1
|
Xiang F, Zhang Z, Li Y, Li M, Xie J, Sun M, Peng Q, Lin L. Research progress in the treatment of schistosomiasis with traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118501. [PMID: 38944361 DOI: 10.1016/j.jep.2024.118501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schistosomiasis, caused by infection with organisms of the Schistoma genus, is a parasitic and infectious disease that poses a significant risk to human health. Schistosomiasis has been a widespread issue in China for at least 2000 years. Traditional Chinese medicine (TCM) has a rich history of treating this disease, and the significant theoretical and practical knowledge attained therein may be useful in modern practice. AIM OF THE STUDY To comprehensively review TCM for the treatment of schistosomiasis, summarize the molecular basis, mechanism of action, active ingredients and formulas of TCM, and clarify the value of TCM for expanding drug options for the clinical treatment of schistosomiasis. MATERIALS AND METHODS In PubMed, Web of Science, ScienceDirect, Google Scholar and CNKI databases, "Schistosomiasis", "Schistosoma mansoni", "Schistosoma japonicum", "Liver fibrosis" and "Granuloma" were used as the key words. Information related to in vivo animal studies and clinical studies of TCM for the treatment of schistosomiasis in the past 25 years was retrieved, and the inclusion criteria focused on medicinal plants that had a history of use in China. RESULTS In this study, we collected and organized a large amount of literature on the treatment of schistosomiasis by TCM. TCM exerts therapeutic effects through antischistosomal and immunomodulatory effects, suppresses HSC activation and proliferation, reduces ECM deposition, and inhibits oxidative stress and other activities. The treatment of schistosomiasis by TCM has a unique advantage, especially for the treatment of schistosomal liver fibrosis, and the treatment of schistosomiasis with TCM in combination with praziquantel is superior to monotherapy. CONCLUSION Schistosomiasis remains a global public health problem, and TCM has made significant progress in the prevention and treatment of schistosomiasis and is a potential source of drugs for the treatment of schistosomiasis. However, research on drug screening and the mechanism of action of TCM for the treatment of schistosomiasis is lacking, and further studies and research are needed.
Collapse
Affiliation(s)
- Feng Xiang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Yamei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Minjie Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Jingchen Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Miao Sun
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Qinghua Peng
- Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| |
Collapse
|
2
|
Gao W, Peng W, Ji X, Zhu D, Chen J, Feng J, Yu Y, Duan L, Duan Y. Expression of recombinant Schistosoma japonicum protein rSjE16 and its effects on LX-2 cells in vitro. J Int Med Res 2021; 48:300060520972228. [PMID: 33350335 PMCID: PMC7758674 DOI: 10.1177/0300060520972228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective The activation of hepatic stellate cells (HSCs) is a key event in schistosome-induced liver fibrosis. Previous studies have shown that soluble egg antigens and the recombinant P40 protein from Schistosoma japonicum eggs inhibit HSC activation. In the present study, we observed the direct effect of the S. japonicum recombinant (r)SjE16 protein on HSCs. Methods The sequence of SjE16 was analyzed by bioinformatics. Then western blotting, quantitative PCR, and MTT assays were performed to observe the effects of rSjE16 on HSCs. Results The SjE16 protein has no signal peptide or transmembrane region. rSjE16 significantly inhibited expression levels of α-smooth muscle actin and collagen I protein in LX-2 cells. rSjE16 also significantly increased the expression levels of interleukin (IL)-6 and IL-8, and enhanced the expression of matrix metalloproteinase (MMP)-2, MMP-9, and peroxisome proliferator-activated receptor-γ in LX-2 cells. LX-2 cell viability was not inhibited by rSjE16. Conclusion rSjE16 may be involved in the progression of HSC activation via a complex molecular mechanism, which requires further study to fully understand.
Collapse
Affiliation(s)
- Wenxi Gao
- Laboratory Center of Economics and Management School, Nantong University, Nantong, Jiangsu, People's Republic of China.,Department of Medical Informatics, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Wenxia Peng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Xingpei Ji
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jinrong Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yang Yu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Lian Duan
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Llanwarne F, Helmby H. Granuloma formation and tissue pathology in Schistosoma japonicum versus Schistosoma mansoni infections. Parasite Immunol 2021; 43:e12778. [PMID: 32692855 PMCID: PMC11478942 DOI: 10.1111/pim.12778] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Schistosomiasis is the most important helminth disease in the world from a public health perspective. S mansoni and S japonicum account for the majority of global intestinal schistosomiasis cases, and the pathogenesis is widely assumed to be fundamentally similar. However, the majority of research on schistosomiasis has been carried out on S mansoni and comparisons between the two species are rarely made. Here, we will discuss aspects of both older and recent literature where such comparisons have been made, with a particular focus on the pathological agent, the host granulomatous response to the egg. Major differences between the two species are apparent in features such as egg production patterns and cellular infiltration; however, it is also clear that even subtle differences in the cascade of various cytokines and chemokines contribute to the different levels of pathology observed between these two main species of intestinal schistosomiasis. A better understanding of such differences at species level will be vital when it comes to the development of new treatment strategies and vaccines.
Collapse
Affiliation(s)
- Felix Llanwarne
- Department of Infection BiologyFaculty of Infectious and Tropical DiseaseLondon School of Hygiene and Tropical MedicineLondonUK
| | - Helena Helmby
- Department of Infection BiologyFaculty of Infectious and Tropical DiseaseLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
4
|
Behavioral and molecular response of the insect parasitic nematode Steinernema carpocapsae to cues emitted by a host, the red palm weevil, Rhynchophorus ferrugineus. Mol Biochem Parasitol 2020; 241:111345. [PMID: 33290763 DOI: 10.1016/j.molbiopara.2020.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022]
Abstract
As the larvae of the date palm pest, the red palm weevil, Rhynchophorus ferrugineus, feeds on the host tissue, they emit a distinctive sound which can be recorded outside of the infected tree. We evaluated the response of infective juveniles (IJs) of the entomopathogenic nematodes Steinernema carpocapsae to the R. ferrugineus larvae and it's sound source, separately. In the presence of the insect larvae, 50.2 % of total IJs moved toward those larvae. Recorded insect larvae sound emitted by the speaker resulted in 7% of total IJs near the sound source. RNA-Seq data indicated that more genes were downregulated in S. carpocapsae IJs exposed to insect and speaker compared to non-stimulated IJs. IJs exposed to insect exhibited more up-regulated genes than IJs exposed to speaker. Enriched pathways and biological processes in IJs were similar for both stimuli. The inhibition of locomotion, regulation of neurotransmitter secretion, response to biotic stimulus, and cellular response to chemical stimuli were enriched with unique GO terms for speaker treatment. The regulation of localization, sodium ion transmembrane transport, regulation of response to stress and response to organic substances were the GO categories enriched unique to insect. The host-parasitic interaction was regulated by the differential expression of Ras/MAP kinase, TGF-beta signaling, insulin signaling, AMPK signaling, PPAR signaling pathways and many developmental pathways. More prominent R. ferrugineus host localization by S. carpocapsae was primarily due to the differential transcriptional regulation of olfactory signal transduction, FOXO-family proteins, calcium signaling, WNT and mTOR signaling pathway. The neural basis for the nematode attraction to insect host is based on the chemosensation and the mechanosensation. Many neuropeptides and neuromodulators are involved in regulating the foraging behavior of S. carpocapsae. The results of this study provide new insights into the molecular mechanisms that allow these nematodes to seek insect hosts. Our finding, especially the molecular ones suggest that chemical cues emitted by the active insect host are stimulants of nematodes attraction. Whereas the sound emitted by the insect has minor effects on the nematode behavior.
Collapse
|
5
|
Assunção LS, Magalhães KG, Carneiro AB, Molinaro R, Almeida PE, Atella GC, Castro-Faria-Neto HC, Bozza PT. Schistosomal-derived lysophosphatidylcholine triggers M2 polarization of macrophages through PPARγ dependent mechanisms. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:246-254. [DOI: 10.1016/j.bbalip.2016.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/01/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022]
|
6
|
Nelson SM, Shay AE, James JL, Carlson BA, Urban JF, Prabhu KS. Selenoprotein Expression in Macrophages Is Critical for Optimal Clearance of Parasitic Helminth Nippostrongylus brasiliensis. J Biol Chem 2015; 291:2787-98. [PMID: 26644468 DOI: 10.1074/jbc.m115.684738] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Indexed: 12/20/2022] Open
Abstract
The plasticity of macrophages is evident in helminthic parasite infections, providing protection from inflammation. Previously we demonstrated that the micronutrient selenium induces a phenotypic switch in macrophage activation from a classically activated (pro-inflammatory; M1/CAM) toward an alternatively activated (anti-inflammatory; M2/AAM) phenotype, where cyclooxygenase (COX)-dependent cyclopentenone prostaglandin J2 (15d-PGJ2) plays a key role. Here, we hypothesize that dietary selenium modulates macrophage polarization toward an AAM phenotype to assist in the increasing clearance of adult Nippostrongylus brasiliensis, a gastrointestinal nematode parasite. Mice on a selenium-adequate (0.08 ppm) diet significantly augmented intestinal AAM presence while decreasing adult worms and fecal egg production when compared with infection of mice on selenium-deficient (<0.01 ppm) diet. Further increase in dietary selenium to supraphysiological levels (0.4 ppm) had very little or no impact on worm expulsion. Normal adult worm clearance and enhanced AAM marker expression were observed in the selenium-supplemented Trsp(fl/fl)Cre(WT) mice that express selenoproteins driven by tRNA(Sec) (Trsp), whereas N. brasiliensis-infected Trsp(fl/fl)Cre(LysM) selenium-supplemented mice showed a decreased clearance, with lowered intestinal expression of several AAM markers. Inhibition of the COX pathway with indomethacin resulted in delayed worm expulsion in selenium-adequate mice. This was rescued with 15d-PGJ2, which partially recapitulated the effect of selenium supplementation on fecal egg output in addition to increasing markers of AAMs in the small intestine. Antagonism of PPARγ blocked the effect of selenium. These results suggest that optimal expression of selenoproteins and selenium-dependent production of COX-derived endogenous prostanoids, such as Δ(12)-PGJ2 and 15d-PGJ2, may regulate AAM activation to enhance anti-helminthic parasite responses.
Collapse
Affiliation(s)
- Shakira M Nelson
- From the Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, Division of Cancer Epidemiology and Genetics, NCI, National Institutes of Health, Rockville, Maryland 20850
| | - Ashley E Shay
- From the Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jamaal L James
- From the Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Bradley A Carlson
- Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, NCI, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Joseph F Urban
- United States Department of Agriculture, Agriculture Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, Maryland 20705
| | - K Sandeep Prabhu
- From the Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802,
| |
Collapse
|
7
|
Castellanos-Martínez S, Arteta D, Catarino S, Gestal C. De novo transcriptome sequencing of the Octopus vulgaris hemocytes using Illumina RNA-Seq technology: response to the infection by the gastrointestinal parasite Aggregata octopiana. PLoS One 2014; 9:e107873. [PMID: 25329466 PMCID: PMC4199593 DOI: 10.1371/journal.pone.0107873] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/20/2014] [Indexed: 01/05/2023] Open
Abstract
Background Octopus vulgaris is a highly valuable species of great commercial interest and excellent candidate for aquaculture diversification; however, the octopus’ well-being is impaired by pathogens, of which the gastrointestinal coccidian parasite Aggregata octopiana is one of the most important. The knowledge of the molecular mechanisms of the immune response in cephalopods, especially in octopus is scarce. The transcriptome of the hemocytes of O. vulgaris was de novo sequenced using the high-throughput paired-end Illumina technology to identify genes involved in immune defense and to understand the molecular basis of octopus tolerance/resistance to coccidiosis. Results A bi-directional mRNA library was constructed from hemocytes of two groups of octopus according to the infection by A. octopiana, sick octopus, suffering coccidiosis, and healthy octopus, and reads were de novo assembled together. The differential expression of transcripts was analysed using the general assembly as a reference for mapping the reads from each condition. After sequencing, a total of 75,571,280 high quality reads were obtained from the sick octopus group and 74,731,646 from the healthy group. The general transcriptome of the O. vulgaris hemocytes was assembled in 254,506 contigs. A total of 48,225 contigs were successfully identified, and 538 transcripts exhibited differential expression between groups of infection. The general transcriptome revealed genes involved in pathways like NF-kB, TLR and Complement. Differential expression of TLR-2, PGRP, C1q and PRDX genes due to infection was validated using RT-qPCR. In sick octopuses, only TLR-2 was up-regulated in hemocytes, but all of them were up-regulated in caecum and gills. Conclusion The transcriptome reported here de novo establishes the first molecular clues to understand how the octopus immune system works and interacts with a highly pathogenic coccidian. The data provided here will contribute to identification of biomarkers for octopus resistance against pathogens, which could improve octopus farming in the near future.
Collapse
Affiliation(s)
- Sheila Castellanos-Martínez
- Departamento de Biotecnología y Acuicultura. Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Vigo, Spain
| | - David Arteta
- PROGENIKA Biopharma. A Grifols Company. Parque tecnológico de Bizkaia. Derio, Bizkaia, Spain
| | - Susana Catarino
- PROGENIKA Biopharma. A Grifols Company. Parque tecnológico de Bizkaia. Derio, Bizkaia, Spain
| | - Camino Gestal
- Departamento de Biotecnología y Acuicultura. Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Vigo, Spain
- * E-mail:
| |
Collapse
|
8
|
Chuah C, Jones MK, Burke ML, McManus DP, Gobert GN. Cellular and chemokine-mediated regulation in schistosome-induced hepatic pathology. Trends Parasitol 2014; 30:141-50. [PMID: 24433721 DOI: 10.1016/j.pt.2013.12.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 02/06/2023]
Abstract
In hepatic schistosomiasis, pathology arises when schistosome eggs become lodged in the host liver, evoking an interleukin 4 (IL-4)- and IL-13-mediated dominant CD4(+) Th2 immune response. This response leads to the development of granulomas and fibrosis, with eosinophils, neutrophils, macrophages, hepatic stellate cells, and lymphocytes all identified as major cellular contributors to these events. This review outlines the cellular and molecular mechanisms of hepatic schistosomiasis, with an emphasis on the major cellular components and their release of chemokines. The differences between Schistosoma mansoni- and Schistosoma japonicum-induced hepatic granuloma are also discussed. This comprehensive overview of the processes associated with hepatic schistosomiasis may provide new insights into improved treatment for both schistosomiasis and other granulofibrotic diseases.
Collapse
Affiliation(s)
- Candy Chuah
- Parasite Cell Biology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia; School of Veterinary Sciences, The University of Queensland, Gatton, 4343, Australia; School of Medical Sciences, Universiti Sains Malaysia, 16150, Kelantan, Malaysia
| | - Malcolm K Jones
- Parasite Cell Biology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia; School of Veterinary Sciences, The University of Queensland, Gatton, 4343, Australia
| | - Melissa L Burke
- Division of Mycobacterial Research, National Institute for Medical Research, London, NW7 1AA, UK
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Geoffrey N Gobert
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia.
| |
Collapse
|
9
|
Anthony BJ, James KR, Gobert GN, Ramm GA, McManus DP. Schistosomajaponicum Eggs Induce a Proinflammatory, Anti-Fibrogenic Phenotype in Hepatic Stellate Cells. PLoS One 2013; 8:e68479. [PMID: 23840855 PMCID: PMC3686876 DOI: 10.1371/journal.pone.0068479] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/04/2013] [Indexed: 01/18/2023] Open
Abstract
Hepatic fibrosis induced by egg deposition is the most serious pathology associated with chronic schistosomiasis, in which the hepatic stellate cell (HSC) plays a central role. While the effect of Schistosoma mansoni eggs on the fibrogenic phenotype of HSCs has been investigated, studies determining the effect of eggs of S. japonicum on HSCs are lacking. Disease caused by S. japonicum is much more severe than that resulting from S. mansoni infection so it is important to compare the pathologies caused by these two parasites, to determine whether this phenotype is due to the species interacting differently with the mammalian host. Accordingly, we investigated the effect of S. japonicum eggs on the human HSC cell line, LX-2, with and without TGF-β (Transforming Growth Factor beta) co-treatment, so as to determine the impact on genes associated with fibrogenesis, inflammation and matrix re-organisation. Activation status of HSCs was assessed by αSMA (Alpha Smooth Muscle Actin) immunofluorescence, accumulation of Oil Red O-stained lipid droplets and the relative expression of selected genes associated with activation. The fibrogenic phenotype of HSCs was inhibited by the presence of eggs both with or without TGF-β treatment, as evidenced by a lack of αSMA staining and reduced gene expression of αSMA and Col1A1 (Collagen 1A1). Unlike S. mansoni-treated cells, however, expression of the quiescent HSC marker PPAR-γ (Peroxisome Proliferator-Activated Receptor gamma) was not increased, nor was there accumulation of lipid droplets. In contrast, S. japonicum eggs induced the mRNA expression of MMP-9 (Matrix Metalloproteinase 9), CCL2 (Chemokine (C-C motif) Ligand 2) and IL-6 (Interleukin 6) in HSCs indicating that rather than inducing complete HSC quiescence, the eggs induced a proinflammatory phenotype. These results suggest HSCs in close proximity to S. japonicum eggs in the liver may play a role in the proinflammatory regulation of hepatic granuloma formation.
Collapse
Affiliation(s)
- Barrie J. Anthony
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
- * E-mail:
| | - Kylie R. James
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
| | - Geoffrey N. Gobert
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
| | - Grant A. Ramm
- The Hepatic Fibrosis Group, Queensland Institute of Medical Research, Brisbane, Australia
- Faculty of Health Sciences, The University of Queensland, Brisbane, Australia
| | - Donald P. McManus
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
| |
Collapse
|
10
|
Role of resident liver cells in the pathogenesis of schistosomiasis. Trends Parasitol 2012; 28:572-9. [PMID: 23099112 DOI: 10.1016/j.pt.2012.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/14/2012] [Accepted: 09/21/2012] [Indexed: 12/12/2022]
Abstract
Pathology in schistosomiasis occurs as a result of eggs deposited in the liver by the schistosome parasite. A granulomatous reaction occurs, resulting in portal hypertension and hepatic fibrosis. Resident non-parenchymal cells within the liver take part in this process, including hepatic stellate cells, which are responsible for collagen production, and Kupffer cells, the liver macrophages involved in both host protection and in pathology. Other cells such as liver sinusoidal endothelial cells or portal fibroblasts may also be involved in this process. This review discusses the possible role of these resident liver cells in the pathology associated with schistosomiasis and provides information which may assist our understanding of the mechanisms associated with chronic liver disease in general.
Collapse
|