1
|
Obikane H, Shimodai-Yamada S, Koizumi N, Ogino H, Nagao T, Hao H. Histopathological Evaluation of Pulmonary Thromboendarterectomy Specimens of Chronic Thromboembolic Pulmonary Hypertension. J Atheroscler Thromb 2023; 30:1661-1673. [PMID: 37005330 PMCID: PMC10627741 DOI: 10.5551/jat.63973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/28/2023] [Indexed: 04/03/2023] Open
Abstract
AIMS Chronic thromboembolic pulmonary hypertension (CTEPH) is a condition with a poor prognosis in which the pulmonary arteries are occluded by organized thrombi. Pulmonary thromboendarterectomy (PEA) is an effective treatment for CTEPH; however, the literature on its histopathological examination is lacking. This study aimed to investigate the histopathological findings and protein and gene expression in PEA specimens, establish an optimal histopathological evaluation method, and clarify the mechanisms of thrombus organization and disease progression in CTEPH. METHODS In total, 50 patients with CTEPH who underwent PEA were analyzed. The patients were categorized according to their clinical data into two groups: good and poor postoperative courses. The relationship between their histopathological findings and the clinical course was examined. Immunohistochemical studies confirmed the expression of oxidants, antioxidants, and smooth muscle cell (SMC) differentiation markers and their changes during the progression of thrombus organization. The mRNA expression analysis of 102 samples from 27 cases included oxidants, antioxidants, and vasoconstrictor endothelin-1. RESULTS In the PEA specimens, colander-like lesions (aggregations of recanalized blood vessels with well-differentiated SMCs) were significantly more common in the good postoperative course group than in the poor postoperative course group; analysis of proteins and genes proposed that oxidative and antioxidant mechanisms were involved. In the colander-like lesions, there was an increase in endothelin-1 mRNA and protein expression of endothelin receptor A. CONCLUSIONS Colander-like lesions in PEA specimens must be identified. Additionally, SMC differentiation in recanalized vessels and the expression of vasoconstrictors and their receptors may contribute to the progression of CTEPH.
Collapse
Affiliation(s)
- Hiyo Obikane
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
- Division of Human Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Sayaka Shimodai-Yamada
- Division of Human Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Nobusato Koizumi
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan
| | - Hitoshi Ogino
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Hiroyuki Hao
- Division of Human Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Sharma S, Chataway T, Klebe S, Griggs K, Martin S, Chegeni N, Dave A, Zhou T, Ronci M, Voelcker NH, Mills RA, Craig JE. Novel protein constituents of pathological ocular pseudoexfoliation syndrome deposits identified with mass spectrometry. Mol Vis 2018; 24:801-817. [PMID: 30713420 PMCID: PMC6334984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/28/2018] [Indexed: 11/13/2022] Open
Abstract
Purpose Pseudoexfoliation (PEX) syndrome is an age-related progressive disease of the extracellular matrix with ocular manifestations. PEX is clinically diagnosed by the presence of extracellular exfoliative deposits on the anterior surface of the ocular lens. PEX syndrome is a major risk factor for developing glaucoma, the leading cause of irreversible blindness in the world, and is often associated with the development of cataract. PEX reportedly coexists with Alzheimer disease and increases the risk of heart disease and stroke. PEX material deposited on the anterior surface of the ocular lens is highly proteinaceous, complex, and insoluble, making deciphering the protein composition of the material challenging. Thus, to date, only a small proportion of the protein composition of PEX material is known. The aim of this study was to decipher the protein composition of pathological PEX material deposited on the ocular lens in patients and advance the understanding of pathophysiology of PEX syndrome. Methods Liquid-chromatography and tandem mass spectrometry (LC-MS/MS) was employed to discover novel proteins in extracts of neat PEX material surgically isolated from patients (n = 4) with PEX syndrome undergoing cataract surgery. A sub-set of the identified proteins was validated with immunohistochemistry using lens capsule specimens from independent patients (n=3); lens capsules from patients with cataract but without PEX syndrome were used as controls (n=4). Expression of transcripts of the validated proteins in the human lens epithelium was analyzed with reverse transcription PCR (RT-PCR). Functional relationships among the proteins identified in this study and genes and proteins previously implicated in the disease were bioinformatically determined using InnateDB. Results Peptides corresponding to 66 proteins, including ten proteins previously known to be present in PEX material, were identified. Thirteen newly identified proteins were chosen for validation. Of those proteins, 12 were found to be genuine components of the material. The novel protein constituents include apolipoproteins (APOA1 and APOA4), stress response proteins (CRYAA and PRDX2), and blood-related proteins (fibrinogen and hemoglobin subunits), including iron-free hemoglobin. The gene expression data suggest that the identified stress-response proteins and hemoglobin are contributed by the lens epithelium and apolipoproteins and fibrinogen by the aqueous humor to the PEX material. Pathway analysis of the identified novel protein constituents and genes or proteins previously implicated in the disease reiterated the involvement of extracellular matrix organization and degradation, elastic fiber formation, and complement cascade in PEX syndrome. Network analysis suggested a central role of fibronectin in the pathophysiology of the disease. The identified novel protein constituents of PEX material also shed light on the molecular basis of the association of PEX syndrome with heart disease, stroke, and Alzheimer disease. Conclusions This study expands the understanding of the protein composition of pathological PEX material deposited on the ocular lens in patients with PEX syndrome and provides useful insights into the pathophysiology of this disease. This study together with the previous study by our group (Sharma et al. Experimental Eye Research 2009;89(4):479-85) demonstrate that using neat PEX material, devoid of the underlying lens capsule, for proteomics analysis is an effective approach for deciphering the protein composition of complex and highly insoluble extracellular pathological ocular deposits present in patients with PEX syndrome.
Collapse
Affiliation(s)
- Shiwani Sharma
- Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Tim Chataway
- Department of Human Physiology, Flinders University, Bedford Park, SA, Australia
| | - Sonja Klebe
- Department of Anatomical Pathology, Flinders University, Bedford Park, SA, Australia,Department of Anatomical Pathology, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Kim Griggs
- Department of Anatomical Pathology, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Sarah Martin
- Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Nusha Chegeni
- Department of Human Physiology, Flinders University, Bedford Park, SA, Australia
| | - Alpana Dave
- Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Tiger Zhou
- Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Maurizio Ronci
- Mawson Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Nicolas H. Voelcker
- Mawson Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Richard A. Mills
- Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
3
|
Maltese G, Psefteli PM, Rizzo B, Srivastava S, Gnudi L, Mann GE, Siow RCM. The anti-ageing hormone klotho induces Nrf2-mediated antioxidant defences in human aortic smooth muscle cells. J Cell Mol Med 2016; 21:621-627. [PMID: 27696667 PMCID: PMC5323877 DOI: 10.1111/jcmm.12996] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022] Open
Abstract
Vascular ageing in conditions such as atherosclerosis, diabetes and chronic kidney disease, is associated with the activation of the renin angiotensin system (RAS) and diminished expression of antioxidant defences mediated by the transcription factor nuclear factor erythroid 2‐related factor 2 (Nrf2). The anti‐ageing hormone klotho promotes longevity and protects against cardiovascular and renal diseases. Klotho has been shown to activate Nrf2 and attenuate oxidative damage in neuronal cells, however, the mechanisms by which it protects against vascular smooth muscle cell VSMC dysfunction elicited by Angiotensin II (AngII) remain to be elucidated. AngII contributes to vascular ageing and atherogenesis by enhancing VSMC oxidative stress, senescence and apoptosis. This study demonstrates that soluble klotho (1 nM, 24 hrs) significantly induces expression of Nrf2 and the antioxidant enzymes haeme oxygenase (HO‐1) and peroxiredoxin‐1 (Prx‐1) and enhances glutathione levels in human aortic smooth muscle cells (HASMC). Silencing of Nrf2 attenuated the induction of HO‐1 and Prx‐1 expression by soluble klotho. Furthermore, soluble klotho protected against AngII‐mediated HASMC apoptosis and senescence via activation of Nrf2. Thus, our findings highlight a novel Nrf2‐mediated mechanism underlying the protective actions of soluble klotho in HAMSC. Targeting klotho may thus represent a therapeutic strategy against VSMC dysfunction and cardiovascular ageing.
Collapse
Affiliation(s)
- Giuseppe Maltese
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Paraskevi-Maria Psefteli
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Benedetta Rizzo
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Salil Srivastava
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Luigi Gnudi
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Giovanni E Mann
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Richard C M Siow
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
4
|
Park MH, Jo M, Kim YR, Lee CK, Hong JT. Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases. Pharmacol Ther 2016; 163:1-23. [PMID: 27130805 PMCID: PMC7112520 DOI: 10.1016/j.pharmthera.2016.03.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/22/2016] [Indexed: 12/29/2022]
Abstract
Peroxiredoxins (PRDXs) are antioxidant enzymes, known to catalyze peroxide reduction to balance cellular hydrogen peroxide (H2O2) levels, which are essential for cell signaling and metabolism and act as a regulator of redox signaling. Redox signaling is a critical component of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and variety of other physiological functions. Early studies demonstrated that PRDXs regulates cell growth, metabolism and immune regulation and therefore involved in the pathologic regulator or protectant of several cancers, neurodegenerative diseases and inflammatory diseases. Oxidative stress and antioxidant systems are important regulators of redox signaling regulated diseases. In addition, thiol-based redox systems through peroxiredoxins have been demonstrated to regulate several redox-dependent process related diseases. In this review article, we will discuss recent findings regarding PRDXs in the development of diseases and further discuss therapeutic approaches targeting PRDXs. Moreover, we will suggest that PRDXs could be targets of several diseases and the therapeutic agents for targeting PRDXs may have potential beneficial effects for the treatment of cancers, neurodegenerative diseases and inflammatory diseases. Future research should open new avenues for the design of novel therapeutic approaches targeting PRDXs.
Collapse
Affiliation(s)
- Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - MiRan Jo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - Yu Ri Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - Chong-Kil Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951.
| |
Collapse
|
5
|
Nguyen A, Duquette N, Mamarbachi M, Thorin E. Epigenetic Regulatory Effect of Exercise on Glutathione Peroxidase 1 Expression in the Skeletal Muscle of Severely Dyslipidemic Mice. PLoS One 2016; 11:e0151526. [PMID: 27010651 PMCID: PMC4806847 DOI: 10.1371/journal.pone.0151526] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/28/2016] [Indexed: 11/19/2022] Open
Abstract
Exercise is an effective approach for primary and secondary prevention of cardiovascular diseases (CVD) and loss of muscular mass and function. Its benefits are widely documented but incompletely characterized. It has been reported that exercise can induce changes in the expression of antioxidant enzymes including Sod2, Trx1, Prdx3 and Gpx1 and limits the rise in oxidative stress commonly associated with CVD. These enzymes can be subjected to epigenetic regulation, such as DNA methylation, in response to environmental cues. The aim of our study was to determine whether in the early stages of atherogenesis, in young severely dyslipidemic mice lacking LDL receptors and overexpressing human ApoB100 (LDLR-/-; hApoB+/+), exercise regulates differentially the expression of antioxidant enzymes by DNA methylation in the skeletal muscles that consume high levels of oxygen and thus generate high levels of reactive oxygen species. Expression of Sod2, Txr1, Prdx3 and Gpx1 was altered by 3 months of exercise and/or severe dyslipidemia in 6-mo dyslipidemic mice. Of these genes, only Gpx1 exhibited changes in DNA methylation associated with dyslipidemia and exercise: we observed both increased DNA methylation with dyslipidemia and a transient decrease in DNA methylation with exercise. These epigenetic alterations are found in the second exon of the Gpx1 gene and occur alongside with inverse changes in mRNA expression. Inhibition of expression by methylation of this specific locus was confirmed in vitro. In conclusion, Gpx1 expression in the mouse skeletal muscle can be altered by both exercise and dyslipidemia through changes in DNA methylation, leading to a fine regulation of free radical metabolism.
Collapse
Affiliation(s)
- Albert Nguyen
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Natacha Duquette
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Maya Mamarbachi
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Eric Thorin
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
6
|
Madrigal-Matute J, Fernandez-Laso V, Sastre C, Llamas-Granda P, Egido J, Martin-Ventura JL, Zalba G, Blanco-Colio LM. TWEAK/Fn14 interaction promotes oxidative stress through NADPH oxidase activation in macrophages. Cardiovasc Res 2015. [PMID: 26224570 DOI: 10.1093/cvr/cvv204] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIM The interaction between TNF-like weak inducer of apoptosis (TWEAK, Tnfsf12) and the receptor, fibroblast growth factor-inducible 14 (Fn14), regulates vascular damage through different mechanisms, including inflammation. Oxidative stress plays a major role in inflammation and the development of atherosclerosis, but the relationship between TWEAK and oxidative stress is, however, poorly understood. METHODS AND RESULTS In this study, we found that TWEAK and Fn14 are co-localized with the NADPH subunits, p22phox and Nox2, in human advanced atherosclerotic plaques. Using primary human macrophages and a murine macrophage cell line, we demonstrate that TWEAK promotes ROS production and enhances NADPH oxidase activity. Hence, we show a direct involvement of the TWEAK-Fn14 axis in oxidative stress, as genetic silencing of Fn14 or Nox2 abrogates the TWEAK-induced ROS production. Furthermore, our results point at Rac1 as an upstream mediator of TWEAK during oxidative stress. Finally, using an in vivo murine model we confirmed the major role of TWEAK in oxidative stress, as genetic silencing of Tnfsf12 in an ApoE(-/-) background reduces the number of DHE and 8-hydroxydeoxyguanosine-positive macrophages by 50%. CONCLUSIONS Our results suggest that TWEAK regulates vascular damage by stimulating ROS production in an Nox2-dependent manner. These new insights into the TWEAK/Fn14 axis underline their potential use as therapeutic targets in atherosclerosis.
Collapse
Affiliation(s)
- Julio Madrigal-Matute
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Autonoma University, Av. Reyes Católicos 2, 28040 Madrid, Spain Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Valvanera Fernandez-Laso
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Autonoma University, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Cristina Sastre
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Autonoma University, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Patricia Llamas-Granda
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Autonoma University, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Jesús Egido
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Autonoma University, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - José Luis Martin-Ventura
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Autonoma University, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Guillermo Zalba
- Division of Cardiovascular Sciences, CIMA University of Navarra, Pamplona, Spain Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Luis Miguel Blanco-Colio
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Autonoma University, Av. Reyes Católicos 2, 28040 Madrid, Spain
| |
Collapse
|
7
|
Kaga E, Karademir B, Baykal AT, Ozer NK. Identification of differentially expressed proteins in atherosclerotic aorta and effect of vitamin E. J Proteomics 2013; 92:260-73. [DOI: 10.1016/j.jprot.2013.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/06/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
|
8
|
Ruskovska T, Bernlohr DA. Oxidative stress and protein carbonylation in adipose tissue - implications for insulin resistance and diabetes mellitus. J Proteomics 2013; 92:323-34. [PMID: 23584148 DOI: 10.1016/j.jprot.2013.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/15/2013] [Accepted: 04/03/2013] [Indexed: 12/18/2022]
Abstract
While historically considered simply as a depot for excess energy, white adipose tissue is a dynamically active endocrine organ capable of responding to a variety of efferent stimuli resulting in the synthesis and secretion of peptides, proteins and metabolites that serve as signal transducers to the peripheral and central circulation. Such regulation controls a variety of physiological processes including energy expenditure, food intake, reproductive capacity and responsiveness to insulin. Indeed, the accumulation of inflammatory cells in white adipose tissue is considered to be causative in the development of insulin resistance and eventually type 2 diabetes mellitus. A large body of evidence suggests that oxidative stress in adipose tissue not only correlates with insulin resistance but is also causative in its development. Moreover, using the available plasma oxidative stress biomarkers, many clinical studies have shown the presence of systemic oxidative stress in obese insulin resistant subjects, and its decrease after the successful treatment of obesity. In this review we emphasize the role of protein carbonylation in dysfunctional obese white adipose tissue and its metabolic implications. We focus on glutathione S-transferase A4 as the key enzyme for trans-4-hydroxy-2-nonenal and trans-4-oxo-2-nonenal removal from the cell, thus preventing protein carbonylation. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, Former Yugolav Republic of Macedonia.
| | | |
Collapse
|