1
|
Nieckarz A, Graff B, Burnier M, Marcinkowska AB, Narkiewicz K. Aldosterone in the brain and cognition: knowns and unknowns. Front Endocrinol (Lausanne) 2024; 15:1456211. [PMID: 39553314 PMCID: PMC11563778 DOI: 10.3389/fendo.2024.1456211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Mineralocorticoid receptors are expressed in several structures of the central nervous system, and aldosterone levels can be measured in the brain, although in smaller amounts than in plasma. Nevertheless, these amounts appear to be sufficient to elicit substantial clinical effects. Primary aldosteronism, characterized by high levels of plasma aldosterone, is one of the most common causes of secondary hypertension. In this context, high aldosterone levels may have both indirect and direct effects on the brain with a negative impact on several cerebral functions. Thus, chronic aldosterone excess has been associated with symptoms of anxiety and depression - two clinical entities themselves associated with cognitive deficits. Today, there is an increasing number of reports on the influence of aldosterone on the brain, but there is also a significant amount of uncertainty, such as the role of high aldosterone levels on cognitive functions and decline independently of blood pressure. In this mini review, we discuss the known and unknowns of the impact of aldosterone on the brain putting emphasis on cognitive functions.
Collapse
Affiliation(s)
- Anna Nieckarz
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Gdańsk, Poland
| | - Beata Graff
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Gdańsk, Poland
| | - Michel Burnier
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Gdańsk, Poland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Anna B. Marcinkowska
- Applied Cognitive Neuroscience Lab, Department of Neurophysiology, Neuropsychology and Neuroinformatics, Medical University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
2
|
Carnevale D. Role of Inflammatory Processes in the Brain-Body Relationship Underlying Hypertension. Curr Hypertens Rep 2023; 25:455-461. [PMID: 37787865 PMCID: PMC10698121 DOI: 10.1007/s11906-023-01268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE OF REVIEW Essential hypertension is a huge health problem that significantly impacts worldwide population in terms of morbidity and mortality. Idiopathic in its nature, elevated blood pressure results from a complex interaction between polygenic components and environmental and lifestyle factors. The constant growth in the burden of hypertension is at odds with expectations, considering the availability of therapeutic strategies. Hence, there is an endless need to further investigate the complexity of factors contributing to blood pressure elevation. RECENT FINDINGS Recent data indicate that bidirectional interactions between the nervous system and the immune system alter inflammation in the brain and periphery, contributing to chronic hypertension. These findings indicate that the nervous system is both a direct driver of hypertension and also a target of feedback that often elevates blood pressure further. Similarly, the immune system is both target and driver of the blood pressure increases. The contributions of the feedback loops among these systems appear to play an important role in hypertension. Together, recent mechanistic studies strongly suggest that the interactions among the brain, immune system, and inflammation affect the participation of each system in the pathogenesis of hypertension, and thus, all of these systems must be considered in concert to gain a full appreciation of the development and potential treatments of hypertension.
Collapse
Affiliation(s)
- Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077, Pozzilli, IS, Italy.
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
3
|
Hu JR, Abdullah A, Nanna MG, Soufer R. The Brain-Heart Axis: Neuroinflammatory Interactions in Cardiovascular Disease. Curr Cardiol Rep 2023; 25:1745-1758. [PMID: 37994952 PMCID: PMC10908342 DOI: 10.1007/s11886-023-01990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
PURPOSE OF REVIEW The role of neuroimmune modulation and inflammation in cardiovascular disease has been historically underappreciated. Physiological connections between the heart and brain, termed the heart-brain axis (HBA), are bidirectional, occur through a complex network of autonomic nerves/hormones and cytokines, and play important roles in common disorders. RECENT FINDINGS At the molecular level, advances in the past two decades reveal complex crosstalk mediated by the sympathetic and parasympathetic nervous systems, the renin-angiotensin aldosterone and hypothalamus-pituitary axes, microRNA, and cytokines. Afferent pathways amplify proinflammatory signals via the hypothalamus and brainstem to the periphery, promoting neurogenic inflammation. At the organ level, while stress-mediated cardiomyopathy is the prototypical disorder of the HBA, cardiac dysfunction can result from a myriad of neurologic insults including stroke and spinal injury. Atrial fibrillation is not necessarily a causative factor for cardioembolic stroke, but a manifestation of an abnormal atrial substrate, which can lead to the development of stroke independent of AF. Central and peripheral neurogenic proinflammatory factors have major roles in the HBA, manifesting as complex bi-directional relationships in common conditions such as stroke, arrhythmia, and cardiomyopathy.
Collapse
Affiliation(s)
- Jiun-Ruey Hu
- Section of Cardiovascular Medicine, Yale School of Medicine, 789 Howard Ave, New Haven, CT, 06519, USA
| | - Ahmed Abdullah
- Section of Cardiovascular Medicine, Yale School of Medicine, 789 Howard Ave, New Haven, CT, 06519, USA
| | - Michael G Nanna
- Section of Cardiovascular Medicine, Yale School of Medicine, 789 Howard Ave, New Haven, CT, 06519, USA
| | - Robert Soufer
- Section of Cardiovascular Medicine, Yale School of Medicine, 789 Howard Ave, New Haven, CT, 06519, USA.
- VA Connecticut Healthcare System, 950 Campbell Ave, -111B, West Haven, CT, 06516, USA.
| |
Collapse
|
4
|
Socha MW, Chmielewski J, Pietrus M, Wartęga M. Endogenous Digitalis-like Factors as a Key Molecule in the Pathophysiology of Pregnancy-Induced Hypertension and a Potential Therapeutic Target in Preeclampsia. Int J Mol Sci 2023; 24:12743. [PMID: 37628922 PMCID: PMC10454430 DOI: 10.3390/ijms241612743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Preeclampsia (PE), the most severe presentation of hypertensive disorders of pregnancy, is the major cause of morbidity and mortality linked to pregnancy, affecting both mother and fetus. Despite advances in prophylaxis and managing PE, delivery of the fetus remains the only causative treatment available. Focus on complex pathophysiology brought the potential for new treatment options, and more conservative options allowing reduction of feto-maternal complications and sequelae are being investigated. Endogenous digitalis-like factors, which have been linked to the pathogenesis of preeclampsia since the mid-1980s, have been shown to play a role in the pathogenesis of various cardiovascular diseases, including congestive heart failure and chronic renal disease. Elevated levels of EDLF have been described in pregnancy complicated by hypertensive disorders and are currently being investigated as a therapeutic target in the context of a possible breakthrough in managing preeclampsia. This review summarizes mechanisms implicating EDLFs in the pathogenesis of preeclampsia and evidence for their potential role in treating this doubly life-threatening disease.
Collapse
Affiliation(s)
- Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Jakub Chmielewski
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Miłosz Pietrus
- Department of Gynecology and Obstetrics, Jagiellonian University Medical College, 31-501 Kraków, Poland
| | - Mateusz Wartęga
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie- Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|
5
|
Lai X, Wen H, Yang T, Qin F, Zhong X, Pan Y, Yu J, Huang J, Li J. Effects of renal denervation on endogenous ouabain in spontaneously hypertensive rats. Acta Cir Bras 2023; 37:e371102. [PMID: 36629529 PMCID: PMC9829196 DOI: 10.1590/acb371102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/12/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To investigate the role of renal denervation (RDN) on endogenous ouabain (EO) secretion in spontaneously hypertensive rats (SHR). METHODS Sixteen 12-week-old male SHR were randomly separated into the renal denervation group (RDNX group) and sham operation group (sham group), and eight age-matched Wistar Kyoto rats (WKY) were served as control group. EO concentrations, the Na+- K+-ATPaseactivity, and the expression of Na+-K+-ATPase were assessed. RESULTS EO levels in serum, kidneys and hypothalamus of sham group were higher than in RDNX group (p < 0.05). Renal Na+-K+-ATPase activity subjected to denervation surgery showed significantly reduction when compared with the sham groups (p < 0.05). A positive correlation existed between norepinephrine (NE) content and Na+-K+-ATPase activity in the kidney (r2 = 0.579). Renal Na+-K+-ATPase α1 subunit mRNA expression was down-regulated in the RDNX group compared with the sham group (P < 0.05), while renal Na+-K+-ATPase α1 subunit mRNA expression was no statistical significance between the groups (P = 0.63). Immunohistochemical analysis showed that there were significant differences in the renal expression of Na+-K+-ATPasebetween the three groups (P < 0.05). CONCLUSIONS These experiments demonstrate that RDN exerted an anti-hypertensive effect with reduction of EO levels and Na+-K+-ATPase activity and Na+-K+-ATPase α1 subunit expression of kidney in SHR.
Collapse
Affiliation(s)
- Xiaomei Lai
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Hong Wen
- PhD. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Tingting Yang
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Fei Qin
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Xiaoge Zhong
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Yajin Pan
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Jie Yu
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Jing Huang
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Jianling Li
- PhD, and Postdoctoral Mobile Station. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China.,Corresponding author:
- 13407710624
| |
Collapse
|
6
|
Nishikawa M, Ohara N, Naito Y, Saito Y, Amma C, Tatematsu K, Baoyindugurong J, Miyazawa D, Hashimoto Y, Okuyama H. Rapeseed (canola) oil aggravates metabolic syndrome-like conditions in male but not in female stroke-prone spontaneously hypertensive rats (SHRSP). Toxicol Rep 2022; 9:256-268. [PMID: 35242585 PMCID: PMC8866840 DOI: 10.1016/j.toxrep.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 11/18/2022] Open
Abstract
Canola oil shortens life of male SHRSP. Testis is the target of canola oil toxicity. Inhibition of negative regulation by testosterone of aldosterone production may be a trigger of canola oil toxicity. Facilitation of hypertension by aldosterone may lead to life-shortening. Increased plasma lipids by canola oil have no relevance to life-shortening.
This study was conducted to investigate whether or not there are sex differences in canola oil (CAN)-induced adverse events in the rat and to understand the involvement and the role of testosterone in those events, including life-shortening. Stroke-prone spontaneously hypertensive rats (SHRSP) of both sexes were fed a diet containing 10 wt/wt% soybean oil (SOY, control) or CAN as the sole dietary fat. The survival of the males fed the CAN diet was significantly shorter than that of those fed the SOY diet. In contrast, the survival of the females was not affected by CAN. The males fed the CAN diet showed elevated blood pressure, thrombopenia and insulin-tolerance, which are major symptoms of metabolic syndrome, whereas such changes by the CAN diet were not found in the females. Plasma testosterone was significantly lower in animals of both sexes fed the CAN diet than in those fed the SOY diet, but interestingly, the lowered testosterone was accompanied by a marked increase in plasma aldosterone only in the males. These results demonstrate significant sex differences in CAN-toxicity and suggest that those sex differences may be attributable to the increased aldosterone level, which triggers aggravation of the genetic diseases specific to SHRSP, that is, metabolic syndrome-like conditions, but only in the males. The present results also suggest that testosterone may negatively regulate aldosterone production in the physiology of the males, and the inhibition of that negative regulation caused by the CAN diet is one of the possible causes of the adverse events.
Collapse
Affiliation(s)
- Mai Nishikawa
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Naoki Ohara
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
- Corresponding author.
| | - Yukiko Naito
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Yoshiaki Saito
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Chihiro Amma
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Kenjiro Tatematsu
- Gifu Pharmaceutical University, 5-6-1 Mitabora, Gifu, Gifu 502-8585, Japan
| | - Jinhua Baoyindugurong
- Inner Mongolia Agricultural University, College of Food Science and Engineering, Zhaowuda Rd. 306, Hohhot, Inner Mongolia 010018, PR China
| | - Daisuke Miyazawa
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Yoko Hashimoto
- School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Harumi Okuyama
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| |
Collapse
|
7
|
Implications of testicular ACE2 and the renin-angiotensin system for SARS-CoV-2 on testis function. Nat Rev Urol 2022; 19:116-127. [PMID: 34837081 PMCID: PMC8622117 DOI: 10.1038/s41585-021-00542-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
Although many studies have focused on SARS-CoV-2 infection in the lungs, comparatively little is known about the potential effects of the virus on male fertility. SARS-CoV-2 infection of target cells requires the presence of furin, angiotensin-converting enzyme 2 (ACE2) receptors, and transmembrane protease serine 2 (TMPRSS2). Thus, cells in the body that express these proteins might be highly susceptible to viral entry and downstream effects. Currently, reports regarding the expression of the viral entry proteins in the testes are conflicting; however, other members of the SARS-CoV family of viruses - such as SARS-CoV - have been suspected to cause testicular dysfunction and/or orchitis. SARS-CoV-2, which displays many similarities to SARS-CoV, could potentially cause similar adverse effects. Commonalities between SARS family members, taken in combination with sparse reports of testicular discomfort and altered hormone levels in patients with SARS-CoV-2, might indicate possible testicular dysfunction. Thus, SARS-CoV-2 infection has the potential for effects on testis somatic and germline cells and experimental approaches might be required to help identify potential short-term and long-term effects of SARS-CoV-2 on male fertility.
Collapse
|
8
|
Guo Q, Feng X, Xue H, Jin S, Teng X, Duan X, Xiao L, Wu Y. Parental Renovascular Hypertension-Induced Autonomic Dysfunction in Male Offspring Is Improved by Prenatal or Postnatal Treatment With Hydrogen Sulfide. Front Physiol 2019; 10:1184. [PMID: 31607943 PMCID: PMC6761249 DOI: 10.3389/fphys.2019.01184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence indicates there is a strong association between parental health during pregnancy and incidence of cardiovascular disease in adult offspring. Recently, hydrogen sulfide (H2S) has been demonstrated to be a powerful vasodilator of the placental vasculature, improving intrauterine growth restriction. In this study, we investigated whether parental hypertension induces autonomic dysfunction in male adult offspring, and the H2S mechanism underlying this autonomic dysfunction. 2-kidney-1-clip method was employed to induce parental hypertension during pregnancy and lactation in rats. Basal blood pressure (BP) and autonomic function of male offspring in adulthood was evaluated. Additionally, either maternal hypertensive dams or their male offspring after weaning were treated with H2S to determine improving effects of H2S on autonomic dysfunction. The BP was significantly increased in male offspring of renovascular hypertensive dams when compared to that in offspring of normotensive dams. The offspring of renovascular hypertensive dams also exhibited blunted baroreflex sensitivity, increased sympathetic effect and sympathetic tonus. Western blotting analysis revealed downregulation of endogenous H2S catalyzed enzyme and upregulation of angiotensin Ang II type 1 receptor (AT1R) pathway in the nucleus tractus solitarius and rostral ventrolateral medulla, two hindbrain nuclei involved in BP and autonomic regulation, in these offspring. Either prenatal or postnatal treatment with H2S improved the adverse effects. The results suggest that parental hypertension results in elevated BP and autonomic dysfunction in adult male offspring through activation of AT1R pathway and inhibition of endogenous H2S production in the brain.
Collapse
Affiliation(s)
- Qi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Xiaohong Feng
- Department of Laboratory Diagnostics, Hebei Medical University, Shijiazhuang, China
| | - Hongmei Xue
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Xiaocui Duan
- Hebei Key Laboratory of Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Lin Xiao
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China.,Key Laboratory of Vascular Medicine of Hebei Province, Shijiazhuang, China
| |
Collapse
|
9
|
Tsai YL, Chang CC, Liu LK, Huang PH, Chen LK, Lin SJ. The Association Between Serum Activin A Levels and Hypertension in the Elderly: A Cross-Sectional Analysis From I-Lan Longitudinal Aging Study. Am J Hypertens 2018; 31:369-374. [PMID: 29182731 DOI: 10.1093/ajh/hpx185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Hypertension is an important risk factor for cardiovascular disease. Activin A, a member of the transforming growth factor-β cytokine family, has been shown to regulate blood pressure through the renin-angiotensin system. However, the relationship between activin A and blood pressure remains uncertain. The objective of this study was to determine whether serum activin A levels are associated with blood pressure. METHOD A total of 470 participants of I-Lan longitudinal Aging Study (ILAS) were eligible for this study. Serum levels of activin A were assessed by enzyme-linked immunosorbent assay. Cross-sectional analyses were performed, including comparisons of demographic characteristics, hypertensive status, and activin A levels. RESULTS Among the study participants (50% men, mean age, 69 years), 236 (50.2%) were hypertensive and 234 (49.8%) were normotensive. Hypertensive patients had significantly higher serum activin A levels than normotensives (normotensive vs. hypertensive: 507 ± 169 vs. 554 ± 176 pg/ml, mean ± SD, P < 0.001). All subjects were divided into 3 tertiles on the basis of serum activin A levels. Increasing tertiles of activin A were associated with higher systolic blood pressure (SBP), diastolic blood pressure and pulse pressure (PP) (all P < 0.001). After adjusting for all the potential confounding factors, serum activin A concentration was still significantly associated with SBP (P = 0.02) and PP (P = 0.03). CONCLUSIONS Serum activin A level was associated with SBP and PP. Further studies are required to assess their causal relationship and the clinical relevance.
Collapse
Affiliation(s)
- Yi-Lin Tsai
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Chin Chang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Li-Kuo Liu
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
- Aging and Health Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Liang-Kung Chen
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
- Aging and Health Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Emerging evidence suggests that multiple mechanisms may be responsible for the development of treatment-resistant hypertension (TRH). This review aims to summarize recent data on potential mechanisms of resistance and discuss current pharmacotherapeutic options available in the management of TRH. RECENT FINDINGS Excess sodium and fluid retention, increased activation of the renin-angiotensin-aldosterone system, and heightened activity of the sympathetic nervous system appear to play an important role in development of TRH. Emerging evidence also suggests a role for arterial stiffness and, potentially, gut dysbiosis. Therapeutic approaches for TRH should include diuretic optimization and the addition of aldosterone antagonists as the preferred fourth agent in most patients. Further therapeutic approaches may be guided by the suspected underlying mechanism of TRH in conjunction with other patient-specific factors. The pathophysiology of TRH is multifaceted; however, increasing evidence supports several mechanisms that may be targeted to improve blood pressure control among patients with TRH. Further studies are needed to determine whether such approaches may be more effective than usual care.
Collapse
|
11
|
Peng M, Yang M, Ding Y, Yu L, Deng Y, Lai W, Hu Y. Mechanism of endogenous digitalis-like factor‑induced vascular endothelial cell damage in patients with severe preeclampsia. Int J Mol Med 2017; 41:985-994. [PMID: 29251320 DOI: 10.3892/ijmm.2017.3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/23/2017] [Indexed: 11/06/2022] Open
Abstract
Although endogenous digitalis‑like factor (EDLF) is associated with the development of various physical disorders, the role in preeclampsia remains unclear. This study investigated the effects of EDLF on vascular endothelial cell damage in patients with preeclampsia and the potential mechanisms. From July 2014 to July 2015, 120 singleton pregnancy cases underwent a prenatal examination, inpatient delivery and had normal blood pressure were included in the study, either as patients with severe preeclampsia or the control patients. Serum EDLF levels were compared in these two groups, and an in vitro hypoxic trophocyte‑induced vascular endothelial cell damage model was established to explore the changes in hypoxic trophocyte EDLF level and the subsequent effects on human umbilical vein endothelial cells (HUVECs). Nuclear factor‑κB (NF‑κB) p65 gene expression was silenced in hypoxic trophocytes, and EDLF levels and HUVEC damage were subsequently assessed. Serum EDLF levels were significantly higher in the severe preeclampsia cases than in the controls at the same gestational week (P<0.001). EDLF levels in hypoxic trophocytes increased with the increasing co‑culture duration. Damage to the biofunctions of HUVECs co‑cultured with hypoxic trophocytes also increased with co‑culture duration. However, silencing of NF‑κB p65 in the hypoxic trophocytes reduced the EDLF levels. Annexin A2 was highly expressed in HUVECs, and no biofunctions were significantly damaged (P<0.05) compared with the group without receiving NF‑κB p65 silencing. Serum EDLF levels were significantly higher in patients with severe preeclampsia compared with the controls. The results of the current study indicate that NF‑κB p65 has a role in regulating EDLF production in hypoxic trophocytes.
Collapse
Affiliation(s)
- Mei Peng
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Mengyuan Yang
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yiling Ding
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ling Yu
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yali Deng
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Weisi Lai
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yun Hu
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
12
|
Blaustein MP, Chen L, Hamlyn JM, Leenen FHH, Lingrel JB, Wier WG, Zhang J. Pivotal role of α2 Na + pumps and their high affinity ouabain binding site in cardiovascular health and disease. J Physiol 2016; 594:6079-6103. [PMID: 27350568 DOI: 10.1113/jp272419] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/18/2016] [Indexed: 12/13/2022] Open
Abstract
Reduced smooth muscle (SM)-specific α2 Na+ pump expression elevates basal blood pressure (BP) and increases BP sensitivity to angiotensin II (Ang II) and dietary NaCl, whilst SM-α2 overexpression lowers basal BP and decreases Ang II/salt sensitivity. Prolonged ouabain infusion induces hypertension in rodents, and ouabain-resistant mutation of the α2 ouabain binding site (α2R/R mice) confers resistance to several forms of hypertension. Pressure overload-induced heart hypertrophy and failure are attenuated in cardio-specific α2 knockout, cardio-specific α2 overexpression and α2R/R mice. We propose a unifying hypothesis that reconciles these apparently disparate findings: brain mechanisms, activated by Ang II and high NaCl, regulate sympathetic drive and a novel neurohumoral pathway mediated by both brain and circulating endogenous ouabain (EO). Circulating EO modulates ouabain-sensitive α2 Na+ pump activity and Ca2+ transporter expression and, via Na+ /Ca2+ exchange, Ca2+ homeostasis. This regulates sensitivity to sympathetic activity, Ca2+ signalling and arterial and cardiac contraction.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Ling Chen
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Frans H H Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON, Canada, K1Y 4W7
| | - Jerry B Lingrel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524, USA
| | - W Gil Wier
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jin Zhang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
13
|
Affiliation(s)
- John M Hamlyn
- From the Departments of Physiology (J.M.H., M.P.B.) and Medicine (M.P.B.), University of Maryland School of Medicine, Baltimore.
| | - Mordecai P Blaustein
- From the Departments of Physiology (J.M.H., M.P.B.) and Medicine (M.P.B.), University of Maryland School of Medicine, Baltimore.
| |
Collapse
|
14
|
Liu M, Shi P, Sumners C. Direct anti-inflammatory effects of angiotensin-(1-7) on microglia. J Neurochem 2015; 136:163-71. [PMID: 26448556 DOI: 10.1111/jnc.13386] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 01/18/2023]
Abstract
Much evidence indicates that pro-inflammatory effects of the renin-angiotensin system within the hypothalamus, including microglial activation and production of pro-inflammatory cytokines, play a role in chronic neurogenic hypertension. Our objective here was to examine whether angiotensin-(1-7) [Ang-(1-7)], a protective component of the renin-angiotensin system, exerts direct actions at microglia to counteract these pro-inflammatory effects. Mas, the Ang-(1-7) receptor, was shown to be present on cultured hypothalamic microglia. Treatment of these cells with Ang-(1-7) (100-1000 nM, 3-12 h) elicited significant decreases in basal levels of mRNAs for the pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor-necrosis factor α (TNFα) and of the microglia-macrophage marker CD11b, and increases in basal levels of the anti-inflammatory cytokine interleukin-10. Incubation of microglial cultures with (pro)renin (PRO) (10-50 nM; 6 h) elicited significant increases in mRNAs for IL-1β, TNFα and CD11b. The effects of PRO (10 nM) on IL-1β and TNFα mRNAs, and TNFα protein, were significantly attenuated by co-treatment with Ang-(1-7) (100 nM). Lastly, these actions of Ang-(1-7) were abolished by the Mas antagonist A-779, and were associated with reductions in NF-κB subunit expression. Collectively, these data provide the first evidence that Ang-(1-7) can exert direct effects at microglia to lower baseline and counteract PRO-induced increases in pro-inflammatory cytokines. Renin-Angiotensin system mediated microglial activation and pro-inflammatory cytokine production within the hypothalamus are components of the chronic neuroinflammation associated with 'neurogenic' hypertension. We demonstrated that angiotension-(1-7) acting via its receptor Mas on hypothalamic microglia lessens baseline and (pro)renin-induced increases in pro-inflammatory cytokine production by these cells. This is the first evidence that angiotensin-(1-7) has direct anti-inflammatory effects via microglia.
Collapse
Affiliation(s)
- Meng Liu
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Peng Shi
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Colin Sumners
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
15
|
Winklewski PJ, Radkowski M, Wszedybyl-Winklewska M, Demkow U. Brain inflammation and hypertension: the chicken or the egg? J Neuroinflammation 2015; 12:85. [PMID: 25935397 PMCID: PMC4432955 DOI: 10.1186/s12974-015-0306-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/23/2015] [Indexed: 12/24/2022] Open
Abstract
Inflammation of forebrain and hindbrain nuclei controlling the sympathetic nervous system (SNS) outflow from the brain to the periphery represents an emerging concept of the pathogenesis of neurogenic hypertension. Angiotensin II (Ang-II) and prorenin were shown to increase production of reactive oxygen species and pro-inflammatory cytokines (interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α)) while simultaneously decreasing production of interleukin-10 (IL-10) in the paraventricular nucleus of the hypothalamus and the rostral ventral lateral medulla. Peripheral chronic inflammation and Ang-II activity seem to share a common central mechanism contributing to an increase in sympathetic neurogenic vasomotor tone and entailing neurogenic hypertension. Both hypertension and obesity facilitate the penetration of peripheral immune cells in the brain parenchyma. We suggest that renin-angiotensin-driven hypertension encompasses feedback and feedforward mechanisms in the development of neurogenic hypertension while low-intensity, chronic peripheral inflammation of any origin may serve as a model of a feedforward mechanism in this condition.
Collapse
Affiliation(s)
- Pawel J Winklewski
- Institute of Human Physiology, Medical University of Gdansk, Tuwima Str. 15, 80-210, Gdansk, Poland.
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawinskiego Str. 3c, 02-106, Warsaw, Poland.
| | | | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Marszalkowska Str. 24, 00-576, Warsaw, Poland.
| |
Collapse
|
16
|
Shi P, Grobe JL, Desland FA, Zhou G, Shen XZ, Shan Z, Liu M, Raizada MK, Sumners C. Direct pro-inflammatory effects of prorenin on microglia. PLoS One 2014; 9:e92937. [PMID: 25302502 PMCID: PMC4193744 DOI: 10.1371/journal.pone.0092937] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 08/19/2014] [Indexed: 11/18/2022] Open
Abstract
Neuroinflammation has been implicated in hypertension, and microglia have been proposed to play an important role in the progression of this disease. Here, we have studied whether microglia are activated within cardiovascular regulatory area(s) of the brain during hypertension, especially in high blood pressure that is associated with chronic activation of the renin-angiotensin-system. In addition, we determined whether prorenin, an essential component of the renin-angiotensin-system, exerts direct pro-inflammatory effects on these microglia. Our data indicate that two rodent models which display neurogenic hypertension and over activation of the renin-angiotensin-system in the brain (sRA mice and spontaneously hypertensive rats) exhibit microglial activation, and increased levels of pro-inflammatory cytokines, in the paraventricular nucleus of the hypothalamus, an area crucial for regulation of sympathetic outflow. Further, the renin-angiotensin-system component prorenin elicits direct activation of hypothalamic microglia in culture and induction of pro-inflammatory mechanisms in these cells, effects that involve prorenin receptor-induced NFκB activation. In addition, the prorenin-elicited increases in cytokine expression were fully abolished by microglial inhibitor minocycline, and were potentiated by pre-treatment of cells with angiotensin II. Taken together with our previous data which indicate that pro-inflammatory processes in the paraventricular nucleus are involved in the hypertensive action of renin-angiotensin-system, the novel discovery that prorenin exerts direct stimulatory effects on microglial activation and pro-inflammatory cytokine production provides support for the idea that renin-angiotensin-system -induced neurogenic hypertension is not restricted to actions of angiotensin II alone.
Collapse
Affiliation(s)
- Peng Shi
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Justin L. Grobe
- Department of Pharmacology, Roy J & Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Fiona A. Desland
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Guannan Zhou
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Xiao Z. Shen
- Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Zhiying Shan
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan, United States of America
| | - Meng Liu
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Colin Sumners
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
17
|
Derad I, Sayk F, Lehnert H, Marshall L, Born J, Nitschke M. Intranasal Angiotensin II in Humans Reduces Blood Pressure When Angiotensin II Type 1 Receptors Are Blocked. Hypertension 2014; 63:762-7. [DOI: 10.1161/hypertensionaha.113.02860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intranasal administration of angiotensin II (ANGII) affects blood pressure in a mode different from intravenously administered ANGII via a direct access to the brain bypassing the blood–brain barrier. This clinical study investigated blood pressure regulation after intranasal ANGII administration in healthy humans, whereas systemic, blood-mediated effects of ANGII were specifically blocked. In a balanced crossover design, men (n=8) and women (n=8) were intranasally administered ANGII (400 μg) or placebo after ANGII type 1 receptors had been blocked by pretreatment with valsartan (80 mg; 12 and 6 hours before intranasal administration). Plasma levels of ANGII, aldosterone, renin, vasopressin, and norepinephrine were measured; blood pressure and heart rate were recorded continuously. Intranasal ANGII acutely decreased blood pressure without altering the heart rate. Plasma levels of vasopressin and norepinephrine remained unaffected. Plasma ANGII levels were increased throughout the recording period. Aldosterone levels increased despite the peripheral ANGII type 1 receptor blockade, indicating an aldosterone escape phenomenon. In conclusion, intranasal ANGII reduces blood pressure in the presence of selective ANGII type 1 receptor blockade. Intranasal ANGII administration represents a useful approach for unraveling the role of this peptide in blood pressure regulation in humans.
Collapse
Affiliation(s)
- Inge Derad
- From the Department of Internal Medicine (I.D., F.S., H.L., M.N.) and Department of Neuroendocrinology (L.M.), University of Lübeck, Lübeck, Germany; and Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany (J.B.)
| | - Friedhelm Sayk
- From the Department of Internal Medicine (I.D., F.S., H.L., M.N.) and Department of Neuroendocrinology (L.M.), University of Lübeck, Lübeck, Germany; and Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany (J.B.)
| | - Hendrik Lehnert
- From the Department of Internal Medicine (I.D., F.S., H.L., M.N.) and Department of Neuroendocrinology (L.M.), University of Lübeck, Lübeck, Germany; and Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany (J.B.)
| | - Lisa Marshall
- From the Department of Internal Medicine (I.D., F.S., H.L., M.N.) and Department of Neuroendocrinology (L.M.), University of Lübeck, Lübeck, Germany; and Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany (J.B.)
| | - Jan Born
- From the Department of Internal Medicine (I.D., F.S., H.L., M.N.) and Department of Neuroendocrinology (L.M.), University of Lübeck, Lübeck, Germany; and Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany (J.B.)
| | - Martin Nitschke
- From the Department of Internal Medicine (I.D., F.S., H.L., M.N.) and Department of Neuroendocrinology (L.M.), University of Lübeck, Lübeck, Germany; and Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany (J.B.)
| |
Collapse
|
18
|
Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J Cereb Blood Flow Metab 2013; 33:1732-42. [PMID: 23942363 PMCID: PMC3824186 DOI: 10.1038/jcbfm.2013.143] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/25/2013] [Accepted: 07/16/2013] [Indexed: 11/09/2022]
Abstract
Hypertension in the elderly substantially contributes to cerebromicrovascular damage and promotes the development of vascular cognitive impairment. Despite the importance of the myogenic mechanism in cerebromicrovascular protection, it is not well understood how aging affects the functional adaptation of cerebral arteries to high blood pressure. Hypertension was induced in young (3 months) and aged (24 months) C57/BL6 mice by chronic infusion of angiotensin II (AngII). In young hypertensive mice, the range of cerebral blood flow autoregulation was extended to higher pressure values, and the pressure-induced tone of middle cerebral artery (MCA) was increased. In aged hypertensive mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In young mice, the mechanism of adaptation to hypertension involved upregulation of the 20-HETE (20-hydroxy-5,8,11,14-eicosatetraenoic acid)/transient receptor potential cation channel, subfamily C (TRPC6) pathway and this mechanism was impaired in aged hypertensive mice. Downstream consequences of cerebrovascular autoregulatory dysfunction in aged AngII-induced hypertensive mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal dependent cognitive function. Collectively, aging impairs autoregulatory protection in the brain of mice with AngII-induced hypertension, potentially exacerbating cerebromicrovascular injury and neuroinflammation.
Collapse
|