1
|
Marzhoseyni Z, Mousavi MJ, Saffari M, Ghotloo S. Immune escape strategies of Pseudomonas aeruginosa to establish chronic infection. Cytokine 2023; 163:156135. [PMID: 36724716 DOI: 10.1016/j.cyto.2023.156135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
The infection caused by P. aeruginosa still is dangerous throughout the world. This is partly due to its immune escape mechanisms considerably increasing the bacterial survival in the host. By escape from recognition by TLRs, interference with complement system activation, phagocytosis inhibition, production of ROS, inhibition of NET production, interference with the generation of cytokines, inflammasome inhibition, reduced antigen presentation, interference with cellular and humoral immunity, and induction of apoptotic cell death and MDSc, P. aeruginosa breaks down the barriers of the immune system and causes lethal infections in the host. Recognition of other immune escape mechanisms of P. aeruginosa may provide a basis for the future treatment of the infection. This manuscript may provide new insights and information for the development of new strategies to combat P. aeruginosa infection. In the present manuscript, the escape mechanisms of P. aeruginosa against immune response would be reviewed.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mahmood Saffari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayeh Ghotloo
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Cerón-Pisa N, Shafiek H, Martín-Medina A, Verdú J, Jordana-Lluch E, Escobar-Salom M, Barceló IM, López-Causapé C, Oliver A, Juan C, Iglesias A, Cosío BG. Effects of Inhaled Corticosteroids on the Innate Immunological Response to Pseudomonas aeruginosa Infection in Patients with COPD. Int J Mol Sci 2022; 23:ijms23158127. [PMID: 35897707 PMCID: PMC9332726 DOI: 10.3390/ijms23158127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Inhaled corticosteroids (ICS) use is associated with an increased risk of Pseudomonas aeruginosa (PA) infection in patients with COPD. We aimed to evaluate the effects of ICS on alveolar macrophages in response to PA in COPD patients with and without baseline ICS treatment (COPD and COPD + ICS, respectively) as well as smoker and nonsmoker controls. To do so, cells were infected with PA and cotreated with budesonide (BUD) or fluticasone propionate (FLU). The analysis of NF-κB and c-jun activity revealed a significant increase in both factors in response to PA cotreated with BUD/FLU in smokers but not in COPD or COPD + ICS patients when compared with PA infection alone. The expression of Toll-like receptor 2 (TLR2) and the transcription factor c-jun were induced upon PA infection in nonsmokers only. Moreover, in the smoker and COPD groups, there was a significant increase in TLR2 and a decrease in c-jun expression when treated with BUD/FLU after PA infection, which were not observed in COPD + ICS patients. Therefore, the chronic use of ICS seemingly makes the macrophages tolerant to BUD/FLU stimulation compared with those from patients not treated with ICS, promoting an impaired recognition of PA and activity of alveolar macrophages in terms of altered expression of TLR2 and cytokine production, which could explain the increased risk of PA infection in COPD patients under ICS treatment.
Collapse
Affiliation(s)
- Noemi Cerón-Pisa
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
| | - Hanaa Shafiek
- Chest Diseases Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt;
| | - Aina Martín-Medina
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
| | - Javier Verdú
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Department of Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Elena Jordana-Lluch
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Maria Escobar-Salom
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Isabel M. Barceló
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Carla López-Causapé
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Antonio Oliver
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Carlos Juan
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Amanda Iglesias
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III (CIBERES), 28029 Madrid, Spain
- Correspondence: (A.I.); (B.G.C.); Tel.: +34-871-205-050 (ext. 64521) (A.I. & B.G.C.)
| | - Borja G. Cosío
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Department of Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III (CIBERES), 28029 Madrid, Spain
- Correspondence: (A.I.); (B.G.C.); Tel.: +34-871-205-050 (ext. 64521) (A.I. & B.G.C.)
| |
Collapse
|
3
|
Characterization of host-pathogen-device interactions in Pseudomonas aeruginosa infection of breast implants. Plast Reconstr Surg 2022; 150:260e-271e. [PMID: 35653545 DOI: 10.1097/prs.0000000000009315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa (PA) accounts for 7%-22% of breast implant-associated infections (BIAIs), which can result in reconstructive failures and explantation. Investigating host-pathogen-device interactions in mice and patient samples will improve our understanding of colonization mechanisms, for targeted treatments and clinical guidelines. METHODS Mice with and without implants (Mentor®) were infected with PAO1 lab strain or BIP2 or BIP16 clinical strains and sacrificed at 1 day or 7 days post-infection (dpi) to evaluate for colonization of implants and underlying tissues via colony-forming unit (CFU) enumeration. Immunostaining was performed on mouse implants, human tissue expanders (TE) colonized by BIP2, and acellular dermal matrix (ADM) colonized by BIP16. RESULTS Colonization of tissues and smooth implants by P. aeruginosa was strain-dependent: at 1dpi, all strains acutely infected tissues with and without implants with colonization levels reflecting growth rates of individual strains. At 7dpi, PAO1 caused colonization of ~105 CFUs/100mg of tissue but required implant presence, while in mice infected with BIP2/BIP16, CFUs were below the limit of detection with or without implants. Immunofluorescence staining of mouse implants, however, demonstrated continued presence of BIP2 and BIP16. Staining showed co-localization of all strains with fibrinogen, collagen I and collagen III on mouse and human samples. CONCLUSIONS The trajectory of P. aeruginosa in BIAIs was strain-dependent and strains could exhibit acute symptomatic or chronic asymptomatic colonization. With strains causing clinical symptoms, the presence of an implant significantly worsened infection. For asymptomatic colonizers, further studies investigating their long-term impacts, especially during periods of immunosuppression in hosts, are needed.
Collapse
|
4
|
Zhou Y, Zhang F, Ding J. As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases. Immune Netw 2022; 22:e21. [PMID: 35799705 PMCID: PMC9250864 DOI: 10.4110/in.2022.22.e21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Yunxin Zhou
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Fan Zhang
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Junying Ding
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| |
Collapse
|
5
|
Mortaz E, Nomani M, Adcock I, Folkerts G, Garssen J. Galactooligosaccharides (GOS) and 2′-fucosyllactose (2′-FL) can directly suppress growth of specific pathogenic microbes and impact phagocytosis of neutrophils. Nutrition 2022; 96:111601. [DOI: 10.1016/j.nut.2022.111601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/03/2022] [Accepted: 01/09/2022] [Indexed: 11/16/2022]
|
6
|
Biological and clinical significance of quorum sensing alkylquinolones: current analytical and bioanalytical methods for their quantification. Anal Bioanal Chem 2021; 413:4599-4618. [PMID: 33959788 DOI: 10.1007/s00216-021-03356-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/21/2021] [Accepted: 04/16/2021] [Indexed: 12/27/2022]
Abstract
Quorum sensing (QS) is a sophisticated bacterial communication system which plays a key role in the virulence and biofilm formation of many pathogens. The Pseudomonas aeruginosa QS network consists of four sets of connected systems (las, rlh, pqs and iqs) hierarchically organized. The pqs system involves characteristic autoinducers (AI), most of them sharing an alkylquinolone (AQ) structure, and is able to carry out several relevant biological functions besides its main signalling activity. Their role in bacterial physiology and pathogenicity has been widely studied. Indeed, the presence of these metabolites in several body fluids and infected tissues has pointed to their potential value as biomarkers of infection. In this review, we summarize the most recent findings about the biological implications and the clinical significance of the main P. aeruginosa AQs. These findings have encouraged the development of analytical and bioanalytical techniques addressed to assess the role of these metabolites in bacterial growth and survival, during pathogenesis or as biomarkers of infections. The availability of highly sensitive reliable analytical methods suitable for clinical analysis would allow getting knowledge about pathogenesis and disease prognosis or progression, supporting clinicians on the decision-making process for the management of these infections and guiding them on the application of more effective and appropriate treatments. The benefits from the implementation of the point-of-care (PoC)-type testing in infectious disease diagnostics, which are seen to improve patient outcomes by promoting earlier therapeutic interventions, are also discussed.
Collapse
|
7
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|
8
|
Nain Z, Karim MM. Whole-genome sequence, functional annotation, and comparative genomics of the high biofilm-producing multidrug-resistant Pseudomonas aeruginosa MZ4A isolated from clinical waste. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2020.100999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Zhang L, Zhao SQ, Zhang J, Sun Y, Xie YL, Liu YB, Ma CC, Jiang BG, Liao XY, Li WF, Cheng XJ, Wang ZL. Proteomic Analysis of Vesicle-Producing Pseudomonas aeruginosa PAO1 Exposed to X-Ray Irradiation. Front Microbiol 2020; 11:558233. [PMID: 33384665 PMCID: PMC7770229 DOI: 10.3389/fmicb.2020.558233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/25/2020] [Indexed: 02/05/2023] Open
Abstract
Ionizing irradiation kills pathogens by destroying nucleic acids without protein structure destruction. However, how pathogens respond to irradiation stress has not yet been fully elucidated. Here, we observed that Pseudomonas aeruginosa PAO1 could release nucleic acids into the extracellular environment under X-ray irradiation. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray irradiation was observed to induce outer membrane vesicle (OMV) formation in P. aeruginosa PAO1. The size distribution of the OMVs of the irradiated PAO1 was similar to that of the OMVs of the non-irradiated PAO1 according to nanoparticle tracking analysis (NTA). The pyocin-related proteins are involved in OMV production in P. aeruginosa PAO1 under X-ray irradiation conditions, and that this is regulated by the key SOS gene recA. The OMV production was significantly impaired in the irradiated PAO1 Δlys mutant, suggesting that Lys endolysin is associated with OMV production in P. aeruginosa PAO1 upon irradiation stress. Meanwhile, no significant difference in OMV production was observed between PAO1 lacking the pqsR, lasR, or rhlR genes and the parent strain, demonstrating that the irradiation-induced OMV biosynthesis of P. aeruginosa was independent of the Pseudomonas quinolone signal (PQS).
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shi-Qiao Zhao
- Department of Clinical Laboratory, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Jie Zhang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Sun
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ya-Liu Xie
- Department of Otolaryngology, The Seventh People's Hospital of Chengdu, Chengdu, China
| | - Yan-Bin Liu
- Infectious Diseases Center, West China Hospital, Sichuan University, Chengdu, China
| | - Cui-Cui Ma
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Bo-Guang Jiang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xue-Yuan Liao
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wen-Fang Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xing-Jun Cheng
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen-Ling Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
The Small RNA ErsA Plays a Role in the Regulatory Network of Pseudomonas aeruginosa Pathogenicity in Airway Infections. mSphere 2020; 5:5/5/e00909-20. [PMID: 33055260 PMCID: PMC7565897 DOI: 10.1128/msphere.00909-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial small RNAs play a remarkable role in the regulation of functions involved in host-pathogen interaction. ErsA is a small RNA of Pseudomonas aeruginosa that contributes to the regulation of bacterial virulence traits such as biofilm formation and motility. Shown to take part in a regulatory circuit under the control of the envelope stress response sigma factor σ22, ErsA targets posttranscriptionally the key virulence-associated gene algC Moreover, ErsA contributes to biofilm development and motility through the posttranscriptional modulation of the transcription factor AmrZ. Intending to evaluate the regulatory relevance of ErsA in the pathogenesis of respiratory infections, we analyzed the impact of ErsA-mediated regulation on the virulence potential of P. aeruginosa and the stimulation of the inflammatory response during the infection of bronchial epithelial cells and a murine model. Furthermore, we assessed ErsA expression in a collection of P. aeruginosa clinical pulmonary isolates and investigated the link of ErsA with acquired antibiotic resistance by generating an ersA gene deletion mutant in a multidrug-resistant P. aeruginosa strain which has long been adapted in the airways of a cystic fibrosis (CF) patient. Our results show that the ErsA-mediated regulation is relevant for the P. aeruginosa pathogenicity during acute infection and contributes to the stimulation of the host inflammatory response. Besides, ErsA was able to be subjected to selective pressure for P. aeruginosa pathoadaptation and acquirement of resistance to antibiotics commonly used in clinical practice during chronic CF infections. Our findings establish the role of ErsA as an important regulatory element in the host-pathogen interaction.IMPORTANCE Pseudomonas aeruginosa is one of the most critical multidrug-resistant opportunistic pathogens in humans, able to cause both lethal acute and chronic lung infections. Thorough knowledge of the regulatory mechanisms involved in the establishment and persistence of the airways infections by P. aeruginosa remains elusive. Emerging candidates as molecular regulators of pathogenesis in P. aeruginosa are small RNAs, which act posttranscriptionally as signal transducers of host cues. Known for being involved in the regulation of biofilm formation and responsive to envelope stress response, we show that the small RNA ErsA can play regulatory roles in acute infection, stimulation of host inflammatory response, and mechanisms of acquirement of antibiotic resistance and adaptation during the chronic lung infections of cystic fibrosis patients. Elucidating the complexity of the networks regulating host-pathogen interactions is crucial to identify novel targets for future therapeutic applications.
Collapse
|
11
|
Gao P, Guo K, Pu Q, Wang Z, Lin P, Qin S, Khan N, Hur J, Liang H, Wu M. oprC Impairs Host Defense by Increasing the Quorum-Sensing-Mediated Virulence of Pseudomonas aeruginosa. Front Immunol 2020; 11:1696. [PMID: 32849593 PMCID: PMC7417366 DOI: 10.3389/fimmu.2020.01696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/25/2020] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa, found widely in the wild, causes infections in the lungs and several other organs in healthy people but more often in immunocompromised individuals. P. aeruginosa infection leads to inflammasome assembly, pyroptosis, and cytokine release in the host. OprC is one of the bacterial porins abundant in the outer membrane vesicles responsible for channel-forming and copper binding. Recent research has revealed that OprC transports copper, an essential trace element involved in various physiological processes, into bacteria during copper deficiency. Here, we found that oprC deletion severely impaired bacterial motility and quorum-sensing systems, as well as lowered levels of lipopolysaccharide and pyocyanin in P. aeruginosa. In addition, oprC deficiency impeded the stimulation of TLR2 and TLR4 and inflammasome activation, resulting in decreases in proinflammatory cytokines and improved disease phenotypes, such as attenuated bacterial loads, lowered lung barrier damage, and longer mouse survival. Moreover, oprC deficiency significantly alleviated pyroptosis in macrophages. Mechanistically, oprC gene may impact quorum-sensing systems in P. aeruginosa to alter pyroptosis and inflammatory responses in cells and mice through the STAT3/NF-κB signaling pathway. Our findings characterize OprC as a critical virulence regulator, providing the groundwork for further dissection of the pathogenic mechanism of OprC as a potential therapeutic target of P. aeruginosa.
Collapse
Affiliation(s)
- Pan Gao
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Qinqin Pu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Zhihan Wang
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ping Lin
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Shugang Qin
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Nadeem Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
12
|
Collaborative Cross Mice Yield Genetic Modifiers for Pseudomonas aeruginosa Infection in Human Lung Disease. mBio 2020; 11:mBio.00097-20. [PMID: 32127447 PMCID: PMC7064750 DOI: 10.1128/mbio.00097-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Respiratory infection caused by P. aeruginosa is one of the most critical health burdens worldwide. People affected by P. aeruginosa infection include patients with a weakened immune system, such as those with cystic fibrosis (CF) genetic disease or non-CF bronchiectasis. Disease outcomes range from fatal pneumonia to chronic life-threatening infection and inflammation leading to the progressive deterioration of pulmonary function. The development of these respiratory infections is mediated by multiple causes. However, the genetic factors underlying infection susceptibility are poorly known and difficult to predict. Our study employed novel approaches and improved mouse disease models to identify genetic modifiers that affect the severity of P. aeruginosa lung infection. We identified candidate genes to enhance our understanding of P. aeruginosa infection in humans and provide a proof of concept that could be exploited for other human pathologies mediated by bacterial infection. Human genetics influence a range of pathological and clinical phenotypes in respiratory infections; however, the contributions of disease modifiers remain underappreciated. We exploited the Collaborative Cross (CC) mouse genetic-reference population to map genetic modifiers that affect the severity of Pseudomonas aeruginosa lung infection. Screening for P. aeruginosa respiratory infection in a cohort of 39 CC lines exhibits distinct disease phenotypes ranging from complete resistance to lethal disease. Based on major changes in the survival times, a quantitative-trait locus (QTL) was mapped on murine chromosome 3 to the genomic interval of Mb 110.4 to 120.5. Within this locus, composed of 31 protein-coding genes, two candidate genes, namely, dihydropyrimidine dehydrogenase (Dpyd) and sphingosine-1-phosphate receptor 1 (S1pr1), were identified according to the level of genome-wide significance and disease gene prioritization. Functional validation of the S1pr1 gene by pharmacological targeting in C57BL/6NCrl mice confirmed its relevance in P. aeruginosa pathophysiology. However, in a cohort of Canadian patients with cystic fibrosis (CF) disease, regional genetic-association analysis of the syntenic human locus on chromosome 1 (Mb 97.0 to 105.0) identified two single-nucleotide polymorphisms (rs10875080 and rs11582736) annotated to the Dpyd gene that were significantly associated with age at first P. aeruginosa infection. Thus, there is evidence that both genes might be implicated in this disease. Our results demonstrate that the discovery of murine modifier loci may generate information that is relevant to human disease progression.
Collapse
|
13
|
Torrens G, Escobar-Salom M, Pol-Pol E, Camps-Munar C, Cabot G, López-Causapé C, Rojo-Molinero E, Oliver A, Juan C. Comparative Analysis of Peptidoglycans From Pseudomonas aeruginosa Isolates Recovered From Chronic and Acute Infections. Front Microbiol 2019; 10:1868. [PMID: 31507543 PMCID: PMC6719521 DOI: 10.3389/fmicb.2019.01868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is one of the first causes of acute nosocomial and chronic infections in patients with underlying respiratory pathologies such as cystic fibrosis (CF). It has been proposed that P. aeruginosa accumulates mutations driving to peptidoglycan modifications throughout the development of the CF-associated infection, as a strategy to lower the immune detection hence ameliorating the chronic persistence. As well, some studies dealing with peptidoglycan modifications driving to a better survival within the host have been published in other gram-negatives. According to these facts, the gram-negative peptidoglycan could be considered as a pathogen-associated molecular pattern with very important implications regarding the host’s detection-response, worthy to dissect in detail. For this reason, in this work we characterized for the first time the peptidoglycans of three large collections [early CF, late CF and acute infection (bloodstream) P. aeruginosa strains] from qualitative (HPLC), quantitative and inflammatory capacity-related perspectives. The final goal was to identify composition trends potentially supporting the cited strategy of evasion/resistance to the immune system and providing information regarding the differential intrinsic adaptation depending on the type of infection. Although we found several punctual strain-specific particularities, our results indicated a high degree of inter-collection uniformity in the peptidoglycan-related features and the absence of trends amongst the strains studied here. These results suggest that the peptidoglycan of P. aeruginosa is a notably conserved structure in natural isolates regardless of transitory changes that some external conditions could force. Finally, the inverse correlation between the relative amount of stem pentapeptides within the murein sacculus and the resistance to immune lytic attacks against the peptidoglycan was also suggested by our results. Altogether, this work is a major step ahead to understand the biology of peptidoglycan from P. aeruginosa natural strains, hopefully useful in future for therapeutic alternatives design.
Collapse
Affiliation(s)
- Gabriel Torrens
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - María Escobar-Salom
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Elisabet Pol-Pol
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Cristina Camps-Munar
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Gabriel Cabot
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Carla López-Causapé
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Estrella Rojo-Molinero
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Carlos Juan
- Servicio de Microbiología-Unidad de Investigación, Hospital Universitari Son Espases-Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| |
Collapse
|
14
|
Hoggarth A, Weaver A, Pu Q, Huang T, Schettler J, Chen F, Yuan X, Wu M. Mechanistic research holds promise for bacterial vaccines and phage therapies for Pseudomonas aeruginosa. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:909-924. [PMID: 30936684 PMCID: PMC6431001 DOI: 10.2147/dddt.s189847] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vaccines for Pseudomonas aeruginosa have been of longstanding interest to immunologists, bacteriologists, and clinicians, due to the widespread prevalence of hospital-acquired infection. As P. aeruginosa becomes increasingly antibiotic resistant, there is a dire need for novel treatments and preventive vaccines. Despite intense efforts, there currently remains no vaccine on the market to combat this dangerous pathogen. This article summarizes current and past vaccines under development that target various constituents of P. aeruginosa. Targeting lipopolysaccharides and O-antigens have shown some promise in preventing infection. Recombinant flagella and pili that target TLR5 have been utilized to combat P. aeruginosa by blocking its motility and adhesion. The type 3 secretion system components, such as needle-like structure PcrV or exotoxin PopB, are also potential vaccine targets. Outer membrane proteins including OprF and OprI are newer representatives of vaccine candidates. Live attenuated vaccines are a focal point in this review, and are also considered for novel vaccines. In addition, phage therapy is revived as an effective option for treating refractory infections after failure with antibiotic treatment. Many of the aforementioned vaccines act on a single target, thus lacking a broad range of protection. Recent studies have shown that mixtures of vaccines and combination approaches may significantly augment immunogenicity, thereby increasing their preventive and therapeutic potential.
Collapse
Affiliation(s)
- Austin Hoggarth
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Andrew Weaver
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Ting Huang
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA, .,Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jacob Schettler
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Feng Chen
- Pulmonary and Allergy Institute, Affiliated Hospital of Southwestern Medical University, Luzhou, China
| | - Xiefang Yuan
- Pulmonary and Allergy Institute, Affiliated Hospital of Southwestern Medical University, Luzhou, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| |
Collapse
|
15
|
Torrens G, Barceló IM, Pérez-Gallego M, Escobar-Salom M, Tur-Gracia S, Munar-Bestard M, González-Nicolau MDM, Cabrera-Venegas YJ, Rigo-Rumbos EN, Cabot G, López-Causapé C, Rojo-Molinero E, Oliver A, Juan C. Profiling the susceptibility of Pseudomonas aeruginosa strains from acute and chronic infections to cell-wall-targeting immune proteins. Sci Rep 2019; 9:3575. [PMID: 30837659 PMCID: PMC6401076 DOI: 10.1038/s41598-019-40440-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
In the current scenario of high antibiotic resistance, the search for therapeutic options against Pseudomonas aeruginosa must be approached from different perspectives: cell-wall biology as source of bacterial weak points and our immune system as source of weapons. Our recent study suggests that once the permeability barrier has been overcome, the activity of our cell-wall-targeting immune proteins is notably enhanced, more in mutants with impaired peptidoglycan recycling. The present work aims at analyzing the activity of these proteins [lysozyme and Peptidoglycan-Recognition-Proteins (PGLYRPs)], alone or with a permeabilizer (subinhibitory colistin) in clinical strains, along with other features related to the cell-wall. We compared the most relevant and complementary scenarios: acute (bacteremia) and chronic infections [early/late isolates from lungs of cystic fibrosis (CF) patients]. Although a low activity of lysozyme/PGLYRPs per se (except punctual highly susceptible strains) was found, the colistin addition significantly increased their activity regardless of the strains’ colistin resistance levels. Our results show increased susceptibility in late CF isolates, suggesting that CF adaptation renders P. aeruginosa more vulnerable to proteins targeting the cell-wall. Thus, our work suggests that attacking some P. aeruginosa cell-wall biology-related elements to increase the activity of our innate weapons could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Isabel M Barceló
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Marcelo Pérez-Gallego
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Maria Escobar-Salom
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Sara Tur-Gracia
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Marta Munar-Bestard
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - María Del Mar González-Nicolau
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Yoandy José Cabrera-Venegas
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Estefany Nayarith Rigo-Rumbos
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Gabriel Cabot
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Carla López-Causapé
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Estrella Rojo-Molinero
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain.
| |
Collapse
|
16
|
Meynet E, Laurin D, Lenormand JL, Camara B, Toussaint B, Le Gouëllec A. Killed but metabolically active Pseudomonas aeruginosa-based vaccine induces protective humoral- and cell-mediated immunity against Pseudomonas aeruginosa pulmonary infections. Vaccine 2018; 36:1893-1900. [PMID: 29506924 DOI: 10.1016/j.vaccine.2018.02.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/20/2017] [Accepted: 02/07/2018] [Indexed: 12/17/2022]
Abstract
Pseudomonas aeruginosa (Pa) is a significant cause of morbidity and mortality, especially in cystic fibrosis patients. Its eradication is difficult due to a wide phenotypic adaptability and an increase of its resistance to antibiotics. After the failure of several recombinant vaccines which mainly triggered humoral response, live-attenuated vaccines received attention thanks to their ability to elicit a broad immunity with both humoral- and cell-mediated responses, essential to fight this pathogen. In this study, we developed an innovative and safer live-attenuated Pa vaccine based on a Killed But Metabolically Active (KBMA) attenuation method. KBMA Pa has been further rationally designed to overexpress beneficial effectors like the type 3 secretion system apparatus. We demonstrated that KBMA Pa elicits a high and broad humoral response in mice against several antigens of particular interest such as OprF and PcrV proteins. Moreover, we assessed cytokines in the serum of immunized mice and showed that KBMA Pa elicits Th1, Th2 and especially Th17 pathways of cell-mediated immune responses. Th17 pathway involvement was also confirmed after specific stimulation of helper T cells in immunized mice. Finally, we showed that this vaccine is safe and has a protective effect in a murine acute pulmonary infectious challenge. In conclusion, KBMA Pa is a new platform with high potential for the development of a vaccine against Pa.
Collapse
Affiliation(s)
- Elodie Meynet
- Univ Grenoble Alpes, CNRS, CHU Grenoble, Grenoble INP, TIMC-IMAG UMR 5525, 38000 Grenoble, France
| | - David Laurin
- Univ Grenoble Alpes, CNRS, CHU Grenoble, Grenoble INP, TIMC-IMAG UMR 5525, 38000 Grenoble, France; Etablissement Français du Sang, BP35, 38701 La Tronche, France
| | - Jean Luc Lenormand
- Univ Grenoble Alpes, CNRS, CHU Grenoble, Grenoble INP, TIMC-IMAG UMR 5525, 38000 Grenoble, France
| | - Boubou Camara
- Univ Grenoble Alpes, CNRS, CHU Grenoble, Grenoble INP, TIMC-IMAG UMR 5525, 38000 Grenoble, France
| | - Bertrand Toussaint
- Univ Grenoble Alpes, CNRS, CHU Grenoble, Grenoble INP, TIMC-IMAG UMR 5525, 38000 Grenoble, France
| | - Audrey Le Gouëllec
- Univ Grenoble Alpes, CNRS, CHU Grenoble, Grenoble INP, TIMC-IMAG UMR 5525, 38000 Grenoble, France.
| |
Collapse
|
17
|
Lorè NI, Veraldi N, Riva C, Sipione B, Spagnuolo L, De Fino I, Melessike M, Calzi E, Bragonzi A, Naggi A, Cigana C. Synthesized Heparan Sulfate Competitors Attenuate Pseudomonas aeruginosa Lung Infection. Int J Mol Sci 2018; 19:ijms19010207. [PMID: 29315274 PMCID: PMC5796156 DOI: 10.3390/ijms19010207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/19/2022] Open
Abstract
Several chronic respiratory diseases are characterized by recurrent and/or persistent infections, chronic inflammatory responses and tissue remodeling, including increased levels of glycosaminoglycans which are known structural components of the airways. Among glycosaminoglycans, heparan sulfate (HS) has been suggested to contribute to excessive inflammatory responses. Here, we aim at (i) investigating whether long-term infection by Pseudomonas aeruginosa, one of the most worrisome threat in chronic respiratory diseases, may impact HS levels, and (ii) exploring HS competitors as potential anti-inflammatory drugs during P. aeruginosa pneumonia. P. aeruginosa clinical strains and ad-hoc synthesized HS competitors were used in vitro and in murine models of lung infection. During long-term chronic P. aeruginosa colonization, infected mice showed higher heparin/HS levels, evaluated by high performance liquid chromatography-mass spectrometry after selective enzymatic digestion, compared to uninfected mice. Among HS competitors, an N-acetyl heparin and a glycol-split heparin dampened leukocyte recruitment and cytokine/chemokine production induced by acute and chronic P. aeruginosa pneumonia in mice. Furthermore, treatment with HS competitors reduced bacterial burden during chronic murine lung infection. In vitro, P. aeruginosa biofilm formation decreased upon treatment with HS competitors. Overall, these findings support further evaluation of HS competitors as a novel therapy to counteract inflammation and infection during P. aeruginosa pneumonia.
Collapse
Affiliation(s)
- Nicola Ivan Lorè
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
- Vita-Salute San Raffaele University, Milano 20132, Italy.
| | - Noemi Veraldi
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Milano 20133, Italy.
| | - Camilla Riva
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Barbara Sipione
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Lorenza Spagnuolo
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Ida De Fino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Medede Melessike
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Elisa Calzi
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Milano 20133, Italy.
| | - Alessandra Bragonzi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Annamaria Naggi
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Milano 20133, Italy.
| | - Cristina Cigana
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| |
Collapse
|
18
|
Fuchs A, Tripet BP, Ammons MCB, Copié V. Optimization of Metabolite Extraction Protocols for the Identification and Profiling of Small Molecule Metabolites from Planktonic and Biofilm Pseudomonas aeruginosa Cultures. ACTA ACUST UNITED AC 2016; 4:141-147. [PMID: 34046294 DOI: 10.2174/2213235x04666151126203043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Metabolomics aims to characterize the metabolic phenotype and metabolic pathways utilized by microorganisms or other cellular systems. A crucial component to metabolomics research as it applies to microbial metabolism is the development of robust and reproducible methods for extraction of intracellular metabolites. The goal is to extract all metabolites in a non-biased and consistent manner; however, most methods used thus far are targeted to specific metabolite classes and use harsh conditions that may contribute to metabolite degradation. Metabolite extraction methodologies need to be optimized for each microorganism of interest due to different cellular characteristics contributing to lysis resistance. Methods Three cell pellet wash solutions were compared for the potential to influence intracellular metabolite leakage of P. aeruginosa. We also compared four different extraction methods using (i) methanol:chloroform (2:1); (ii) 50% methanol; (iii) 100% methanol; or (iv) 100% water to extract intracellular metabolites from P. aeruginosa planktonic and biofilm cultures. Results Intracellular metabolite extraction efficiency was found to be dependent on the extraction method and varies between microbial modes of growth. Methods using the 60% methanol wash produced the greatest amount of intracellular material leakage. Quantification of intracellular metabolites via 1H NMR showed that extraction protocols using 100% water or 50% methanol achieved the greatest extraction efficiencies, while addition of sonication to facilitate cell lysis to the 50% methanol extraction method resulted in at least a two-fold increase in signal intensities for approximately half of the metabolites identified. Phosphate buffered saline (PBS) was determined to be the most appropriate wash solution, yielding little intracellular metabolite leakage from cells. Conclusion We determined that washing in 1X PBS and extracting intracellular metabolites with 50% methanol is the most appropriate metabolite extraction protocol because (a) leakage is minimal; (b) a broad range of metabolites present at sufficiently high concentrations is detectable by NMR; and (c) this method proved suitable for metabolite extraction of both planktonic and biofilm P. aeruginosa cultures.
Collapse
Affiliation(s)
- Amanda Fuchs
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, 59717, Montana, USA
| | - Brian P Tripet
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, 59717, Montana, USA
| | - Mary Cloud B Ammons
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, 59717, Montana, USA
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, 59717, Montana, USA
| |
Collapse
|
19
|
Cigana C, Lorè NI, Riva C, De Fino I, Spagnuolo L, Sipione B, Rossi G, Nonis A, Cabrini G, Bragonzi A. Tracking the immunopathological response to Pseudomonas aeruginosa during respiratory infections. Sci Rep 2016; 6:21465. [PMID: 26883959 PMCID: PMC4756310 DOI: 10.1038/srep21465] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/19/2016] [Indexed: 12/18/2022] Open
Abstract
Repeated cycles of infections, caused mainly by Pseudomonas aeruginosa, combined with a robust host immune response and tissue injury, determine the course and outcome of cystic fibrosis (CF) lung disease. As the disease progresses, P. aeruginosa adapts to the host modifying dramatically its phenotype; however, it remains unclear whether and how bacterial adaptive variants and their persistence influence the pathogenesis and disease development. Using in vitro and murine models of infection, we showed that P. aeruginosa CF-adaptive variants shaped the innate immune response favoring their persistence. Next, we refined a murine model of chronic pneumonia extending P. aeruginosa infection up to three months. In this model, including CFTR-deficient mice, we unveil that the P. aeruginosa persistence lead to CF hallmarks of airway remodelling and fibrosis, including epithelial hyperplasia and structure degeneration, goblet cell metaplasia, collagen deposition, elastin degradation and several additional markers of tissue damage. This murine model of P. aeruginosa chronic infection, reproducing CF lung pathology, will be instrumental to identify novel molecular targets and test newly tailored molecules inhibiting chronic inflammation and tissue damage processes in pre-clinical studies.
Collapse
Affiliation(s)
- Cristina Cigana
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Nicola Ivan Lorè
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Camilla Riva
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Ida De Fino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Lorenza Spagnuolo
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Barbara Sipione
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Alessandro Nonis
- University Center for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Giulio Cabrini
- Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Alessandra Bragonzi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
20
|
Penesyan A, Kumar SS, Kamath K, Shathili AM, Venkatakrishnan V, Krisp C, Packer NH, Molloy MP, Paulsen IT. Genetically and Phenotypically Distinct Pseudomonas aeruginosa Cystic Fibrosis Isolates Share a Core Proteomic Signature. PLoS One 2015; 10:e0138527. [PMID: 26431321 PMCID: PMC4592193 DOI: 10.1371/journal.pone.0138527] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/01/2015] [Indexed: 01/05/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is among the main colonizers of the lungs of cystic fibrosis (CF) patients. We have isolated and sequenced several P. aeruginosa isolates from the sputum of CF patients and compared them with each other and with the model strain PAO1. Phenotypic analysis of CF isolates showed significant variability in colonization and virulence-related traits suggesting different strategies for adaptation to the CF lung. Genomic analysis indicated these strains shared a large set of core genes with the standard laboratory strain PAO1, and identified the genetic basis for some of the observed phenotypic differences. Proteomics revealed that in a conventional laboratory medium PAO1 expressed 827 proteins that were absent in the CF isolates while the CF isolates shared a distinctive signature set of 703 proteins not detected in PAO1. PAO1 expressed many transporters for the uptake of organic nutrients and relatively few biosynthetic pathways. Conversely, the CF isolates expressed a narrower range of transporters and a broader set of metabolic pathways for the biosynthesis of amino acids, carbohydrates, nucleotides and polyamines. The proteomic data suggests that in a common laboratory medium PAO1 may transport a diverse set of “ready-made” nutrients from the rich medium, whereas the CF isolates may only utilize a limited number of nutrients from the medium relying mainly on their own metabolism for synthesis of essential nutrients. These variations indicate significant differences between the metabolism and physiology of P. aeruginosa CF isolates and PAO1 that cannot be detected at the genome level alone. The widening gap between the increasing genomic data and the lack of phenotypic data means that researchers are increasingly reliant on extrapolating from genomic comparisons using experimentally characterized model organisms such as PAO1. While comparative genomics can provide valuable information, our data suggests that such extrapolations may be fraught with peril.
Collapse
Affiliation(s)
- Anahit Penesyan
- Department of Chemistry and Biomolecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Sheemal S. Kumar
- Department of Chemistry and Biomolecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Karthik Kamath
- Department of Chemistry and Biomolecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Abdulrahman M. Shathili
- Department of Chemistry and Biomolecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Vignesh Venkatakrishnan
- Department of Chemistry and Biomolecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Christoph Krisp
- Department of Chemistry and Biomolecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, New South Wales, Australia
| | - Nicolle H. Packer
- Department of Chemistry and Biomolecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Mark P. Molloy
- Department of Chemistry and Biomolecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, New South Wales, Australia
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
21
|
Lorè NI, Iraqi FA, Bragonzi A. Host genetic diversity influences the severity of Pseudomonas aeruginosa pneumonia in the Collaborative Cross mice. BMC Genet 2015; 16:106. [PMID: 26310945 PMCID: PMC4551369 DOI: 10.1186/s12863-015-0260-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/03/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is one of the top three causes of opportunistic infections in humans. Patients with a compromised immune system, due to immunosuppressive therapies or underlying diseases such as cancer, AIDS or the hereditary disease cystic fibrosis, are at risk of developing P. aeruginosa infection. However, clinical evidence indicates extremely variable outcomes of P. aeruginosa infections in individuals at risk, suggesting that host multi-complex genetic traits may influence the severity of this opportunistic infection. Here, we have used an innovative experimental model to dissect whether host genetic background, such as those found in the outbred population, could influence the risk of morbidity and mortality to P. aeruginosa pneumonia. RESULTS A highly genetically-diverse mouse resource population, Collaborative Cross (CC) mice, was infected with a clinical strain of P. aeruginosa and subsequently monitored for mortality, mean survival time, and morbidity, change in body weight for seven days post infection. Disease phenotypes ranged from complete resistance and recovery of body weight to lethal disease. Initial variables, including body weight, age and gender, have limited influence on P. aeruginosa outcome, emphasizing the role of host genetic background in defining the risk of morbidity and mortality. When broad-sense heritability of phenotypic traits was evaluated, it confirmed the influence of genetic profile rather than environmental factors among the CC lines during P. aeruginosa infection. CONCLUSION This innovative model system can potentially reproduce the variables responses of disease severity observed in humans during P. aeruginosa pneumonia. Our results demonstrated that a widely-marked differential response to P. aeruginosa airway infection in term of morbidity and mortality, is mainly affected by host genetic factors, as multiple genetic loci or polymorphic variations.
Collapse
Affiliation(s)
- Nicola Ivan Lorè
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS - San Raffaele Scientific Institute, Milan, Italy.
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel.
| | - Alessandra Bragonzi
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS - San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
22
|
Yonker LM, Cigana C, Hurley BP, Bragonzi A. Host-pathogen interplay in the respiratory environment of cystic fibrosis. J Cyst Fibros 2015; 14:431-439. [PMID: 25800687 DOI: 10.1016/j.jcf.2015.02.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/11/2015] [Accepted: 02/19/2015] [Indexed: 01/01/2023]
Abstract
Significant advances have been made in the understanding of disease progression in cystic fibrosis (CF), revealing a complex interplay between host and pathogenic organisms. The diverse CF microbiota within the airway activates an aberrant immune response that is ineffective in clearing infection. An appreciation of how the CF host immune system interacts with these organisms is crucial to understanding the pathogenesis of CF pulmonary disease. Here we discuss the microbial complexity present in the lungs of individuals with CF, review emerging concepts of innate and adaptive immune responses to pathogens that chronically inhabit the CF lung, and discuss therapies that target the aberrant inflammatory response that characterizes CF. A greater understanding of the underlying mechanisms will shed light on pathogenesis and guide more targeted therapies in the future that serve to reduce infection, minimize lung pathology, and improve the quality of life for patients with CF.
Collapse
Affiliation(s)
- Lael M Yonker
- Mucosal Immunology & Biology Research Center, Pediatrics, Harvard Medical School, Massachusetts General Hospital for Children , Charlestown, MA, U.S.A
| | - Cristina Cigana
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Bryan P Hurley
- Mucosal Immunology & Biology Research Center, Pediatrics, Harvard Medical School, Massachusetts General Hospital for Children , Charlestown, MA, U.S.A
| | - Alessandra Bragonzi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
23
|
Huang FC. Differential regulation of interleukin-8 and human beta-defensin 2 in Pseudomonas aeruginosa-infected intestinal epithelial cells. BMC Microbiol 2014; 14:275. [PMID: 25433669 PMCID: PMC4261737 DOI: 10.1186/s12866-014-0275-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/24/2014] [Indexed: 01/05/2023] Open
Abstract
Background The human opportunistic pathogen, Pseudomonas aeruginosa (P. aeruginosa) carries the highest case fatality rate of all gram-negative infections. Unfortunately, antimicrobial therapy has not been demonstrated to improve clinical outcome and the emergence of multidrug resistant P. aeruginosa has become a major concern in the hospital setting. Fever and diarrhea are the two most common initial symptoms in P. aeruginosa sepsis in previously healthy infants and children. This implies that intestinal epithelial cells in first contact with the pathogen may play an important role in innate immunity to P. aeruginosa infection. Human beta–defensins-2 (hBD-2) and interleukin-8 (IL-8) are crucial for host defense at mucosa but IL-8 may give rise to characteristic pathology of colitis. Results Pseudomonas aeruginosa strain PAO1 was used to infect SW480, an intestinal epithelial cell. IL-8 and hBD-2 mRNA expression and protein secretion were then assessed in SW480 cells using RT-PCR and enzyme-linked immunosorbent assay (ELISA), respectively. Intracellular signaling pathways and nucleotide-binding oligomerization domain (NOD) 1 protein expression were analyzed by Western blot in SW480 cells in the presence or absence of inhibitors or transfected with siRNA. We demonstrate that prolonged infection by P. aeruginosa results in suppression of IL-8 but enhancement of hBD-2, either protein secretion and mRNA expression, in SW480 cells. Inhibitors of ERK suppressed but inhibitor of PI3K enhanced P. aeruginosa-induced IL-8 mRNA expression in SW480 cells while both signaling had no effect on P. aeruginosa-induced hBD-2 expression in SW480 cells. On the other hand, NOD 1 was illustrated to get involved in P. aeruginosa-induced hBD-2 mRNA expression and protein production in SW480 cells. Conclusions The P. aeruginosa-induced antimicrobial peptide in IECs continuously protect the host against prolonged infection, while modulation of proinflammatory responses prevents the host from the detrimental effects of overwhelming inflammation. Thus, P. aeruginosa-induced innate immunity in IECs represents a host protective mechanism, which may provide new insight into the pathogenesis of inflammatory bowel diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0275-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Ta-pei Road, Niao-sung District, Kaohsiung, Taiwan.
| |
Collapse
|
24
|
De Simone M, Spagnuolo L, Lorè NI, Rossi G, Cigana C, De Fino I, Iraqi FA, Bragonzi A. Host genetic background influences the response to the opportunistic Pseudomonas aeruginosa infection altering cell-mediated immunity and bacterial replication. PLoS One 2014; 9:e106873. [PMID: 25268734 PMCID: PMC4182038 DOI: 10.1371/journal.pone.0106873] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/02/2014] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa is a common cause of healthcare-associated infections including pneumonia, bloodstream, urinary tract, and surgical site infections. The clinical outcome of P. aeruginosa infections may be extremely variable among individuals at risk and patients affected by cystic fibrosis. However, risk factors for P. aeruginosa infection remain largely unknown. To identify and track the host factors influencing P. aeruginosa lung infections, inbred immunocompetent mouse strains were screened in a pneumonia model system. A/J, BALB/cJ, BALB/cAnNCrl, BALB/cByJ, C3H/HeOuJ, C57BL/6J, C57BL/6NCrl, DBA/2J, and 129S2/SvPasCRL mice were infected with P. aeruginosa clinical strain and monitored for body weight and mortality up to seven days. The most deviant survival phenotypes were observed for A/J, 129S2/SvPasCRL and DBA/2J showing high susceptibility while BALB/cAnNCrl and C3H/HeOuJ showing more resistance to P. aeruginosa infection. Next, one of the most susceptible and resistant mouse strains were characterized for their deviant clinical and immunological phenotype by scoring bacterial count, cell-mediated immunity, cytokines and chemokines profile and lung pathology in an early time course. Susceptible A/J mice showed significantly higher bacterial burden, higher cytokines and chemokines levels but lower leukocyte recruitment, particularly neutrophils, when compared to C3H/HeOuJ resistant mice. Pathologic scores showed lower inflammatory severity, reduced intraluminal and interstitial inflammation extent, bronchial and parenchymal involvement and diminished alveolar damage in the lungs of A/J when compared to C3H/HeOuJ. Our findings indicate that during an early phase of infection a prompt inflammatory response in the airways set the conditions for a non-permissive environment to P. aeruginosa replication and lock the spread to other organs. Host gene(s) may have a role in the reduction of cell-mediated immunity playing a critical role in the control of P. aeruginosa infection. These results now provide a basis for mapping genomic regions underlying host susceptibility to P. aeruginosa infection.
Collapse
Affiliation(s)
- Maura De Simone
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Lorenza Spagnuolo
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Nicola Ivan Lorè
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Cristina Cigana
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Ida De Fino
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alessandra Bragonzi
- Infection and Cystic Fibrosis Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
25
|
Qin X. Chronic pulmonary pseudomonal infection in patients with cystic fibrosis: A model for early phase symbiotic evolution. Crit Rev Microbiol 2014; 42:144-57. [PMID: 24766052 DOI: 10.3109/1040841x.2014.907235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gain of "antimicrobial resistance" and "adaptive virulence" has been the dominant view of Pseudomonas aeruginosa (Pa) in cystic fibrosis (CF) in the progressively damaged host airway over the course of this chronic infection. However, the pathogenic effects of CF airway-adapted Pa strains are notably reduced. We propose that CF Pa and other bacterial cohabitants undergo host adaptation which resembles the changes found in bacterial symbionts in animal hosts. Development of clonally selected and intraspecific isogenic Pa strains which display divergent colony morphology, growth rate, auxotrophy, and antibiotic susceptibility in vitro suggests an adaptive sequence of infective exploitation-parasitism-symbiotic evolution driven by host defenses. Most importantly, the emergence of CF pseudomonal auxotrophy is frequently associated with a few specific amino acids. The selective retention or loss of specific amino acid biosynthesis in CF-adapted Pa reflects bacterium-host symbiosis and coevolution during chronic infection, not nutrient availability. This principle also argues against the long-standing concept of dietary availability leading to evolution of essential amino acid requirements in humans. A novel model of pseudomonal adaptation through multicellular bacterial syntrophy is proposed to explain early events in bacterial gene decay and decreased (not increased) virulence due to symbiotic response to host defense.
Collapse
Affiliation(s)
- Xuan Qin
- a Microbiology Laboratory, Seattle Children's Hospital , and.,b Department of Laboratory Medicine , University of Washington , School of Medicine Seattle , Washington , USA
| |
Collapse
|
26
|
Vigneshkumar B, Radhakrishnan S, Balamurugan K. Analysis of Pseudomonas aeruginosa PAO1 lipid A changes during the interaction with model organism, Caenorhabditis elegans. Lipids 2014; 49:555-75. [PMID: 24722928 DOI: 10.1007/s11745-014-3898-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/18/2014] [Indexed: 11/28/2022]
Abstract
Lipopolysaccharide (LPS) is the main surface constituent of Gram-negative bacteria. Lipid A, the hydrophobic moiety, outer monolayer of the outer cell membrane forms the major component of LPS. Immunogenic Lipid A is recognized by the innate immune system through the TLR 4/MD-2 complex. Pseudomonas aeruginosa PAO1, a Gram-negative bacterium is known to cause nosocomial infection and known for its adaptation to adverse environmental conditions. Pseudomonas aeruginosa can infect a broad host spectrum including Caenorhabditis elegans, a simple free living soil nematode. Here, we reveal that PAO1 modifies its Lipid A during the host interaction with C. elegans. The penta-acylated form of Lipid A was identified by using matrix assisted laser desorption ionization-time of flight analysis and the β-(1,6)-linked disaccharide of glucosamine with phosphate groups, 2 and 2' amide linked fatty acid chain and 3 and 3' ester linked fatty acids were investigated for the modification using the non destructive (1)H NMR, spin-lattice (T₁) relaxation measurement, differential scanning calorimetry. T₁ relaxation measurements showed that the 2 and 2' amide linked fatty acid chain, -CH in the glucosamine disaccharide of PAO1 lipid A, in an exposed host had a different spin lattice relaxation time compared to an unexposed host and the findings were reconfirmed using in vitro human corneal epithelial cells cell lines. Furthermore, scanning electron microscope and confocal laser scanning microscopy analysis revealed that the P. aeruginosa PAO1 biofilm formation was disturbed in the exposed host condition. The daf-12, daf-16, tol-1, pmk-1, ins-7 and ilys3 immune genes of C. elegans were examined with live bacterial and isolated lipid moiety infection and the expression was found to be highly specific. Overall, the present study revealed that PAO1 modified its 2 and 2' amide linked fatty acid chain in the lipid A of PAO1 LPS during the exposed host condition.
Collapse
|
27
|
Friman VP, Ghoul M, Molin S, Johansen HK, Buckling A. Pseudomonas aeruginosa adaptation to lungs of cystic fibrosis patients leads to lowered resistance to phage and protist enemies. PLoS One 2013; 8:e75380. [PMID: 24069407 PMCID: PMC3777905 DOI: 10.1371/journal.pone.0075380] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/12/2013] [Indexed: 01/21/2023] Open
Abstract
Pathogenic life styles can lead to highly specialized interactions with host species, potentially resulting in fitness trade-offs in other ecological contexts. Here we studied how adaptation of the environmentally transmitted bacterial pathogen, Pseudomonas aeruginosa, to cystic fibrosis (CF) patients affects its survival in the presence of natural phage (14/1, ΦKZ, PNM and PT7) and protist (Tetrahymena thermophila and Acanthamoebae polyphaga) enemies. We found that most of the bacteria isolated from relatively recently intermittently colonised patients (1–25 months), were innately phage-resistant and highly toxic for protists. In contrast, bacteria isolated from long time chronically infected patients (2–23 years), were less efficient in both resisting phages and killing protists. Moreover, chronic isolates showed reduced killing of wax moth larvae (Galleria mellonella) probably due to weaker in vitro growth and protease expression. These results suggest that P. aeruginosa long-term adaptation to CF-lungs could trade off with its survival in aquatic environmental reservoirs in the presence of microbial enemies, while lowered virulence could reduce pathogen opportunities to infect insect vectors; factors that are both likely to result in poorer environmental transmission. From an applied perspective, phage therapy could be useful against chronic P. aeruginosa lung infections that are often characterized by multidrug resistance: chronic isolates were least resistant to phages and their poor growth will likely slow down the emergence of beneficial resistance mutations.
Collapse
Affiliation(s)
- Ville-Petri Friman
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Biosciences, University of Exeter, Penryn, United Kingdom
- * E-mail:
| | - Melanie Ghoul
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Søren Molin
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | | | - Angus Buckling
- Biosciences, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
28
|
Lorè NI, Cigana C, De Fino I, Riva C, Juhas M, Schwager S, Eberl L, Bragonzi A. Cystic fibrosis-niche adaptation of Pseudomonas aeruginosa reduces virulence in multiple infection hosts. PLoS One 2012; 7:e35648. [PMID: 22558188 PMCID: PMC3338451 DOI: 10.1371/journal.pone.0035648] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/19/2012] [Indexed: 01/07/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is able to thrive in diverse ecological niches and to cause serious human infection. P. aeruginosa environmental strains are producing various virulence factors that are required for establishing acute infections in several host organisms; however, the P. aeruginosa phenotypic variants favour long-term persistence in the cystic fibrosis (CF) airways. Whether P. aeruginosa strains, which have adapted to the CF-niche, have lost their competitive fitness in the other environment remains to be investigated. In this paper, three P. aeruginosa clonal lineages, including early strains isolated at the onset of infection, and late strains, isolated after several years of chronic lung infection from patients with CF, were analysed in multi-host model systems of acute infection. P. aeruginosa early isolates caused lethality in the three non-mammalian hosts, namely Caenorhabditis elegans, Galleria mellonella, and Drosophila melanogaster, while late adapted clonal isolates were attenuated in acute virulence. When two different mouse genetic background strains, namely C57Bl/6NCrl and Balb/cAnNCrl, were used as acute infection models, early P. aeruginosa CF isolates were lethal, while late isolates exhibited reduced or abolished acute virulence. Severe histopathological lesions, including high leukocytes recruitment and bacterial load, were detected in the lungs of mice infected with P. aeruginosa CF early isolates, while late isolates were progressively cleared. In addition, systemic bacterial spread and invasion of epithelial cells, which were detected for P. aeruginosa CF early strains, were not observed with late strains. Our findings indicate that niche-specific selection in P. aeruginosa reduced its ability to cause acute infections across a broad range of hosts while maintaining the capacity for chronic infection in the CF host.
Collapse
Affiliation(s)
- Nicola Ivan Lorè
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Cigana
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Ida De Fino
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Riva
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Mario Juhas
- Department of Microbiology, Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Stephan Schwager
- Department of Microbiology, Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Microbiology, Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Alessandra Bragonzi
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
- * E-mail:
| |
Collapse
|