazGrazAustria
| | - Martin Wagner
- Research Unit for Translational Nuclear Receptor Research in Liver MetabolismDivision of Gastroenterology and HepatologyDepartment of Internal MedicineMedical University of GrazGrazAustria
| | - Wolfgang Platzer
- Institute of Experimental and Clinical PharmacologyMedical University of GrazGrazAustria
| | - Alex Zaufel
- Research Unit for Experimental and Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal MedicineMedical University of GrazGrazAustria
| | | | | | - Helmut Müller
- Division of Transplant SurgeryMedical University of GrazGrazAustria
| | - Gerald Höfler
- Institute of PathologyMedical University of GrazGrazAustria
| | - Akos Heinemann
- Institute of Experimental and Clinical PharmacologyMedical University of GrazGrazAustria
| | - Gernot Zollner
- Research Unit for Experimental and Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal MedicineMedical University of GrazGrazAustria
| | - Peter Fickert
- Research Unit for Experimental and Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal MedicineMedical University of GrazGrazAustria
| |
Collapse
|
31
|
Targeting ERK/COX-2 signaling pathway in permethrin-induced testicular toxicity: a possible modulating effect of matrine. Mol Biol Rep 2019; 47:247-259. [DOI: 10.1007/s11033-019-05125-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022]
|
32
|
Landry DA, Labrecque R, Grand FX, Vigneault C, Blondin P, Sirard MA. Effect of heifer age on the granulosa cell transcriptome after ovarian stimulation. Reprod Fertil Dev 2019; 30:980-990. [PMID: 30447702 DOI: 10.1071/rd17225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022] Open
Abstract
Genomic selection is accelerating genetic gain in dairy cattle. Decreasing generation time by using younger gamete donors would further accelerate breed improvement programs. Although ovarian stimulation of peripubertal animals is possible and embryos produced in vitro from the resulting oocytes are viable, developmental competence is lower than when sexually mature cows are used. The aim of the present study was to shed light on how oocyte developmental competence is acquired as a heifer ages. Ten peripubertal Bos taurus Holstein heifers underwent ovarian stimulation cycles at the ages of 8, 11 (mean 10.8) and 14 (mean 13.7) months. Collected oocytes were fertilised in vitro with spermatozoa from the same adult male. Each heifer served as its own control. The transcriptomes of granulosa cells recovered with the oocytes were analysed using microarrays. Differential expression of certain genes was measured using polymerase chain reaction. Principal component analysis of microarray data revealed that the younger the animal, the more distinctive the gene expression pattern. Using ingenuity pathway analysis (IPA) and NetworkAnalyst (www.networkanalyst.ca), the main biological functions affected in younger donors were identified. The results suggest that cell differentiation, inflammation and apoptosis signalling are less apparent in peripubertal donors. Such physiological traits have been associated with a lower basal concentration of LH.
Collapse
Affiliation(s)
- David A Landry
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, 2325 Rue de l'Université, Québec, G1V0A6, Canada
| | - Rémi Labrecque
- Boviteq Inc., 19320 Rang Grand Saint Francois Ouest, J2T 5H1, Saint-Hyacinthe, Québec, Canada
| | - François-Xavier Grand
- Boviteq Inc., 19320 Rang Grand Saint Francois Ouest, J2T 5H1, Saint-Hyacinthe, Québec, Canada
| | - Christian Vigneault
- Boviteq Inc., 19320 Rang Grand Saint Francois Ouest, J2T 5H1, Saint-Hyacinthe, Québec, Canada
| | - Patrick Blondin
- Boviteq Inc., 19320 Rang Grand Saint Francois Ouest, J2T 5H1, Saint-Hyacinthe, Québec, Canada
| | - Marc-André Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, 2325 Rue de l'Université, Québec, G1V0A6, Canada
| |
Collapse
|
33
|
Gan X, Zhang X, E Q, Zhang Q, Ye Y, Cai Y, Han A, Tian M, Wang C, Su Z, Su L, Liang C. Nano-selenium attenuates nickel-induced testosterone synthesis disturbance through inhibition of MAPK pathways in Sprague-Dawley rats. ENVIRONMENTAL TOXICOLOGY 2019; 34:968-978. [PMID: 31077554 DOI: 10.1002/tox.22768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to investigate the protective effects of Nano-Se against Ni-induced testosterone synthesis disorder in rats and determine the underlying protective mechanism. Sprague-Dawley rats were co-treated with Ni (5.0 mg/kg, i.p.) and Nano-Se (0.5, 1.0, and 2.0 mg/kg, oral gavage) for 14 days after which various endpoints were evaluated. The Ni-induced abnormal pathological changes and elevated 8-OHdG levels in the testes were attenuated by Nano-Se administration. Importantly, decreased serum testosterone levels in the Ni-treated rats were significantly restored by Nano-Se treatment, particularly at 1.0 and 2.0 mg/kg. Furthermore, the mRNA and protein levels of testosterone synthetase were increased by Nano-Se compared to the Ni group, whereas phosphorylated protein expression levels of mitogen-activated protein kinase (MAPK) pathways were suppressed by Nano-Se administration in the Ni-treated rats. Overall, the results suggest that Nano-Se may ameliorate the Ni-induced testosterone synthesis disturbance via the inhibition of ERK1/2, p38, and JNK MAPK pathways.
Collapse
Affiliation(s)
- Xiaoqin Gan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaotian Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qiannan E
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yunyu Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Aijie Han
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Minmin Tian
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Caixia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Zheng Su
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Li Su
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
34
|
Characterization of mRNA profiles of the exosome-like vesicles in porcine follicular fluid. PLoS One 2019; 14:e0217760. [PMID: 31188849 PMCID: PMC6561635 DOI: 10.1371/journal.pone.0217760] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles such as exosomes contain several types of transcripts, including mRNAs and micro RNAs (miRNAs), and have emerged as important mediators of cell-to-cell communication. Exosome-like vesicles were identified in the ovarian follicles of several mammalian species. Although the miRNA contents have been extensively characterized, the detailed investigation of their mRNA profiles is lacking. Here, we characterize the mRNA profiles of exosome-like vesicles in ovarian follicles in a pig model. The mRNA contents of the exosome-like vesicles isolated from porcine follicular fluid were analyzed and compared with those from mural granulosa cells (MGCs) using the Illumina HiSeq platform. Bioinformatics studies suggested that the exosomal mRNAs are enriched in those encoding proteins involved in metabolic, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) -protein kinase B (AKT), and mitogen-activated protein kinase (MAPK) pathways. While the mRNA profile of the exosome-like vesicles resembled that of MGCs, the vesicles contained mRNAs barely detectable in MGCs. Thus, while the majority of the vesicles are likely to be secreted from MGCs, some may originate from other cell types, including theca cells and oocytes, as well as the cells of non-ovarian organs/tissues. Therefore, the mRNA profiles unveiled several novel characteristics of the exosome-like vesicles in ovarian follicles.
Collapse
|
35
|
Liao Z, Chua D, Tan NS. Reactive oxygen species: a volatile driver of field cancerization and metastasis. Mol Cancer 2019; 18:65. [PMID: 30927919 PMCID: PMC6441160 DOI: 10.1186/s12943-019-0961-y] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/20/2019] [Indexed: 12/24/2022] Open
Abstract
Field cancerization and metastasis are the leading causes for cancer recurrence and mortality in cancer patients. The formation of primary, secondary tumors or metastasis is greatly influenced by multifaceted tumor-stroma interactions, in which stromal components of the tumor microenvironment (TME) can affect the behavior of the cancer cells. Many studies have identified cytokines and growth factors as cell signaling molecules that aid cell to cell communication. However, the functional contribution of reactive oxygen species (ROS), a family of volatile chemicals, as communication molecules are less understood. Cancer cells and various tumor-associated stromal cells produce and secrete a copious amount of ROS into the TME. Intracellular ROS modulate cell signaling cascades that aid in the acquisition of several hallmarks of cancers. Extracellular ROS help to propagate, amplify, and effectively create a mutagenic and oncogenic field which facilitate the formation of multifoci tumors and act as a springboard for metastatic tumor cells. In this review, we summarize our current knowledge of ROS as atypical paracrine signaling molecules for field cancerization and metastasis. Field cancerization and metastasis are often discussed separately; we offer a model that placed these events with ROS as the focal instigating agent in a broader "seed-soil" hypothesis.
Collapse
Affiliation(s)
- Zehuan Liao
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17177, Stockholm, Sweden
| | - Damien Chua
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
36
|
Koga Y, Tsurumaki H, Aoki-Saito H, Sato M, Yatomi M, Takehara K, Hisada T. Roles of Cyclic AMP Response Element Binding Activation in the ERK1/2 and p38 MAPK Signalling Pathway in Central Nervous System, Cardiovascular System, Osteoclast Differentiation and Mucin and Cytokine Production. Int J Mol Sci 2019; 20:ijms20061346. [PMID: 30884895 PMCID: PMC6470985 DOI: 10.3390/ijms20061346] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 11/26/2022] Open
Abstract
There are many downstream targets of mitogen-activated protein kinase (MAPK) signalling that are involved in neuronal development, cellular differentiation, cell migration, cancer, cardiovascular dysfunction and inflammation via their functions in promoting apoptosis and cell motility and regulating various cytokines. It has been reported that cyclic AMP response element-binding protein (CREB) is phosphorylated and activated by cyclic AMP signalling and calcium/calmodulin kinase. Recent evidence also points to CREB phosphorylation by the MAPK signalling pathway. However, the specific roles of CREB phosphorylation in MAPK signalling have not yet been reviewed in detail. Here, we describe the recent advances in the study of this MAPK-CREB signalling axis in human diseases. Overall, the crosstalk between extracellular signal-related kinase (ERK) 1/2 and p38 MAPK signalling has been shown to regulate various physiological functions, including central nervous system, cardiac fibrosis, alcoholic cardiac fibrosis, osteoclast differentiation, mucin production in the airway, vascular smooth muscle cell migration, steroidogenesis and asthmatic inflammation. In this review, we focus on ERK1/2 and/or p38 MAPK-dependent CREB activation associated with various diseases to provide insights for basic and clinical researchers.
Collapse
Affiliation(s)
- Yasuhiko Koga
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Hiroaki Tsurumaki
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Haruka Aoki-Saito
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Makiko Sato
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Masakiyo Yatomi
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Kazutaka Takehara
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Takeshi Hisada
- Gunma University Graduate School of Health Sciences, 3-39-22 sho-wa machi Maebashi, Gunma 371-8514, Japan.
| |
Collapse
|
37
|
Bergeron F, Boulende Sab A, Bouchard MF, Taniguchi H, Souchkova O, Brousseau C, Tremblay JJ, Pilon N, Viger RS. Phosphorylation of GATA4 serine 105 but not serine 261 is required for testosterone production in the male mouse. Andrology 2019; 7:357-372. [PMID: 30793514 DOI: 10.1111/andr.12601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND GATA4 is a transcription factor essential for male sex determination, testicular differentiation during fetal development, and male fertility in the adult. GATA4 exerts part of its function by regulating multiple genes in the steroidogenic enzyme pathway. In spite of these crucial roles, how the activity of this factor is regulated remains unclear. OBJECTIVES Studies in gonadal cell lines have shown that GATA4 is phosphorylated on at least two serine residues-serine 105 (S105) and serine 261 (S261)-and that this phosphorylation is important for GATA4 activity. The objective of the present study is to characterize the endogenous role of GATA4 S105 and S261 phosphorylation in the mouse testis. MATERIALS AND METHODS We examined both previously described GATA4 S105A mice and a novel GATA4 S261A knock-in mouse that we generated by CRISPR/Cas9 gene editing. The male phenotype of the mutants was characterized by assessing androgen-dependent organ weights, hormonal profiles, and expression of multiple testicular target genes using standard biochemical and molecular biology techniques. RESULTS The fecundity of crosses between GATA4 S105A mice was reduced but without a change in sex ratio. The weight of androgen-dependent organs was smaller when compared to wild-type controls. Plasma testosterone levels showed a 70% decrease in adult GATA4 S105A males. This decrease was associated with a reduction in Cyp11a1, Cyp17a1, and Hsd17b3 expression. GATA4 S261A mice were viable and testis morphology appeared normal. Testosterone production and steroidogenic enzyme expression were not altered in GATA4 S261A males. DISCUSSION AND CONCLUSION Our analysis showed that blocking GATA4 S105 phosphorylation is associated with decreased androgen production in males. In contrast, S261 phosphorylation by itself is dispensable for GATA4 function. These results confirm that endogenous GATA4 action is essential for normal steroid production in males and that this activity requires phosphorylation on at least one serine residue.
Collapse
Affiliation(s)
- F Bergeron
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada
| | - A Boulende Sab
- Département des Sciences Biologiques and Centre d'excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - M F Bouchard
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada
| | - H Taniguchi
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - O Souchkova
- Département des Sciences Biologiques and Centre d'excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - C Brousseau
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada
| | - J J Tremblay
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada.,Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, QC, Canada
| | - N Pilon
- Département des Sciences Biologiques and Centre d'excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - R S Viger
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada.,Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, QC, Canada
| |
Collapse
|
38
|
Sohel MMH, Akyuz B, Konca Y, Arslan K, Sariozkan S, Cinar MU. Oxidative stress modulates the expression of apoptosis-associated microRNAs in bovine granulosa cells in vitro. Cell Tissue Res 2019; 376:295-308. [PMID: 30666538 DOI: 10.1007/s00441-019-02990-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022]
Abstract
Despite its essential role in ovulation, oxidative stress (OS) has been found to be cytotoxic to cells, while microRNAs (miRNAs) are known as a major regulator of genes involved in cellular defense against cytotoxicity. However, a functional link between OS and miRNA expression changes in granulosa cells (GCs) remains to be investigated. Here, we investigate the OS modulation of apoptosis-associated miRNAs and their biological relevance in bovine GCs. Following the evaluation of cell viability, accumulation of reactive oxygen species (ROS), cytotoxicity and mitochondrial activity, we used a ready-to-use miRNA PCR array to identify differentially regulated miRNAs. The results showed that exposure to 150 μM H2O2 for 4 h creates remarkable signs of OS in GCs characterized by more than 50% loss of cell viability, higher nuclear factor erythroid 2-related factor 2 (NRF2) nuclear translocation, significantly (p < 0.05) higher abundance of antioxidant genes, significantly (p < 0.001) higher accumulation of ROS, lower mitochondrial activity and a higher (p < 0.001) number of apoptotic nuclei compared to that of the control group. miRNA expression analysis revealed that a total of 69 miRNAs were differentially regulated in which 47 and 22 miRNAs were up- and downregulated, respectively, in stressed GCs. By applying the 2-fold and p < 0.05 criteria, we found 16 miRNAs were upregulated and 10 miRNAs were downregulated. Target prediction revealed that up- and downregulated miRNAs potentially targeted a total of 6210 and 3575 genes, respectively. Pathway analysis showed that upregulated miRNAs are targeting the genes involved mostly in cell survival, intracellular communication and homeostasis, cellular migration and growth control and disease pathways. Our results showed that OS modulates the expression of apoptosis-associated miRNAs that might have effects on cellular or molecular damages.
Collapse
Affiliation(s)
- Md Mahmodul Hasan Sohel
- Genome and Stem Cell Centre, Erciyes University, 38039, Kayseri, Turkey.
- Department of Animal Science, Faculty of Agriculture, Erciyes University, 38039, Kayseri, Turkey.
| | - Bilal Akyuz
- Department of Genetics, Faculty of Veterinary Science, Erciyes University, 38039, Kayseri, Turkey
| | - Yusuf Konca
- Department of Animal Science, Faculty of Agriculture, Erciyes University, 38039, Kayseri, Turkey
| | - Korhan Arslan
- Department of Genetics, Faculty of Veterinary Science, Erciyes University, 38039, Kayseri, Turkey
| | - Serpil Sariozkan
- Department of Fertility and Artificial Insemination, Faculty of Veterinary Science, Erciyes University, 38039, Kayseri, Turkey
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, 38039, Kayseri, Turkey
| |
Collapse
|
39
|
Summerfield M, Zhou Y, Zhou T, Wu C, Alpini G, Zhang KK, Xie L. A long-term maternal diet transition from high-fat diet to normal fat diet during pre-pregnancy avoids adipose tissue inflammation in next generation. PLoS One 2018; 13:e0209053. [PMID: 30562363 PMCID: PMC6298692 DOI: 10.1371/journal.pone.0209053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have suggested that maternal high-fat (HF) diet caused inflammation changes in adipose tissue; however, it remains unclear if maternal diet intervention before pregnancy rescues such effects in offspring. To address this question, female mice were continued on a normal-fat (NF group), or a HF diet (HF group) or transitioned from a HF diet to a NF diet at 1 (H1N group), 5 (H5N group) or 9 weeks (H9N group) prior to pregnancy. Among the three intervention groups, the H9N offspring displayed less and steady body weight gain, and maintained glucose tolerance, whereas the H1N and H5N offspring showed exacerbate these phenotypes. The H1N and H5N, but not the H9N offspring, displayed adipocyte hypertrophy associated with increased expression of genes involved in fat deposition. The H1N and H5N, but not the H9N adipose tissue, displayed increased macrophage infiltration with enhanced expression of inflammatory cytokine genes. In addition, overactivation of the NF-κB and the JNK signaling were observed in the H1N adipose tissue. Overall, our study showed that a long-term but not a short- or medium-term diet intervention before pregnancy released offspring adipose tissue inflammation induced by maternal HF diet, which adds details in our understanding how the maternal environment either promotes or discourages onset of disease in offspring. Clinically, this study is of great value for providing evidence in the design of clinical trials to evaluate the urgently required intervention strategies to minimize the intergenerational cycle of obesity.
Collapse
Affiliation(s)
- Michelle Summerfield
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, United States of America
| | - Yi Zhou
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, United States of America
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Temple, TX, United States of America
| | - Chaodong Wu
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, United States of America
| | - Gianfranco Alpini
- Department of Medical Physiology, Texas A&M University College of Medicine, Temple, TX, United States of America
- Research, Central Texas Veterans Health Care System, Temple, TX, United States of America
| | - Ke K. Zhang
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, United States of America
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX, United States of America
| | - Linglin Xie
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, United States of America
- * E-mail:
| |
Collapse
|
40
|
Guo YC, Chiu YH, Chen CP, Wang HS. Interleukin-1β induces CXCR3-mediated chemotaxis to promote umbilical cord mesenchymal stem cell transendothelial migration. Stem Cell Res Ther 2018; 9:281. [PMID: 30359318 PMCID: PMC6202827 DOI: 10.1186/s13287-018-1032-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are known to home to injured and inflamed regions via the bloodstream to assist in tissue regeneration in response to signals of cellular damage. However, the factors and mechanisms that affect their transendothelial migration are still unclear. In this study, the mechanisms involved in interleukin-1β (IL-1β) enhancing the transendothelial migration of MSCs were investigated. METHODS Immunofluorescence staining and Western blotting were used to observe IL-1β-induced CXC chemokine receptor 3 (CXCR3) expression on MSCs. Quantitative real-time PCR and ELISA were used to demonstrate IL-1β upregulated both chemokine (C-X-C motif) ligand 9 (CXCL9) mRNA and CXCL9 ligand secretion in human umbilical vein endothelial cells (HUVECs). Monolayer co-cultivation, agarose drop chemotaxis, and transwell assay were conducted to investigate the chemotaxis invasion and transendothelial migration ability of IL-1β-induced MSCs in response to CXCL9. RESULTS In this study, our immunofluorescence staining showed that IL-1β induces CXCR3 expression on MSCs. This result was confirmed by Western blotting. Following pretreatment with protein synthesis inhibitor cycloheximide, we found that IL-1β induced CXCR3 on the surface of MSCs via protein synthesis pathway. Quantitative real-time PCR and ELISA validated that IL-1β upregulated both CXCL9 mRNA and CXCL9 ligand secretion in HUVECs. In response to CXCL9, chemotaxis invasion and transendothelial migration ability were increased in IL-1β-stimulated MSCs. In addition, we pretreated MSCs with CXCR3 antagonist AMG-487 and p38 MAPK inhibitor SB203580 to confirm CXCR3-CXCL9 interaction and the role of CXCR3 in IL-1β-induced chemotaxis invasion and transendothelial migration. CONCLUSION We found that IL-1β induces the expression of CXCR3 through p38 MAPK signaling and that IL-1β also enhances CXCL9 ligand secretion in HUVECs. These results indicated that IL-1β promotes the transendothelial migration of MSCs through CXCR3-CXCL9 axis. The implication of the finding could enhance the efficacy of MSCs homing to target sites.
Collapse
Affiliation(s)
- Yu-Chien Guo
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming University, Peitou, Taipei, 112, Taiwan, Republic of China
| | - Yun-Hsuan Chiu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming University, Peitou, Taipei, 112, Taiwan, Republic of China
| | - Chie-Pein Chen
- Division of High Risk Pregnancy, Mackay Memorial Hospital, Taipei, Taiwan, Republic of China
| | - Hwai-Shi Wang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming University, Peitou, Taipei, 112, Taiwan, Republic of China.
| |
Collapse
|
41
|
Pereira SS, Monteiro MP, Costa MM, Ferreira J, Alves MG, Oliveira PF, Jarak I, Pignatelli D. MAPK/ERK pathway inhibition is a promising treatment target for adrenocortical tumors. J Cell Biochem 2018; 120:894-906. [DOI: 10.1002/jcb.27451] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/25/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Sofia S Pereira
- Cancer Signalling & Metabolism Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto Portugal
- Cancer Signalling & Metabolism Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Portugal
- Clinical and Experimental Endocrinology, Department of Anatomy Multidisciplinary Unit for Biomedical Research (UMIB), ICBAS, University of Porto Porto Portugal
| | - Mariana P Monteiro
- Clinical and Experimental Endocrinology, Department of Anatomy Multidisciplinary Unit for Biomedical Research (UMIB), ICBAS, University of Porto Porto Portugal
| | - Madalena M Costa
- Clinical and Experimental Endocrinology, Department of Anatomy Multidisciplinary Unit for Biomedical Research (UMIB), ICBAS, University of Porto Porto Portugal
| | - Jorge Ferreira
- Cancer Signalling & Metabolism Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto Portugal
| | - Marco G Alves
- Biology and Genetics of Reproduction, Department of Microscopy, Laboratory of Cell Biology Multidisciplinary Unit for Biomedical Research (UMIB), ICBAS, University of Porto Porto Portugal
- Health Sciences Research Center University of Beira Interior Covilhã Portugal
| | - Pedro F Oliveira
- Cancer Signalling & Metabolism Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto Portugal
| | - Ivana Jarak
- Health Sciences Research Center University of Beira Interior Covilhã Portugal
| | - Duarte Pignatelli
- Cancer Signalling & Metabolism Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto Portugal
- Cancer Signalling & Metabolism Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) Portugal
- Department of Endocrinology Hospital S João Porto Portugal
| |
Collapse
|
42
|
Kahnamouyi S, Nouri M, Farzadi L, Darabi M, Hosseini V, Mehdizadeh A. The role of mitogen-activated protein kinase-extracellular receptor kinase pathway in female fertility outcomes: a focus on pituitary gonadotropins regulation. Ther Adv Endocrinol Metab 2018; 9:209-215. [PMID: 29977499 PMCID: PMC6022971 DOI: 10.1177/2042018818772775] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/30/2018] [Indexed: 11/16/2022] Open
Abstract
Mammalian reproduction systems are largely regulated by the secretion of two gonadotropins, that is, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The main action of LH and FSH on the ovary is to stimulate secretion of estradiol and progesterone, which play an important role in the ovarian function and reproductive cycle control. FSH and LH secretions are strictly controlled by the gonadotropin-releasing hormone (GnRH), which is secreted from the hypothalamus into the pituitary vascular system. Maintaining normal secretion of LH and FSH is dependent on pulsatile secretion of GnRH. Extracellular signal-regulated kinase (ERK) proteins, as the main components of mitogen-activated protein kinase (MAPK) signaling pathways, are involved in the primary regulation of GnRH-stimulated transcription of the gonadotropins' α subunit in the pituitary cells. However, GnRH-stimulated expression of the β subunit has not yet been reported. Furthermore, GnRH-mediated stimulation of ERK1 and ERK2 leads to several important events such as cell proliferation and differentiation. In this review, we briefly introduce the relationship between ERK signaling and gonadotropin secretion, and its importance in female infertility.
Collapse
Affiliation(s)
- Samira Kahnamouyi
- Stem cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Laya Farzadi
- Women Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Hosseini
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
43
|
De Silva MSI, Dayton AW, Rhoten LR, Mallett JW, Reese JC, Squires MD, Dalley AP, Porter JP, Judd AM. Involvement of adenosine monophosphate activated kinase in interleukin-6 regulation of steroidogenic acute regulatory protein and cholesterol side chain cleavage enzyme in the bovine zona fasciculata and zona reticularis. Steroids 2018; 134:53-66. [PMID: 29501754 DOI: 10.1016/j.steroids.2018.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/01/2018] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
Abstract
In bovine adrenal zona fasciculata (ZF) and NCI-H295R cells, interleukin-6 (IL-6) increases cortisol release, increases expression of steroidogenic acute regulatory protein (StAR), cholesterol side chain cleavage enzyme (P450scc), and steroidogenic factor 1 (SF-1) (increases steroidogenic proteins), and decreases the expression of adrenal hypoplasia congenita-like protein (DAX-1) (inhibits steroidogenic proteins). In contrast, IL-6 decreases bovine adrenal zona reticularis (ZR) androgen release, StAR, P450scc, and SF-1 expression, and increases DAX-1 expression. Adenosine monophosphate (AMP) activated kinase (AMPK) regulates steroidogenesis, but its role in IL-6 regulation of adrenal steroidogenesis is unknown. In the present study, an AMPK activator (AICAR) increased (P < 0.01) NCI-H295R StAR promoter activity, StAR and P450scc expression, and the phosphorylation of AMPK (PAMPK) and acetyl-CoA carboxylase (PACC) (indexes of AMPK activity). In ZR (decreased StAR, P450scc, SF-1, increased DAX-1) (P < 0.01) and ZF tissues (increased StAR, P450scc, SF-1, decreased DAX-1) (P < 0.01), AICAR modified StAR, P450scc, SF-1 and DAX-1 mRNAs/proteins similar to the effects of IL-6. The activity (increased PAMPK and PACC) (P < 0.01) of AMPK in the ZF and ZR was increased by AICAR and IL-6. In support of an AMPK role in IL-6 ZF and ZR effects, the AMPK inhibitor compound C blocked (P < 0.01) the effects of IL-6 on the expression of StAR, P450scc, SF-1, and DAX-1. Therefore, IL-6 modification of the expression of StAR and P450scc in the ZF and ZR may involve activation of AMPK and these changes may be related to changes in the expression of SF-1 and DAX-1.
Collapse
Affiliation(s)
- Matharage S I De Silva
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - Adam W Dayton
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - Lance R Rhoten
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - John W Mallett
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - Jared C Reese
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - Mathieu D Squires
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - Andrew P Dalley
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - James P Porter
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States
| | - Allan M Judd
- Department of Physiology and Developmental Biology and Neuroscience Center, Brigham Young University, 4005 LSB, Provo, Utah 84602, United States.
| |
Collapse
|
44
|
The Dynamics of Neurosteroids and Sex-Related Hormones in the Pathogenesis of Alzheimer’s Disease. Neuromolecular Med 2018; 20:215-224. [DOI: 10.1007/s12017-018-8493-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/28/2018] [Indexed: 12/11/2022]
|
45
|
Scieuzo C, Nardiello M, Salvia R, Pezzi M, Chicca M, Leis M, Bufo SA, Vinson SB, Rao A, Vogel H, Falabella P. Ecdysteroidogenesis and development in Heliothis virescens (Lepidoptera: Noctuidae): Focus on PTTH-stimulated pathways. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:57-67. [PMID: 29454612 DOI: 10.1016/j.jinsphys.2018.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Post-embryonic development and molting in insects are regulated by endocrine changes, including prothoracicotropic hormone (PTTH)-stimulated ecdysone secretion by the prothoracic glands (PGs). In Lepidoptera, two pathways are potentially involved in PTTH-stimulated ecdysteroidogenesis, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase/protein kinase B/target of rapamycin (PI3K/Akt/TOR). We investigated the potential roles of both these pathways in Heliothis virescens ecdysteroidogenesis. We identified putative proteins belonging to MAPK and PI3K/Akt/TOR signaling cascades, using transcriptomic analyses of PGs from last (fifth) instar larvae. Using western blots, we measured the phosphorylation of 4E-BP and S6K proteins, the main targets of TOR, following the in vitro exposure of PGs to brain extract containing PTTH (hereafter referred to as PTTH) and/or the inhibitors of MAPK (U0126), PI3K (LY294002) or TOR (rapamycin). Next, we measured ecdysone production, under the same experimental conditions, by enzyme immunoassay (EIA). We found that in Heliothis virescens last instar larvae, both pathways modulated PTTH-stimulated ecdysteroidogenesis. Finally, we analyzed the post-embryonic development of third and fourth instar larvae fed on diet supplemented with rapamycin, in order to better understand the role of the TOR pathway in larval growth. When rapamycin was added to the diet of larvae, the onset of molting was delayed, the growth rate was reduced and abnormally small larvae/pupae with high mortality rates resulted. In larvae fed on diet supplemented with rapamycin, the growth of PGs was suppressed, and ecdysone production and secretion were inhibited. Overall, the in vivo and in vitro results demonstrated that, similarly to Bombyx mori, MAPK and PI3K/Akt/TOR pathways are involved in PTTH signaling-stimulated ecdysteroidogenesis, and indicated the important role of TOR protein in H. virescens systemic growth.
Collapse
Affiliation(s)
- Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marisa Nardiello
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marco Pezzi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Milvia Chicca
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Marilena Leis
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Sabino A Bufo
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - S Bradleigh Vinson
- Department of Entomology, Texas A&M University, 370 Olsen Blvd, College Station, TX 77843-2475, USA
| | - Asha Rao
- Department of Biology, 3258 Texas A&M University, College Station, Texas 77843, USA
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| |
Collapse
|
46
|
Han A, Zou L, Gan X, Li Y, Liu F, Chang X, Zhang X, Tian M, Li S, Su L, Sun Y. ROS generation and MAPKs activation contribute to the Ni-induced testosterone synthesis disturbance in rat Leydig cells. Toxicol Lett 2018; 290:36-45. [PMID: 29567110 DOI: 10.1016/j.toxlet.2018.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 01/23/2023]
Abstract
Nickel (Ni) can disorder testosterone synthesis in rat Leydig cells, whereas the mechanisms remain unclear. The aim of this study was to investigate the role of reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) in Ni-induced disturbance of testosterone synthesis in rat Leydig cells. The testosterone production and ROS levels were detected in Leydig cells. The mRNA and protein levels of testosterone synthetase, including StAR, CYP11A1, 3β-HSD, CYP17A1 and 17β-HSD, were determined. Effects of Ni on the ERK1/2, p38 and JNK MAPKs were also investigated. The results showed that Ni triggered ROS generation, consequently resulted in the decrease of testosterone synthetase expression and testosterone production in Leydig cells, which were then attenuated by ROS scavengers of N-acetylcysteine (NAC) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), indicating that ROS are involved in the Ni-induced testosterone biosynthesis disturbance. Meanwhile Ni activated the ERK1/2, p38 and JNK MAPKs. Furthermore, Ni-inhibited testosterone synthetase expression levels and testosterone secretion were all alleviated by co-treatment with MAPK specific inhibitors (U0126 and SB203580, respectively), implying that Ni inhibited testosterone synthesis through activating ERK1/2 and p38 MAPK signal pathways in Leydig cells. In conclusion, these findings suggest that Ni causes testosterone synthesis disorder, partly, via ROS and MAPK signal pathways.
Collapse
Affiliation(s)
- Aijie Han
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Lingyue Zou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaoqin Gan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yu Li
- Department of Infectious Diseases, Shaanxi Provincial People's hospital, Xi'an 710068, China
| | - Fangfang Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaotian Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Minmin Tian
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sheng Li
- Lanzhou Municipal Center for Disease Control, Lanzhou, China
| | - Li Su
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
47
|
Han CW, Jeong MS, Jang SB. Structure, signaling and the drug discovery of the Ras oncogene protein. BMB Rep 2018; 50:355-360. [PMID: 28571593 PMCID: PMC5584742 DOI: 10.5483/bmbrep.2017.50.7.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 01/04/2023] Open
Abstract
Mutations in Ras GTPase are among the most common genetic alterations in human cancers. Despite extensive research investigating Ras proteins, their functions still remain a challenge over a long period of time. The currently available data suggests that solving the outstanding issues regarding Ras could lead to development of effective drugs that could have a significant impact on cancer treatment. Developing a better understanding of their biochemical properties or modes of action, along with improvements in their pharmacologic profiles, clinical design and scheduling will enable the development of more effective therapies.
Collapse
Affiliation(s)
- Chang Woo Han
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| | - Mi Suk Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
48
|
Dobrzyn K, Smolinska N, Kiezun M, Szeszko K, Rytelewska E, Kisielewska K, Gudelska M, Kaminski T. Adiponectin: A New Regulator of Female Reproductive System. Int J Endocrinol 2018; 2018:7965071. [PMID: 29853884 PMCID: PMC5949163 DOI: 10.1155/2018/7965071] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/11/2018] [Accepted: 03/22/2018] [Indexed: 12/15/2022] Open
Abstract
Adiponectin is the hormone that belongs to the group of adipokines, chemical agents mainly derived from the white adipose tissue. The hormone plays pleiotropic roles in the organism, but the most important function of adiponectin is the control of energy metabolism. The presence of adiponectin and its receptors in the structures responsible for the regulation of female reproductive functions, such as hypothalamic-pituitary-gonadal (HPG) axis, indicates that adiponectin may be involved in the female fertility regulation. The growing body of evidence suggests also that adiponectin action is dependent on the actual and hormonal status of the animal. Present study presents the current knowledge about the presence and role of adiponectin system (adiponectin and its receptors: AdipoR1 and AdipoR2) in the ovaries, oviduct, and uterus, as well as in the hypothalamus and pituitary, the higher branches of HPG axis, involved in the female fertility regulation.
Collapse
Affiliation(s)
- Kamil Dobrzyn
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Nina Smolinska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Marta Kiezun
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Karol Szeszko
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Edyta Rytelewska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Katarzyna Kisielewska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Marlena Gudelska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Tadeusz Kaminski
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
| |
Collapse
|
49
|
Gallic Acid Inhibits Invasion and Reduces IL-6 Gene Expression, pSTAT3, pERK1/2, and pAKT Cellular Signaling Proteins in Human Prostate Cancer DU-145 Cells. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.9163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
50
|
Simon V, Avet C, Grange-Messent V, Wargnier R, Denoyelle C, Pierre A, Dairou J, Dupret JM, Cohen-Tannoudji J. Carbon Black Nanoparticles Inhibit Aromatase Expression and Estradiol Secretion in Human Granulosa Cells Through the ERK1/2 Pathway. Endocrinology 2017; 158:3200-3211. [PMID: 28977593 DOI: 10.1210/en.2017-00374] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/17/2017] [Indexed: 11/19/2022]
Abstract
Secretion of 17-β-estradiol (E2) by human granulosa cells can be disrupted by various environmental toxicants. In the current study, we investigated whether carbon black nanoparticles (CB NPs) affect the steroidogenic activity of cultured human granulosa cells. The human granulosa cell line KGN and granulosa cells from patients undergoing in vitro fertilization were treated with increasing concentrations of CB NPs (1 to 100 µg/mL) together or not with follicle-stimulating hormone (FSH). We observed that CB NPs are internalized in KGN cells without affecting cell viability. CB NPs could be localized in the cytoplasm, within mitochondria and in association with the outer face of the endoplasmic reticulum membrane. In both cell types, CB NPs reduced in a dose-dependent manner the activity of aromatase enzyme, as reflected by a decrease in E2 secretion. A significant decrease was observed in response to CB NPs concentrations from 25 and 50 µg/mL in KGN cell line and primary cultures, respectively. Furthermore, CB NPs decreased aromatase protein levels in both cells and reduced aromatase transcript levels in KGN cells. CB NPs rapidly activated extracellular signal-regulated kinase 1 and 2 in KGN cells and pharmacological inhibition of this signaling pathway using PD 98059 significantly attenuated the inhibitory effects of CB NPs on CYP19A1 gene expression and aromatase activity. CB NPs also inhibited the stimulatory effect of FSH on aromatase expression and activity. Altogether, our study on cultured ovarian granulosa cells reveals that CB NPs decrease estrogens production and highlights possible detrimental effect of these common NPs on female reproductive health.
Collapse
Affiliation(s)
- Violaine Simon
- Sorbonne Paris Cité, Université Paris-Diderot, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8251, Institut National de la Santé et de la Recherche Médicale (INSERM) U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris 75013, France
| | - Charlotte Avet
- Sorbonne Paris Cité, Université Paris-Diderot, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8251, Institut National de la Santé et de la Recherche Médicale (INSERM) U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris 75013, France
| | - Valérie Grange-Messent
- Sorbonne Universités, Université Pierre et Marie Curie UM CR18, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine, Neuroplasticité des Comportements de Reproduction, Paris 75005, France
| | - Richard Wargnier
- Sorbonne Paris Cité, Université Paris-Diderot, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8251, Institut National de la Santé et de la Recherche Médicale (INSERM) U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris 75013, France
| | - Chantal Denoyelle
- Sorbonne Paris Cité, Université Paris-Diderot, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8251, Institut National de la Santé et de la Recherche Médicale (INSERM) U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris 75013, France
| | - Alice Pierre
- Sorbonne Paris Cité, Université Paris-Diderot, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8251, Institut National de la Santé et de la Recherche Médicale (INSERM) U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris 75013, France
| | - Julien Dairou
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, Biologie Fonctionnelle et Adaptative UMR 8251, Réponses Moléculaires et Cellulaires aux Xénobiotiques, Paris 75013, France
| | - Jean-Marie Dupret
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, Biologie Fonctionnelle et Adaptative UMR 8251, Réponses Moléculaires et Cellulaires aux Xénobiotiques, Paris 75013, France
| | - Joëlle Cohen-Tannoudji
- Sorbonne Paris Cité, Université Paris-Diderot, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8251, Institut National de la Santé et de la Recherche Médicale (INSERM) U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris 75013, France
| |
Collapse
|