1
|
Deepika BA, Ramamurthy J, Kannan B, Jayaseelan VP, Arumugam P. Overexpression of insulin-like growth factor-2 mRNA-binding protein 1 is associated with periodontal disease. J Oral Biol Craniofac Res 2024; 14:494-499. [PMID: 39050526 PMCID: PMC11263739 DOI: 10.1016/j.jobcr.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
Objective To investigate the potential role of a novel m6A RNA regulator, Insulin-like Growth Factor-2 mRNA-binding protein 1 (IGF2BP1), in periodontal disease pathogenesis. Materials and methods Gingival tissue samples from 60 periodontitis patients and 60 healthy individuals were analyzed for IGF2BP1 mRNA and protein expression via real-time quantitative PCR (RT-qPCR) and Western blotting. Additionally, Porphyromonas gingivalis Lipopolysaccharide (Pg-LPS) -induced human gingival fibroblasts (HGFs) were evaluated for IGF2BP1 and proinflammatory cytokine expression. In silico functional analysis further explored potential molecular mechanisms. Results IGF2BP1 mRNA and protein levels were significantly higher in the periodontitis group compared to the healthy group. Functional analysis implicated IGF2BP1 in regulating the IL-17 signaling pathway, a key player in inflammation. Pg-LPS treatment upregulated IGF2BP1 and proinflammatory cytokines in HGFs, supporting this finding. Conclusion Our study suggests that IGF2BP1 overexpression contributes to periodontitis pathogenesis, potentially through IL-17 signaling. Further research is needed to elucidate the precise molecular mechanisms and explore IGF2BP1 as a potential therapeutic target or biomarker for this common oral disease.
Collapse
Affiliation(s)
- Burra Anand Deepika
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Jaiganesh Ramamurthy
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Balachander Kannan
- Molecular Biology Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Vijayashree Priyadharsini Jayaseelan
- Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Paramasivam Arumugam
- Molecular Biology Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| |
Collapse
|
2
|
Huang Y, Li M, Liu Q, Song L, Wang Q, Ding P, Tian W, Guo S. Small extracellular vesicles derived from lipopolysaccharide-preconditioned dental follicle cells inhibit cell apoptosis and alveolar bone loss in periodontitis. Arch Oral Biol 2024; 162:105964. [PMID: 38582010 DOI: 10.1016/j.archoralbio.2024.105964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/11/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
OBJECTIVE This study aimed to explore the effects of small extracellular vesicles derived from lipopolysaccharide-preconditioned dental follicle cells (L-D-sEV) on periodontal ligament cells from periodontitis affected teeth (p-PDLCs) in vitro and experimental periodontitis in mice. DESIGN In vitro, the biological function of p-PDLCs and the underlying molecular mechanism were investigated by flow cytometry, Western blot, and quantitative real-time PCR (qRT-PCR) analysis. Eighteen-eight-week-old male C57BL/6 mice were randomly divided into three groups: control (Con), periodontitis (Peri), and L-D-sEV groups. Mice periodontitis model was induced by placing the 5-0 silk thread (around the maxillary second molar) and P.gingivalis (1 ×107 CFUs per mouse). In vivo, the alveolar bone loss, osteoclast activity, and macrophage polarization were measured by micro-computed tomography and histological analysis. RESULTS In vitro, the RANKL/OPG ratio and phosphorylation of JNK and P38 protein levels of p-PDLCs were significantly decreased after L-D-sEV administration. Besides, flow cytometry and qRT-PCR analysis showed that L-D-sEV reduced apoptosis of p-PDLCs, down-regulated apoptosis-related genes Caspase-3 and BCL-2-Associated X expression, and up-regulated B-cell lymphoma-2 gene levels. In vivo, L-D-sEV administration significantly reduced alveolar bone loss, inhibited osteoclast activity, and induced M2 polarization. The histological analysis showed that iNOS/CD206, RANKL/OPG, p-JNK/JNK, and p-P38/P38 ratios were significantly lower in the L-D-sEV group than in the Peri group. CONCLUSIONS L-D-sEV administration alleviated alveolar bone loss by mediating RANKL/OPG-related osteoclast activity and M2 macrophage polarization, alleviating p-PDLCs apoptosis and proliferation via the JNK and P38 pathways.
Collapse
Affiliation(s)
- Yanli Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, People's Republic of China
| | - Mujia Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, People's Republic of China
| | - Qian Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, People's Republic of China
| | - Lu Song
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, People's Republic of China
| | - Qianting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, People's Republic of China
| | - Peihui Ding
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, People's Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, Ministry of Education, Department of Periodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shujuan Guo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, Ministry of Education, Department of Periodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
3
|
Schwartz J, Capistrano KJ, Gluck J, Hezarkhani A, Naqvi AR. SARS-CoV-2, periodontal pathogens, and host factors: The trinity of oral post-acute sequelae of COVID-19. Rev Med Virol 2024; 34:e2543. [PMID: 38782605 PMCID: PMC11260190 DOI: 10.1002/rmv.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
COVID-19 as a pan-epidemic is waning but there it is imperative to understand virus interaction with oral tissues and oral inflammatory diseases. We review periodontal disease (PD), a common inflammatory oral disease, as a driver of COVID-19 and oral post-acute-sequelae conditions (PASC). Oral PASC identifies with PD, loss of teeth, dysgeusia, xerostomia, sialolitis-sialolith, and mucositis. We contend that PD-associated oral microbial dysbiosis involving higher burden of periodontopathic bacteria provide an optimal microenvironment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These pathogens interact with oral epithelial cells activate molecular or biochemical pathways that promote viral adherence, entry, and persistence in the oral cavity. A repertoire of diverse molecules identifies this relationship including lipids, carbohydrates and enzymes. The S protein of SARS-CoV-2 binds to the ACE2 receptor and is activated by protease activity of host furin or TRMPSS2 that cleave S protein subunits to promote viral entry. However, PD pathogens provide additional enzymatic assistance mimicking furin and augment SARS-CoV-2 adherence by inducing viral entry receptors ACE2/TRMPSS, which are poorly expressed on oral epithelial cells. We discuss the mechanisms involving periodontopathogens and host factors that facilitate SARS-CoV-2 infection and immune resistance resulting in incomplete clearance and risk for 'long-haul' oral health issues characterising PASC. Finally, we suggest potential diagnostic markers and treatment avenues to mitigate oral PASC.
Collapse
Affiliation(s)
- Joel Schwartz
- Department of Oral Medicine and Diagnostic Sciences, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | | | - Joseph Gluck
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Armita Hezarkhani
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Afsar R. Naqvi
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| |
Collapse
|
4
|
Oh JM, Kim Y, Son H, Kim YH, Kim HJ. Comparative transcriptome analysis of periodontitis and peri-implantitis in human subjects. J Periodontol 2024; 95:337-349. [PMID: 37789641 DOI: 10.1002/jper.23-0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Peri-implantitis is similar to periodontitis, but there are some differences. For the effective control of peri-implantitis, it is necessary to clarify its similarities and differences with periodontitis in terms of gene expression. METHODS This cross-sectional study included 20 participants (10 healthy subjects and 10 patients with periodontitis and peri-implantitis). Gingival tissue samples (10 healthy, 10 periodontitis, and 10 peri-implantitis tissues) were collected, RNAs were extracted, and RNA sequencing and analysis were performed. RESULTS Differentially expressed gene (DEG) analysis identified 757 upregulated and 159 downregulated genes common between periodontitis and peri-implantitis. Periodontitis tissues uniquely showed 186 overexpressed and 22 suppressed genes compared with peri-implantitis and healthy tissues, while peri-implantitis had 1974 and 642, respectively. Each common and unique differential gene set showed distinct enriched biological features between periodontitis and peri-implantitis after the pathway enrichment analysis. The expression pattern of selected DEGs focused on the representability of the disease was validated by RT-qPCR. CONCLUSIONS Although periodontitis and peri-implantitis showed common gene expression that was clearly differentiated from healthy conditions, there were also unique gene patterns that were differentially expressed only in peri-implantitis. These findings will help elucidate the mechanisms involved in the progression of peri-implantitis.
Collapse
Affiliation(s)
- Jung-Min Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Yeongjoo Kim
- Biomedical Research Institute, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hyojae Son
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hyun-Joo Kim
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Department of Periodontology, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Department of Periodontics and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Republic of Korea
| |
Collapse
|
5
|
Ben-Eltriki M, Ahmadi AR, Nakao Y, Golla K, Lakschevitz F, Häkkinen L, Granville DJ, Kim H. Granzyme B promotes matrix metalloproteinase-1 (MMP-1) release from gingival fibroblasts in a PAR1- and Erk1/2-dependent manner: A novel role in periodontal inflammation. J Periodontal Res 2024; 59:94-103. [PMID: 37873693 DOI: 10.1111/jre.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/10/2023] [Accepted: 09/01/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE To gain insights into how proteases signal to connective tissues cells in the periodontium. BACKGROUND The connective tissue degradation observed in periodontitis is largely due to matrix metalloproteinase (MMP) release by gingival fibroblasts. Granzyme B (GzmB) is a serine protease whose role in periodontitis is undefined. METHODS Human gingival crevicular fluid (GCF) samples were obtained from sites with periodontal disease and healthy control sites. GzmB was quantified in the GCF ([GzmB]GCF ) by ELISA. Gingival fibroblasts (GF) were cultured in the presence or absence of recombinant GzmB. Culture supernatants were analyzed by ELISA to quantify GzmB-induced release of interstitial collagenase (MMP-1). In some experiments, cells were pre-treated with the inhibitor PD98059 to block MEK/ERK signaling. The protease-activated receptor-1 (PAR-1) was blocked with ATAP-2 neutralizing antibody prior to GzmB stimulation. Systemic MMP-1 levels were measured in plasma from wild-type (WT) and granzyme-B-knockout (GzmB-/- ) mice. RESULTS The [GzmB]GCF in human samples was ~4-5 fold higher at sites of periodontal disease (gingivitis/periodontitis) compared to healthy control sites, suggesting an association between GzmB and localized matrix degradation. GzmB induced a ~4-5-fold increase in MMP-1 secretion by cultured fibroblasts. GzmB induced phosphorylation of Erk1/2, which was abrogated by PD98059. GzmB-induced upregulation of MMP-1 secretion was also reduced by PD98059. Blockade of PAR-1 function by ATAP-2 abrogated the increase in MMP-1 secretion by GF. Circulating MMP-1 was similar in WT and GzmB-/- mice, suggesting that GzmB's effects on MMP-1 release are not reflected systemically. CONCLUSION These data point to a novel GzmB-driven signaling pathway in fibroblasts in which MMP-1 secretion is upregulated in a PAR1- and Erk1/2-dependent manner.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amir Reza Ahmadi
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuya Nakao
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kalyan Golla
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Flavia Lakschevitz
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lari Häkkinen
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - David J Granville
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Ai J, Weng Y, Jiang L, Liu C, Liu H, Chen H. Dexamethasone Suppresses IL-33-exacerbated Malignant Phenotype of U87MG Glioblastoma Cells via NF-κB and MAPK Signaling Pathways. Anticancer Agents Med Chem 2024; 24:389-397. [PMID: 38192141 DOI: 10.2174/0118715206281991231222073858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Interleukin (IL)-33 is highly expressed in glioblastoma (GBM) and promotes tumor progression. Targeting IL-33 may be an effective strategy for the treatment of GBM. Dexamethasone (DEX) is a controversial drug routinely used clinically in GBM therapy. Whether DEX has an effect on IL-33 is unknown. This study aimed to investigate the effect of DEX on IL-33 and the molecular mechanisms involved. METHODS U87MG cells were induced by tumor necrosis factor (TNF)-α to express IL-33 and then treated with DEX. The mRNA levels of IL-33, NF-κB p65, ERK1/2, and p38 were determined by real-time quantitative PCR. The expression of IL-33, IkBα (a specific inhibitor of NF-κB) and MKP-1 (a negative regulator of MAPK), as well as the phosphorylation of NF-κB, ERK1/2 and p38 MAPK, were detected by Western blotting. The secretion of IL-33 was measured by ELISA. The proliferation, migration and invasion of U87MG cells were detected by CCK8 and transwell assays, respectively. RESULTS DEX significantly reduced TNF-α-induced production of IL-33 in U87MG cells, which was dependent on inhibiting the activation of the NF-κB, ERK1/2 and p38 MAPK signaling pathways, and was accompanied by the increased expression of IkBα but not MKP-1. Furthermore, the proliferation, migration and invasion of U87MG cells exacerbated by IL-33 were suppressed by DEX. CONCLUSION DEX inhibited the production and tumor-promoting function of IL-33. Whether DEX can benefit GBM patients remains controversial. Our results suggest that GBM patients with high IL-33 expression may benefit from DEX treatment and deserve further investigation.
Collapse
Affiliation(s)
- Jie Ai
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, PR China
- College of Pharmacy, Guilin Medical University, Guilin, 541199, PR China
| | - Yinhua Weng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, PR China
| | - Liyan Jiang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, PR China
| | - Chao Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, PR China
| | - Hongbo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, PR China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Huoying Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, PR China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| |
Collapse
|
7
|
Choi YH, Kim BS, Kang SS. Genomic DNA Extracted from Lactiplantibacillus plantarum Attenuates Porphyromonas gingivalis Lipopolysaccharide (LPS)-Induced Inflammatory Responses via Suppression of Toll-Like Receptor (TLR)-Mediated Mitogen-Activated Protein Kinase (MAPK) and Nuclear Factor-κB (NF-κB) Signaling Pathways. Food Sci Anim Resour 2023; 43:938-947. [PMID: 37701749 PMCID: PMC10493568 DOI: 10.5851/kosfa.2023.e43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 09/14/2023] Open
Abstract
In the present study, we aimed to examine the inhibition of genomic DNA from Lactiplantibacillus plantarum (LpDNA) on Porphyromonas gingivalis lipopolysaccharide (PgLPS)-induced inflammatory responses in RAW264.7 cells. Pretreatment with LpDNA for 15 h significantly inhibited PgLPS-induced mRNA expression and protein secretion of interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein-1. LpDNA pretreatment also reduced the mRNA expression of Toll-like receptor (TLR)2 and TLR4. Furthermore, LpDNA inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and the activation of nuclear factor-κB (NF-κB) induced by PgLPS. Taken together, these findings demonstrate that LpDNA attenuates PgLPS-induced inflammatory responses by regulating MAPKs and NF-κB signaling pathways through the suppression of TLR2 and TLR4 expression.
Collapse
Affiliation(s)
- Young Hyeon Choi
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| | - Bong Sun Kim
- Division of Applied Food System, Major in
Food Science & Technology, Seoul Women’s
University, Seoul 01797, Korea
| | - Seok-Seong Kang
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| |
Collapse
|
8
|
Paksoy T, Ustaoğlu G, Şehirli AÖ, Ünsal RBK, Sayıner S, Orhan K, Aycı NB, Çetinel Ş, Aksoy U, Öğünç AV. Effect of bromelain on periodontal destruction and alveolar bone in rats with experimental periodontitis. Int Immunopharmacol 2023; 121:110446. [PMID: 37290321 DOI: 10.1016/j.intimp.2023.110446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE Several substances that have anti-inflammatory, antiproteinase, and anti-infective properties have been evaluated as modulators of the inflammatory response in periodontal disease. However, evidence for the anti-inflammatory and antioxidative activities of bromelain is limited. This study evaluated the impact of systemically administered bromelain on the progression of experimental periodontitis. METHODS Four equal groups of 32 Wistar albino rats were created as follows (n = 8): control, periodontitis + saline, periodontitis + 5 mg/kg/day bromelain, and periodontitis + 10 mg/kg/day bromelain. To quantify the resorption of bone and bone volume/tissue volume, bone surface / bone volume, and connectivity, lower jawbones were fixed and then scanned using microcomputed tomography (micro CT). Blood samples were taken to measure the macrophage colony-stimulating factor(M-CSF) concentrations, receptor activator of nuclear factor kappa-Β ligand (RANKL), osteoprotegerin (OPG), tumor necrosis factor-alpha (TNF-α), matrix metalloproteinase-8 (MMP-8), interleukin-6(IL-6), glutathione peroxidase (GPx), superoxide dismutase (SOD), and malondialdehyde (MDA). Histopathological assessments were made to examine the tissue. RESULTS Treatment with bromelain improved the healing of the periodontium by decreasing the number of leukocytes and ligament deterioration in the gingival connective tissue and by supporting reintegration with alveolar bone. Bromelain used in ligature-induced periodontitis reduced alveolar bone (AB) resorption as measured by microCT; reduced inflammatory parameters such as IL-6 and TNF-α; regulated oxidative-antioxidative processes by increasing GPx and SOD and reducing MDA levels; and regulated AB modeling by decreasing M-CSF, RANKL, and MMP-8 and increasing OPG levels. CONCLUSION Bromelain may be an option in periodontal therapy by regulating cytokine levels, improving the healing process, and reducing bone resorption and oxidative stress.
Collapse
Affiliation(s)
- Tuğçe Paksoy
- Department of Periodontology, Hamidiye Faculty of Dentistry, University of Health Sciences, Istanbul, Turkey.
| | - Gülbahar Ustaoğlu
- Department of Periodontology, Faculty of Gülhane Dentistry, University of Health Sciences, Ankara, Turkey
| | - Ahmet Özer Şehirli
- Department of Pharmacology, Faculty of Dentistry, Near East University, 99138 Nicosia, Northern Cyprus, Mersin 10, Turkey
| | - Revan Birke Koca Ünsal
- Department of Periodontology, Faculty of Dentistry, University of Kyrenia, 99320 Kyrenia, Northern Cyprus, Mersin 10, Turkey
| | - Serkan Sayıner
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, 99138 Nicosia, Northern Cyprus, Mersin 10, Turkey
| | - Kaan Orhan
- Department of DentoMaxillofacial Radiology, Ankara University, Ankara, Turkey
| | - Nurdan Bülbül Aycı
- Department of Histology and Embryology, School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Şule Çetinel
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Umut Aksoy
- Department of Endodontics, Faculty of Dentistry, Near East University, 99138 Nicosia, Northern Cyprus, Mersin 10, Turkey
| | - Ayliz Velioğlu Öğünç
- Vocational School of Health-Related Professions, Marmara University, Istanbul, Turkey
| |
Collapse
|
9
|
Gard AL, Luu RJ, Maloney R, Cooper MH, Cain BP, Azizgolshani H, Isenberg BC, Borenstein JT, Ong J, Charest JL, Vedula EM. A high-throughput, 28-day, microfluidic model of gingival tissue inflammation and recovery. Commun Biol 2023; 6:92. [PMID: 36690695 PMCID: PMC9870913 DOI: 10.1038/s42003-023-04434-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Nearly half of American adults suffer from gum disease, including mild inflammation of gingival tissue, known as gingivitis. Currently, advances in therapeutic treatments are hampered by a lack of mechanistic understanding of disease progression in physiologically relevant vascularized tissues. To address this, we present a high-throughput microfluidic organ-on-chip model of human gingival tissue containing keratinocytes, fibroblast and endothelial cells. We show the triculture model exhibits physiological tissue structure, mucosal barrier formation, and protein biomarker expression and secretion over several weeks. Through inflammatory cytokine administration, we demonstrate the induction of inflammation measured by changes in barrier function and cytokine secretion. These states of inflammation are induced at various time points within a stable culture window, providing a robust platform for evaluation of therapeutic agents. These data reveal that the administration of specific small molecule inhibitors mitigates the inflammatory response and enables tissue recovery, providing an opportunity for identification of new therapeutic targets for gum disease with the potential to facilitate relevant preclinical drug efficacy and toxicity testing.
Collapse
Affiliation(s)
| | | | - Ryan Maloney
- Bioengineering Division, Draper, Cambridge, MA, USA
| | | | - Brian P Cain
- Bioengineering Division, Draper, Cambridge, MA, USA
| | | | | | | | - Jane Ong
- Colgate-Palmolive Company, Piscataway, NJ, USA
| | | | - Else M Vedula
- Bioengineering Division, Draper, Cambridge, MA, USA.
| |
Collapse
|
10
|
Deng Y, Luo N, Xie M, He L, Jiang R, Hu N, Wen J, Jiang X. Transcriptome landscape comparison of periodontium in developmental and renewal stages. Front Endocrinol (Lausanne) 2023; 14:1154931. [PMID: 37008900 PMCID: PMC10050752 DOI: 10.3389/fendo.2023.1154931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
OBJECTIVES Periodontium regeneration remains a significant challenge in clinics and research, and it is essential to understand the stage-specific biological process in situ. However, differing findings have been reported, and the mechanism has yet to be elucidated. The periodontium of adult mice molars is considered to be stable remodeling tissue. At the same time, the continuously growing incisors and the developing dental follicle (DF) of postnatal mice highly represent fast remodeling tissue. In this study, we attempted to explore different clues of temporal and spatial comparisons to provide improved references for periodontal regeneration. METHODS Periodontal tissues from the developing periodontium (DeP) of postnatal mice, and continuously growing periodontium (CgP) and stable remodeling periodontium (ReP) of adult mice were isolated and compared using RNA sequencing. Based on the Dep and CgP separately compared with the ReP, differentially expressed genes and signaling pathways were analyzed using GO, KEGG databases, and Ingenuity Pathway Analysis (IPA). The results and validation were obtained by immunofluorescence staining and RT-PCR assays. Data were expressed as means ± standard deviation (SD) and analyzed by GraphPad Prism 8 software package, and one-way ANOVA was used to test multiple groups. RESULTS Principal component analysis showed that the three groups of periodontal tissue were successfully isolated and had distinct expression profiles. A total of 792 and 612 DEGs were identified in the DeP and CgP groups compared with the ReP. Upregulated DEGs in the DeP were closely related to developmental processes, while the CgP showed significantly enhanced cellular energy metabolism. The DeP and CgP showed a common downregulation of the immune response, with activation, migration, and recruitment of immune cells. IPA and further validation jointly suggested that the MyD88/p38 MAPK pathway played an essential regulatory role in periodontium remodeling. CONCLUSION Tissue development, energy metabolism, and immune response were critical regulatory processes during periodontal remodeling. Developmental and adult stages of periodontal remodeling showed different expression patterns. These results contribute to a deeper understanding of periodontal development and remodeling and may provide references for periodontal regeneration.
Collapse
Affiliation(s)
- Yuwei Deng
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Luo
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Preventive Dentistry, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Xie
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling He
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Ruixue Jiang
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Hu
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endodontics, Ninth People’ Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Wen
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xinquan Jiang, ; Jin Wen,
| | - Xinquan Jiang
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xinquan Jiang, ; Jin Wen,
| |
Collapse
|
11
|
Therapeutic and Metagenomic Potential of the Biomolecular Therapies against Periodontitis and the Oral Microbiome: Current Evidence and Future Perspectives. Int J Mol Sci 2022; 23:ijms232213708. [PMID: 36430182 PMCID: PMC9693164 DOI: 10.3390/ijms232213708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
The principles of periodontal therapy are based on the control of microbial pathogens and host factors that contribute to biofilm dysbiosis, with the aim of modulating the progression of periodontitis and periodontal tissue destruction. It is currently known how differently each individual responds to periodontal treatment, depending on both the bacterial subtypes that make up the dysbiotic biofilm and interindividual variations in the host inflammatory response. This has allowed the current variety of approaches for the management of periodontitis to be updated by defining the goals of target strategies, which consist of reducing the periodontopathogenic microbial flora and/or modulating the host-mediated response. Therefore, this review aims to update the current variety of approaches for the management of periodontitis based on recent target therapies. Recently, encouraging results have been obtained from several studies exploring the effects of some targeted therapies in the medium- and long-term. Among the most promising target therapies analyzed and explored in this review include: cell-based periodontal regeneration, mediators against bone resorption, emdogain (EMD), platelet-rich plasma, and growth factors. The reviewed evidence supports the hypothesis that the therapeutic combination of epigenetic modifications of periodontal tissues, interacting with the dysbiotic biofilm, is a key step in significantly reducing the development and progression of disease in periodontal patients and improving the therapeutic response of periodontal patients. However, although studies indicate promising results, these need to be further expanded and studied to truly realize the benefits that targeted therapies could bring in the treatment of periodontitis.
Collapse
|
12
|
Chen R, Wang M, Qi Q, Tang Y, Guo Z, Wu S, Li Q. Sequential anti-inflammatory and osteogenic effects of a dual drug delivery scaffold loaded with parthenolide and naringin in periodontitis. J Periodontal Implant Sci 2022; 53:20-37. [PMID: 36468470 PMCID: PMC9943701 DOI: 10.5051/jpis.2105700285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Our pilot study showed that a 3-dimensional dual drug delivery scaffold (DDDS) loaded with Chinese herbs significantly increased the regenerated bone volume fraction. This study aimed to confirm the synergistic anti-inflammatory and osteogenic preclinical effects of this system. METHODS The targets and pathways of parthenolide and naringin were predicted. Three cell models were used to assess the anti-inflammatory effects of parthenolide and the osteogenic effects of naringin. First, the distance between the cementoenamel junction and alveolar bone crest (CEJ-ABC) and the bone mineral density (BMD) of surgical defects were measured in a rat model of periodontitis with periodontal fenestration defects. Additionally, the mRNA expression levels of matrix metallopeptidase 9 (MMP9) and alkaline phosphatase (ALP) were measured. Furthermore, the number of inflammatory cells and osteoclasts, as well as the protein expression levels of tumor necrosis factor-alpha (TNF-α) and levels of ALP were determined. RESULTS Target prediction suggested prostaglandin peroxidase synthase (PTGS2) as a potential target of parthenolide, while cytochrome P450 family 19 subfamily A1 (CYP19A1) and taste 2 receptor member 31 (TAS2R31) were potential targets of naringin. Parthenolide mainly targeted inflammation-related pathways, while naringin participated in steroid hormone synthesis and taste transduction. In vitro experiments revealed significant anti-inflammatory effects of parthenolide on RAW264.7 cells, and significant osteogenic effects of naringin on bone marrow mesenchymal stem cells and MC3T3-E1 cells. DDDS loaded with parthenolide and naringin decreased the CEJ-ABC distance and increased BMD and ALP levels in a time-dependent manner. Inflammation was significantly alleviated after 14 days of DDDS treatment. Additionally, after 56 days, the DDDS group exhibited the highest BMD and ALP levels. CONCLUSIONS DDDS loaded with parthenolide and naringin in a rat model achieved significant synergistic anti-inflammatory and osteogenic effects, providing powerful preclinical evidence.
Collapse
Affiliation(s)
- Rui Chen
- Department of Stomatology, The First People’s Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Mengting Wang
- Department of Stomatology, The First People’s Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Qiaoling Qi
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| | - Yanli Tang
- Department of Stomatology, The First People’s Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | | | - Shuai Wu
- Jinan University, Guangzhou, China
| | - Qiyan Li
- Department of Stomatology, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
13
|
Li G, Sul OJ, Yu R, Choi HS. 7-Ketocholesterol-Induced Micro-RNA-107-5p Increases Number and Activity of Osteoclasts by Targeting MKP1. Int J Mol Sci 2022; 23:ijms23073697. [PMID: 35409056 PMCID: PMC8998300 DOI: 10.3390/ijms23073697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Osteoclasts (OCs), which are responsible for bone resorption, play a critical role in cholesterol-induced bone loss and recent studies have suggested that various micro-RNAs (miRs) contribute to modulating OCs. We hypothesized that 7-ketocholesterol (7-KC), a metabolite responsible for cholesterol-induced bone loss, induces miR-107-5p, which affects OCs. Overexpression and knock-down of miR-107-5p were performed using miR-107-5p mimic and anti-miR-107-5p, respectively. The effects of miR-107-5p on OCs were analyzed by tartrate-resistant alkaline phosphatase staining, qPCR, and Western blot. MiR-107-5p was upregulated after 7-KC exposure in receptor activator of nuclear factor kappa-Β ligand-stimulated OCs. Furthermore, miR-107-5p upregulation was also observed in tibiae from an atherogenic diet-fed mice compared with mice fed with a normal diet. MiR-107-5p overexpression enhanced the area and number of OCs, whereas inhibiting the endogenous expression of miR-107-5p generated by 7-KC had the opposite effect. Among the possible candidates, mitogen-activated protein kinase phosphatase-1, a stress-responsive dual-specificity phosphatase that inactivates mitogen-activated protein kinase (MKP1), has been proven to be a target gene of miR-107-5p, as demonstrated by the direct interaction between miR-107-5p and the 3'-untranslated region of MKP1. Collectively, our findings demonstrate that 7-KC-induced miR-107-5p promotes differentiation and function of OCs by downregulating MKP1.
Collapse
Affiliation(s)
- Guoen Li
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 44610, Korea; (G.L.); (O.-J.S.)
| | - Ok-Joo Sul
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 44610, Korea; (G.L.); (O.-J.S.)
| | - Rina Yu
- Department of Food and Nutrition, University of Ulsan, Ulsan 44610, Korea;
| | - Hye-Seon Choi
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 44610, Korea; (G.L.); (O.-J.S.)
- Correspondence: ; Tel.: +82-52-259-1545; Fax: +82-52-259-2740
| |
Collapse
|
14
|
Kusakcı-Seker B, Ozdemir H, Karadeniz-Saygili S. Evaluation of the protective effects of non-thermal atmospheric plasma on alveolar bone loss in experimental periodontitis. Clin Oral Investig 2021; 25:6949-6959. [PMID: 34585260 DOI: 10.1007/s00784-021-04203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The inhibition of bone destruction is one of the main goals of periodontitis treatment. The aim of this study was to investigate the protective effects of non-thermal atmospheric plasma (NTAP) on alveolar bone loss radiographically, histomorphometrically, and histologically in experimental periodontitis in rats. MATERIALS AND METHODS A total of twenty-eight rats were randomly divided into three groups: control group (CG) (n = 8), periodontitis group (PG) (n = 10), and NTAP group (NTAPG) (n = 10). In PG and NTAPG, experimental periodontitis was created with ligating. The kINPen 11 plasma jet was applied around the ligatured teeth in NTAPG. The samples from each group were radiographically assessed with microcomputed tomography (micro-CT); then, histological (presence of osteoclasts and inflammatory cells) and immunohistochemical (immunoreactive of OCN and ALP) findings were compared. RESULTS The results revealed a significant increase in alveolar bone loss in the PG compared with CG and NTAPG (p < 0.05). Inflammation, alveolar resorption, and cement damage were reduced significantly in the group treated with NTAP compared to the PG (p < 0.05). Significantly higher levels of osteoclasts were detected in the PG in comparison with both CG and NTAPG (p < 0.05). The lowest osteocalcin and ALP values were determined in PG, and the differences between PG and both groups were also significant (p < 0.05). CONCLUSION Within the limitations of the present study, we can say that NTAP may enhance the bone remodeling process by inhibiting inflammation and preventing alveolar bone destruction. CLINICAL RELEVANCE NTAP has clinical potential for accelerating and treating periodontitis with the inflammatory response modulation, osteoblast differentiation, and alveolar bone loss reduction.
Collapse
Affiliation(s)
- Basak Kusakcı-Seker
- Faculty of Dentistry, Department of Periodontology, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Hakan Ozdemir
- Faculty of Dentistry, Department of Periodontology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Suna Karadeniz-Saygili
- Faculty of Medicine, Department of Histology and Embryology, Kütahya Health Science University, Kütahya, Turkey
| |
Collapse
|
15
|
Borges JS, Paranhos LR, de Souza GL, de Souza Matos F, de Macedo Bernardino Í, Moura CCG, Soares PBF. Does systemic oral administration of curcumin effectively reduce alveolar bone loss associated with periodontal disease? A systematic review and meta-analysis of preclinical in vivo studies. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
16
|
Pleiotropic actions of Vitamin D in composite musculoskeletal trauma. Injury 2020; 51:2099-2109. [PMID: 32624209 DOI: 10.1016/j.injury.2020.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/21/2020] [Accepted: 06/13/2020] [Indexed: 02/02/2023]
Abstract
Composite tissue injuries are the result of high energy impacts caused by motor vehicle accidents, gunshot wounds or blasts. These are highly traumatic injuries characterized by wide-spread, penetrating wounds affecting the entire musculoskeletal system, and are generally defined by frank volumetric muscle loss with concomitant segmental bone defects. At the tissue level, the breadth of damage to multiple tissue systems, and potential for infection from penetration, have been shown to lead to an exaggerated, often chronic inflammatory response with subsequent dysregulation of normal musculoskeletal healing mechanisms. Aside from the direct effects of inflammation on myogenesis and osteogenesis, frank muscle loss has been shown to directly impair fracture union and ultimately contribute to failed wound regeneration. Care for these injuries requires extensive surgical intervention and acute care strategies. However, often these interventions do not adequately mitigate inflammation or promote proper musculoskeletal injury repair and force amputation of the limb. Therefore, identification of factors that can promote tissue regeneration and mitigate inflammation could be key to restoring wound healing after composite tissue injury. One such factor that may directly affect both inflammation and tissue regeneration in response to these multi-tissue injuries may be Vitamin D. Beyond traditional roles, the pleiotropic and localized actions of Vitamin D are increasingly being recognized in most aspects of wound healing in complex tissue injuries - e.g., regulation of inflammation, myogenesis, fracture callus mineralization and remodeling. Conversely, pre-existing Vitamin D deficiency leads to musculoskeletal dysfunction, increased fracture risk or fracture non-unions, decreased strength/function and reduced capacity to heal wounds through increased inflammation. This Vitamin D deficient state requires acute supplementation in order to quickly restore circulating levels to an optimal level, thereby facilitating a robust wound healing response. Herein, the purpose of this review is to address the roles and critical functions of Vitamin D throughout the wound healing process. Findings from this review suggest that careful monitoring and/or supplementation of Vitamin D may be critical for wound regeneration in composite tissue injuries.
Collapse
|
17
|
A 20-Mer Peptide Derived from the Lectin Domain of SP-A2 Decreases Tumor Necrosis Factor Alpha Production during Mycoplasma pneumoniae Infection. Infect Immun 2020; 88:IAI.00099-20. [PMID: 32513852 DOI: 10.1128/iai.00099-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022] Open
Abstract
Human surfactant protein-A2 (hSP-A2) is a component of pulmonary surfactant that plays an important role in the lung's immune system by interacting with viruses, bacteria, and fungi to facilitate pathogen clearance and by downregulating inflammatory responses after an allergic challenge. Genetic variation in SP-A2 at position Gln223Lys is present in up to ∼30% of the population and has been associated with several lung diseases, such as asthma, pulmonary fibrosis, and lung cancer (M. M. Pettigrew, J. F. Gent, Y. Zhu, E. W. Triche, et al., BMC Med Genet 8:15, 2007, https://bmcmedgenet.biomedcentral.com/articles/10.1186/1471-2350-8-15; Y. Wang, P. J. Kuan, C. Zing, J. T. Cronkhite, et al., Am J Hum Genet 84:52-59, 2009, https://www.cell.com/ajhg/fulltext/S0002-9297(08)00595-8). Previous work performed by our group showed differences in levels of SP-A binding to non-live mycoplasma membrane fractions that were dependent on the presence of a lysine (K) or a glutamine (Q) at amino acid position 223 in the carbohydrate region of SP-A2. On the basis of these differences, we have derived 20-amino-acid peptides flanking this region of interest in order to test the ability of each to regulate various immune responses to live Mycoplasma pneumoniae in SP-A knockout mice and RAW 264.7 cells. In both models, the 20-mer containing 223Q significantly decreased both tumor necrosis factor alpha (TNF-α) mRNA levels and protein levels in comparison to the 20-mer containing 223K during M. pneumoniae infection. While neither of the 20-mer peptides (223Q and 223K) had an effect on p38 phosphorylation during M. pneumoniae infection, the 223Q-20mer peptide significantly reduced NF-κB p65 phosphorylation in both models. Taken together, our data suggest that small peptides derived from the lectin domain of SP-A2 that contain the major allelic variant (223Q) maintain activity in reducing TNF-α induction during M. pneumoniae infection.
Collapse
|
18
|
Wang L, Zheng J, Pathak JL, Chen Y, Liang D, Yang L, Sun H, Zhong M, Wu L, Li L, Deng S, Zheng L, Yan Y, Hou D, Wang L, Ge L. SLIT2 Overexpression in Periodontitis Intensifies Inflammation and Alveolar Bone Loss, Possibly via the Activation of MAPK Pathway. Front Cell Dev Biol 2020; 8:593. [PMID: 32760720 PMCID: PMC7371784 DOI: 10.3389/fcell.2020.00593] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
SLIT2, a member of neuronal guidance cues, has been reported to regulate inflammation and cancer progression. Periodontitis is an oral inflammatory disease that degenerates periodontal tissue, alveolar bone and tooth. This study aims to explore the expression pattern of SLIT2 in periodontitis and its role in disease progression and bone loss. Gingival tissue of 20 periodontitis patients and 20 healthy-controls was obtained. Ligature-induced periodontitis (LIP) mice-model was developed in Slit2-Tg and wild-type mice. The effect of SLIT2 on inflammation, immune cell infiltration, M1 macrophage polarization, and alveolar bone loss in periodontitis was analyzed extensively. In periodontitis-affected gingival-tissue, SLIT2 expression was 4.4-fold higher compared to healthy-volunteers. LIP enhanced SLIT2 expression in mice periodontitis-affected periodontal tissue (PAPT) and blood circulation of wild-type mice by 4. 6-, and 5.0-fold, respectively. In Slit2-Tg-mice PAPT, SLIT2 expression was 1.8-fold higher compared to wild-type mice. Micro-CT and histomorphometric analysis revealed a 1.3-fold higher cement-enamel-junction to the alveolar-bone-crest (CEJ-ABC) distance and alveolar bone loss in LIP Slit2-Tg-mice compare to LIP wild-type mice. Results from RNA-sequencing, RT-qPCR, and ELISA showed a higher expression of Cxcr2, Il-18, TNFα, IL-6, and IL-1β in Slit2-Tg-mice PAPT compared to wild-type-mice. Slit2-Tg-mice PAPT showed a higher number of osteoclasts, M1 macrophages, and the upregulation of Robo1 expression. Slit2-Tg-mice PAPT showed upregulation of M1 macrophage marker CD16/32 and osteoclastogenic markers Acp5, Ctsk, and Nfatc1, but osteogenic markers (Alp, Bglap) remained unchanged. Immunohistochemistry unveiled the higher vasculature and infiltration of leucocytes and macrophages in Slit2-Tg-mice PAPT. RNA-sequencing, GO-pathway enrichment analysis, and western blot analysis revealed the activation of the MAPK signaling pathway in Slit2-Tg mice PAPT. In conclusion, SLIT2 overexpression in periodontitis intensifies inflammation, immune cells infiltration, M1 macrophage polarization, osteoclastogenesis, and alveolar bone loss, possibly via activation of MAPK signaling, suggesting the role of SLIT2 on exacerbation of periodontitis and alveolar bone loss.
Collapse
Affiliation(s)
- Liping Wang
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| | - Jing Zheng
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| | - Janak L Pathak
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| | - Yunxin Chen
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| | - Dongliang Liang
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| | - Luxi Yang
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| | - Haobo Sun
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| | - Mei Zhong
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| | - Lihong Wu
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| | - Li Li
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuhua Deng
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lingyun Zheng
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongyong Yan
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| | - Dan Hou
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China.,Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Linhu Ge
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Cerevisterol Alleviates Inflammation via Suppression of MAPK/NF-κB/AP-1 and Activation of the Nrf2/HO-1 Signaling Cascade. Biomolecules 2020; 10:biom10020199. [PMID: 32013140 PMCID: PMC7072429 DOI: 10.3390/biom10020199] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
As part of our continuous effort to find potential anti-inflammatory agents from endophytic fungi, a Fusarium solani strain, isolated from the plant Aponogeton undulatus Roxb., was investigated. Cerevisterol (CRVS) was identified from endophytic fungi, a Fusarium solani strain, and moreover exhibited anti-inflammatory activity. However, the underlying mode of action remains poorly understood. The aim of this study is to reveal the potential mechanisms of CRVS against inflammation on a molecular level in LPS-activated RAW 264.7 peritoneal macrophage cells. CRVS was isolated from F. solani and characterized based on spectral data analysis. The MTT assay was performed to measure cell viability in CRVS-treated macrophages. Anti-inflammatory activity was assessed by measurement of nitric oxide (NO) and prostaglandin E2 (PGE2) levels, as well as the production of various cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and -6 (IL-6) in LPS-stimulated macrophages. RT-PCR and immunoblotting analyses were done to examine the expression of various inflammatory response genes. A reporter gene assay was conducted to measure the level of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein-1 (AP-1) transactivation. CRVS suppresses the LPS-induced production of NO and PGE2, which is a plausible mechanism for this effect is by reducing the expression of iNOS and COX-2. CRVS also decreases the expression of pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1β. CRVS halted the nuclear translocation of NF-κB by blocking the phosphorylation of inhibitory protein κBα (IκBα) and suppressing NF-κB transactivation. The mitogen-activated protein kinases (MAPK) signaling pathways are also suppressed. CRVS treatment also inhibited the transactivation of AP-1 and the phosphorylation of c-Fos. Furthermore, CRVS could induce the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) by down-regulating Kelch-like ECH-associated protein 1 (Keap-1) and up-regulating hemeoxygenases-1 (HO-1) expression. The results suggest that CRVS acts as a natural agent for treating inflammatory diseases by targeting an MAPK, NF-κB, AP-1, and Nrf2-mediated HO-1 signaling cascade.
Collapse
|
20
|
Valerio MS, Alexis F, Kirkwood KL. Functionalized nanoparticles containing MKP-1 agonists reduce periodontal bone loss. J Periodontol 2019; 90:894-902. [PMID: 30811602 DOI: 10.1002/jper.18-0572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/21/2018] [Accepted: 01/06/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Progress over of the past several years has elucidated a role for mitogen-activated protein kinase phosphatase to regulate periodontal inflammation yielding new possibilities for treatment of periodontal diseases. These studies aimed to determine if nanoparticles (NPs) loaded with a pharmacological agent that induces mitogen-activated protein kinase phosphatase have potential clinical utility for management of periodontal inflammation and alveolar bone. METHODS Polyethylene glycol (PEG)-polylactide (PLA) (PEG-PLA) NPs were loaded with auranofin (ARN), an antirheumatic drug, to induce mitogen-activated protein kinase phosphatase (MKP)-1 expression in vitro and in vivo. Release kinetics of ARN from NPs was performed by high performance liquid chromatography (HPLC). Fluorescent-labeled NPs were used to show uptake into macrophages by flow cytometry. Real-time quantitative polymerase chain reaction (qPCR) was used to determine dual specificity protein phosphatase (Dusp)-1 mRNA induction by Auranofin-loaded nanoparticles (ARN-NPs) and viability of ARN-NPs was determined by colorimetric in vitro assays. Functional in vitro assays were used to measure functional MKP-1 induction and preclinical models using Aggregatibacter actinomycetemcomitans lipopolysaccharide-induced alveolar bone loss and microcomputed tomography was used to determine in vivo efficacy of functionalized ARN-NPs. RESULTS Data indicated that ARN-NPs had reduced cytotoxicity compared with free ARN and Dusp1 mRNA and MKP-1 activity was significantly increased by ARN-NPs in vitro. Flow cytometry indicated rapid uptake into macrophages. Finally, significant bone loss reduction was observed with ARN-NPs compared with control NPs in vivo using an lipopolysaccharide-induced rat model of periodontitis. CONCLUSION Results from these studies suggest that developing NPs functionalized with ARN have anti-inflammatory activities and may be a novel adjuvant therapeutic strategy to significantly improve periodontitis therapy and outcomes.
Collapse
Affiliation(s)
- Michael S Valerio
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Frank Alexis
- Department of Bioengineering, Clemson University, Clemson, SC, USA.,School of Biological Sciences and Engineering, Yachay Tech, San Miguel de Urcuquí, Ecuador
| | - Keith L Kirkwood
- Department of Oral Biology, University at Buffalo, Buffalo, NY, USA.,Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
21
|
de Almeida Brandão D, Spolidorio LC, Johnson F, Golub LM, Guimarães-Stabili MR, Rossa C. Dose-response assessment of chemically modified curcumin in experimental periodontitis. J Periodontol 2018; 90:535-545. [PMID: 30394523 DOI: 10.1002/jper.18-0392] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND CMC2.24, a novel tri-ketonic chemically modified compound based on natural di-ketonic curcumin, has been shown to reduce bone loss and inflammatory mediators in experimental periodontitis, however, a potential dose-response relationship was not determined. The purpose of this study was to assess the effects of different doses of CMC2.24 on inflammation and bone resorption in vivo and also to describe on the effects of CMC2.24 on macrophage response. METHODS CMC2.24 was administered daily to animals for 28 days by oral gavage, at the following doses: 0 (control), 1, 3, 10, and 30 mg/kg of body weight. Experimental periodontitis was induced by injections of lipopolysaccharide (LPS) into the gingival tissues. Outcomes assessed were bone resorption, detection of tartrate-resistant acid phosphatase, and determination of gene expression. In vitro, macrophages (RAW264.7) were treated with different concentrations of CMC2.24: 1, 3, 10, and 30 μM and then subjected to different activation stimuli. Gene expression, phagocytic activity, production of reactive oxygen species (ROS) and cytokine production were evaluated. RESULTS CMC2.24 inhibited bone resorption, osteoclastogenesis, and tumor necrosis factor (TNF)-α expression in vivo. These beneficial responses reached maximum levels at a dose of 1 mg/kg, i.e. no dose-dependent effect. In vitro, CMC2.24 reduced the production of TNF-α and interleukin-10, inhibited phagocytic activity and stimulated production of ROS. A dose-dependent effect was observed only for ROS production. CONCLUSION Low doses of CMC2.24 (1 mg/kg/day) administered orally were sufficient to significantly inhibit alveolar bone resorption associated with the experimental periodontal disease; whereas in vitro macrophage inflammatory gene expression and phagocytosis were reduced, whereas production of ROS was stimulated.
Collapse
Affiliation(s)
| | | | - Francis Johnson
- Departments of Chemistry and Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Lorne M Golub
- Department of Oral Biology and Pathology, School of Dental Medicine Stony Brook University
| | | | - Carlos Rossa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP, Araraquara, Brazil
| |
Collapse
|
22
|
Shang L, Wang T, Tong D, Kang W, Liang Q, Ge S. Prolyl hydroxylases positively regulated LPS-induced inflammation in human gingival fibroblasts via TLR4/MyD88-mediated AKT/NF-κB and MAPK pathways. Cell Prolif 2018; 51:e12516. [PMID: 30091492 PMCID: PMC6528886 DOI: 10.1111/cpr.12516] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Prolyl hydroxylases (PHDs) play essential roles in oxygen-sensing system, whereas the effects of PHDs on inflammation have not been totally uncovered. Our study aimed to investigate the role of PHDs in lipopolysaccharide (LPS)-induced inflammation of human gingival fibroblasts (HGFs) and clarify the potential mechanisms. MATERIALS AND METHODS A pan hydroxylase inhibitor, dimethyloxallyl glycine (DMOG), and RNA interference were used to explore the role of PHDs in inflammation. Cytotoxic effect of DMOG was determined by cell-counting kit-8 and flow cytometry respectively. The secretion levels of IL-6 and IL-8 were assessed by ELISA. The mRNA levels of inflammatory cytokines, Toll-like receptor (TLR) 4 and MyD88 were evaluated by quantitative real-time PCR. The activation of NF-κB, mitogen-activated protein kinase (MAPK) and PI3K/AKT pathways were detected by western blot and the nuclear translocation of NF-κB p65 was examined by immunofluorescence. Downregulation of PHD1 and PHD2 was performed with siRNA transfection. RESULTS Dimethyloxallyl glycine inhibited LPS-induced inflammatory cytokine, TLR4 and MyD88 expression in gene level and the elevated secretion of IL-6 and IL-8 was also downregulated. Additionally, LPS-induced activation of NF-κB, MAPK and AKT pathways was abolished by DMOG treatment. Importantly, LPS-induced inflammatory cytokine expression was merely suppressed by PHD2 knockdown. CONCLUSIONS Prolyl hydroxylases acted as a positive regulator in LPS-induced inflammation of HGFs via TLR4/MyD88-mediated NF-κB, MAPK and AKT signalling pathways and PHD2 among three isoforms was principally responsible for the effects.
Collapse
Affiliation(s)
- Lingling Shang
- Shandong Provincial Key Laboratory of Oral Tissue RegenerationSchool of Stomatology, Shandong UniversityShandong, JinanChina
- Department of PeriodontologySchool of Stomatology, Shandong UniversityShandong, JinanChina
| | - Ting Wang
- Shandong Provincial Key Laboratory of Oral Tissue RegenerationSchool of Stomatology, Shandong UniversityShandong, JinanChina
- Department of PeriodontologySchool of Stomatology, Shandong UniversityShandong, JinanChina
| | - Dongdong Tong
- Department of Oral maxillofacial SurgerySchool of Stomatology, Shandong UniversityShandong, JinanChina
| | - Wenyan Kang
- Shandong Provincial Key Laboratory of Oral Tissue RegenerationSchool of Stomatology, Shandong UniversityShandong, JinanChina
- Department of PeriodontologySchool of Stomatology, Shandong UniversityShandong, JinanChina
| | - Qianyu Liang
- Shandong Provincial Key Laboratory of Oral Tissue RegenerationSchool of Stomatology, Shandong UniversityShandong, JinanChina
- Department of PeriodontologySchool of Stomatology, Shandong UniversityShandong, JinanChina
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue RegenerationSchool of Stomatology, Shandong UniversityShandong, JinanChina
- Department of PeriodontologySchool of Stomatology, Shandong UniversityShandong, JinanChina
| |
Collapse
|
23
|
Kriebel K, Hieke C, Engelmann R, Potempa J, Müller-Hilke B, Lang H, Kreikemeyer B. Porphyromonas gingivalis Peptidyl Arginine Deiminase Can Modulate Neutrophil Activity via Infection of Human Dental Stem Cells. J Innate Immun 2018; 10:264-278. [PMID: 29860256 DOI: 10.1159/000489020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Periodontitis (PD) is a widespread chronic inflammatory disease in the human population. Porphyromonas gingivalis is associated with PD and can citrullinate host proteins via P. gingivalis peptidyl arginine deiminase (PPAD). Here, we hypothesized that infection of human dental follicle stem cells (hDFSCs) with P. gingivalis and subsequent interaction with neutrophils will alter the neutrophil phenotype. To test this hypothesis, we established and analyzed a triple-culture system of neutrophils and hDFSCs primed with P. gingivalis. Mitogen-activated pathway blocking reagents were applied to gain insight into stem cell signaling after infection. Naïve hDFSCs do not influence the neutrophil phenotype. However, infection of hDFSCs with P. gingivalis prolongs the survival of neutrophils and increases their migration. These phenotypic changes depend on direct cellular contacts and PPAD expression by P. gingivalis. Active JNK and ERK pathways in primed hDFSCs are essential for the phenotypic changes in neutrophils. Collectively, our results confirm that P. gingivalis modifies hDFSCs, thereby causing an immune imbalance.
Collapse
Affiliation(s)
- Katja Kriebel
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, Rostock, Germany
| | - Cathleen Hieke
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Robby Engelmann
- Institute of Immunology, Rostock University Medical Center, Rostock, Germany
| | - Jan Potempa
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Krakow, Poland.,University of Louisville School of Dentistry, Department of Oral Immunity and Infectious Diseases, Louisville, Kentucky, USA
| | | | - Hermann Lang
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
24
|
Elucidation on Predominant Pathways Involved in the Differentiation and Mineralization of Odontoblast-Like Cells by Selective Blockade of Mitogen-Activated Protein Kinases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2370438. [PMID: 29675422 PMCID: PMC5838463 DOI: 10.1155/2018/2370438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/10/2018] [Accepted: 01/21/2018] [Indexed: 12/12/2022]
Abstract
Aim To analyze the effect of three mitogen-activated protein kinase (MAPK) inhibitors, namely, SB202190 (p38 inhibitor), SP600125 (JNK inhibitor), and PD98059 (ERK inhibitor) in Dex-stimulated MDPC-23 cell differentiation and mineralization. Methods Experiment was divided into five groups, control (cells without Dex and inhibitors treatment), Dex (cells with Dex treatment but without inhibitors), Dex + SB202190, Dex + SP600125, and Dex + PD98059. Cell differentiation was assessed by alkaline phosphatase (ALP) activity assay and real time RT-PCR. Cell mineralization was investigated by alizarin red staining. Results Exposure to SB202190 (20 μM) significantly decreased the mineral deposition in Dex-treated cells as demonstrated by alizarin red staining. Treatment of SP600125 (20 μM) attenuated the mineralization as well, albeit at a lower degree as compared to SB202190 (20 μM). Similarly, SB202190 (20 μM) completely abrogated the ALP activity stimulated by Dex at six days in culture, while no changes were observed with regard to ALP activity in SP600125 (20 μM) and PD98059 (20 μM) treated cells. The upregulation of bone sialoprotein (BSP), ALP, and osteopontin (OPN) in Dex challenged cells was completely inhibited by SB202190. Conclusion Blockade of p38-MAPK signaling pathway resulted in significant inhibition of ALP activity, mineralization, and downregulation of osteogenic markers. The data implicated that p38 signaling pathway plays a critical role in the regulation of MDPC-23 cells differentiation and mineralization.
Collapse
|
25
|
Salivary Levels of IL-6 and IL-17 Could Be an Indicator of Disease Severity in Patients with Calculus Associated Chronic Periodontitis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8531961. [PMID: 29670909 PMCID: PMC5835283 DOI: 10.1155/2018/8531961] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/24/2017] [Accepted: 01/23/2018] [Indexed: 12/22/2022]
Abstract
Background/Purpose. Chronic periodontitis is an inflammatory disease of gums that causes loss of supporting structures of teeth, that is, gingiva, periodontal ligament, cementum, and alveolar bone. Levels of various cytokines in the serum, gingival tissues, and gingival crevicular fluid in patients with chronic periodontitis have been studied, but limited data are available on the level of cytokines in saliva. Therefore, a study was designed to determine levels of salivary IL-6 and IL-17 in patients with calculus associated chronic periodontitis. Materials and Methods. It was a comparative, cross-sectional study that is comprised of 41 healthy controls and 41 calculus associated chronic periodontitis patients (CP patients). According to the degree of attachment loss, CP patients were subcategorized as mild (CAL 1-2 mm), moderate (CAL 3-4 mm), and severe (CAL > 5 mm) forms of periodontitis. Salivary levels of IL-6 and IL-17 were determined using enzyme-linked immunosorbent assay (ELISA) technique. Data was analyzed using SPSS 20.0. Results. Between healthy controls and CP patients (moderate and severe disease), a statistically significant difference was observed in the concentrations of IL-6 and IL-17. In CP patients, the highest mean ± SD of salivary IL-6 and IL-17 was observed in severe CP, followed by moderate and mild CP. Regarding level of IL-6, a statistically significant difference was observed between mild and severe disease and between moderate and severe subcategories of CP patients. Similarly, statistically significant difference was observed in the level of IL-17 between mild and moderate, mild and severe disease, and moderate and severe disease. Conclusion. The levels of salivary IL-6 and IL-17 were increased significantly in calculus associated CP patients as compared to healthy controls and these levels increased with the progression of CP. Clinical Significance. Salivary levels of IL-6 and IL-17 may help in the subcategorization of CP.
Collapse
|
26
|
Interference RNA in immune-mediated oral diseases - minireview. Cent Eur J Immunol 2017; 42:301-304. [PMID: 29204096 PMCID: PMC5708212 DOI: 10.5114/ceji.2017.70974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/16/2016] [Indexed: 01/01/2023] Open
Abstract
Immune-mediated oral disorders are characterised by their chronicity, and some are refractory to treatment. Interference RNA (iRNA) has been implicated in the underlying mechanism of such immune-mediate oral and refractory inflammatory oral diseases. iRNA-based understanding of the mechanism in these diseases may help to produce non-invasive diagnostic methodologies and treatment modalities of such drug non-responsive diseases. Oral lesions in these immune-mediated diseases can precede the occurrence of lesions in other regions of the body. The early diagnosis and treatment of these drug non-responsive diseases might benefit the patient by reducing chronicity and probably even resolving the disease. This aim of the present minireview is to give an overview of the possible implications of iRNA on the pathogenesis, diagnosis, and treatments of immune-mediated and inflammatory oral diseases. The manuscript can form the framework for research on iRNA in these immune-mediated oral disorders.
Collapse
|
27
|
Ross EA, Naylor AJ, O'Neil JD, Crowley T, Ridley ML, Crowe J, Smallie T, Tang TJ, Turner JD, Norling LV, Dominguez S, Perlman H, Verrills NM, Kollias G, Vitek MP, Filer A, Buckley CD, Dean JL, Clark AR. Treatment of inflammatory arthritis via targeting of tristetraprolin, a master regulator of pro-inflammatory gene expression. Ann Rheum Dis 2016; 76:612-619. [PMID: 27597652 PMCID: PMC5446007 DOI: 10.1136/annrheumdis-2016-209424] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Tristetraprolin (TTP), a negative regulator of many pro-inflammatory genes, is strongly expressed in rheumatoid synovial cells. The mitogen-activated protein kinase (MAPK) p38 pathway mediates the inactivation of TTP via phosphorylation of two serine residues. We wished to test the hypothesis that these phosphorylations contribute to the development of inflammatory arthritis, and that, conversely, joint inflammation may be inhibited by promoting the dephosphorylation and activation of TTP. METHODS The expression of TTP and its relationship with MAPK p38 activity were examined in non-inflamed and rheumatoid arthritis (RA) synovial tissue. Experimental arthritis was induced in a genetically modified mouse strain, in which endogenous TTP cannot be phosphorylated and inactivated. In vitro and in vivo experiments were performed to test anti-inflammatory effects of compounds that activate the protein phosphatase 2A (PP2A) and promote dephosphorylation of TTP. RESULTS TTP expression was significantly higher in RA than non-inflamed synovium, detected in macrophages, vascular endothelial cells and some fibroblasts and co-localised with MAPK p38 activation. Substitution of TTP phosphorylation sites conferred dramatic protection against inflammatory arthritis in mice. Two distinct PP2A agonists also reduced inflammation and prevented bone erosion. In vitro anti-inflammatory effects of PP2A agonism were mediated by TTP activation. CONCLUSIONS The phosphorylation state of TTP is a critical determinant of inflammatory responses, and a tractable target for novel anti-inflammatory treatments.
Collapse
Affiliation(s)
- E A Ross
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - A J Naylor
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - J D O'Neil
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - T Crowley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - M L Ridley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - J Crowe
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - T Smallie
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - T J Tang
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - J D Turner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - L V Norling
- William Harvey Research Institute, QMUL, London, UK
| | - S Dominguez
- Division of Rheumatology, Northwestern University, Chicago, Illinois, USA
| | - H Perlman
- Division of Rheumatology, Northwestern University, Chicago, Illinois, USA
| | - N M Verrills
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - G Kollias
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming', Vari, Greece
| | - M P Vitek
- Cognosci Inc., Research Triangle Park, North Carolina, USA
| | - A Filer
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - C D Buckley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - J L Dean
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - A R Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
28
|
He L, Duan H, Li X, Wang S, Zhang Y, Lei L, Xu J, Liu S, Li X. Sinomenine down-regulates TLR4/TRAF6 expression and attenuates lipopolysaccharide-induced osteoclastogenesis and osteolysis. Eur J Pharmacol 2016; 779:66-79. [DOI: 10.1016/j.ejphar.2016.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/09/2022]
|
29
|
Intini G, Katsuragi Y, Kirkwood KL, Yang S. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions. Adv Dent Res 2016; 26:38-46. [PMID: 24736703 DOI: 10.1177/0022034514529305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of supplementation.
Collapse
Affiliation(s)
- G Intini
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, REB 513, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
30
|
Hiyari S, Atti E, Camargo PM, Eskin E, Lusis AJ, Tetradis S, Pirih FQ. Heritability of periodontal bone loss in mice. J Periodontal Res 2015; 50:730-6. [PMID: 25581386 DOI: 10.1111/jre.12258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND Periodontitis is an inflammatory disease of the periodontal tissues that compromises tooth support and can lead to tooth loss. Although bacterial biofilm is central in disease pathogenesis, the host response plays an important role in the progression and severity of periodontitis. Indeed, clinical genetic studies indicate that periodontitis is 50% heritable. In this study, we hypothesized that lipopolysaccharide (LPS) injections lead to a strain-dependent periodontal bone loss pattern. MATERIAL AND METHODS We utilized five inbred mouse strains that derive the recombinant strains of the hybrid mouse diversity panel. Mice received Porphyromonas gingivalis-LPS injections for 6 wk. RESULTS AND CONCLUSION Micro-computed tomography analysis demonstrated a statistically significant strain-dependent bone loss. The most susceptible strain, C57BL/6J, had a fivefold higher LPS-induced bone loss compared to the most resistant strain, A/J. More importantly, periodontal bone loss revealed 49% heritability, which closely mimics periodontitis heritability for patients. To evaluate further the functional differences that underlie periodontal bone loss, osteoclast numbers of C57BL/6J and A/J mice were measured in vivo and in vitro. In vitro analysis of osteoclastogenic potential showed a higher number of osteoclasts in C57BL/6J compared to A/J mice. In vivo LPS injections statistically significantly increased osteoclast numbers in both groups. Importantly, the number of osteoclasts was higher in C57BL/6J vs. A/J mice. These data support a significant role of the genetic framework in LPS-induced periodontal bone loss and the feasibility of utilizing the hybrid mouse diversity panel to determine the genetic factors that affect periodontal bone loss. Expanding these studies will contribute in predicting patients genetically predisposed to periodontitis and in identifying the biological basis of disease susceptibility.
Collapse
Affiliation(s)
- S Hiyari
- School of Dentistry, Section of Periodontics, University of California, Los Angeles, CA, USA
| | - E Atti
- School of Dentistry, Section of Oral and Maxillofacial Radiology, University of California, Los Angeles, CA, USA
| | - P M Camargo
- School of Dentistry, Section of Periodontics, University of California, Los Angeles, CA, USA
| | - E Eskin
- Department of Computer Sciences, University of California, Los Angeles, CA, USA
| | - A J Lusis
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - S Tetradis
- School of Dentistry, Section of Oral and Maxillofacial Radiology, University of California, Los Angeles, CA, USA
| | - F Q Pirih
- School of Dentistry, Section of Periodontics, University of California, Los Angeles, CA, USA
| |
Collapse
|
31
|
Valerio MS, Herbert BA, Basilakos DS, Browne C, Yu H, Kirkwood KL. Critical role of MKP-1 in lipopolysaccharide-induced osteoclast formation through CXCL1 and CXCL2. Cytokine 2014; 71:71-80. [PMID: 25261746 DOI: 10.1016/j.cyto.2014.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/30/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED Osteoclast (OC) progenitors (OCP) have been defined in the bone marrow (BM) as CD3(-)CD45R(B220)(-)GR1(-)CD11b(lo/)(-)CD115(+) (dOCP) and more recently in the peripheral blood (PB) as Lym(-)Ly6G(-)CD11b(+)Ly6C(+). These progenitors respond to stimuli, including LPS from periopathogenic Aggregatibacter actinomycetemcomitans, activating MAPK signaling, resulting in cytokine/chemokine-mediated osteoclastogenesis. Intracellular negative signaling pathways, including MAPK phosphatase-1 (MKP-1, gene Dusp1) deactivate MAPK pathways (p-p38 and p-JNK) and reduce inflammatory cytokines/chemokines. OBJECTIVE To delineate the role of MKP-1 in chemokine-mediated OC formation using defined OC progenitor populations. Given its role in innate immune inflammatory signaling, we hypothesize that MKP-1 regulates LPS-induced OC formation from BM OCP through deregulated chemokines. METHODS BM and PB from WT and Dusp1(-/-) female mice (8-12weeks) was obtained and sorted into defined progenitor populations. BM sorted dOCP were primed with MCSF and RANKL (48h), blocked with vehicle or chemokine blocking antibodies and stimulated with LPS (48-96h). TRAP assay and OC activity were measured for OC formation and activity following treatments. NanoString Array and qPCR were utilized for gene expression analysis. RESULTS Dusp1(-/-) dOCPs formed more and larger osteoclasts from CD11b(hi) and dOCP compared to matched WT (P<0.05 each). PB-derived dOCP produced larger and more functional osteoclasts from Dusp1(-/-) mice compared to WT controls. NanoString array data revealed significant deregulation in chemokine expression from Dusp1(-/-) versus WT cells. qPCR validation of target genes revealed that Dusp1 deficient CD11b(+) populations display 1.5-3.5-fold greater expression of CXCL1 and 2-3-fold greater expression of CXCL2 compared to WT in CD11b(hi) and dOCP (P<0.05 each). Antibody blocking studies using anti-CXCL1 and CXCL2 antibodies blunted osteoclastogenesis in Dusp1(-/-) cells. CONCLUSION MKP-1 negatively regulates chemokine-driven OC formation and subsequent bone resorption in response to LPS stimulation. Collectively, these data provide useful insight into mechanisms potentially leading to the development of therapeutic treatment of periodontal disease.
Collapse
Affiliation(s)
- Michael S Valerio
- Department of Oral Health Sciences and the Center for Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Bethany A Herbert
- Department of Oral Health Sciences and the Center for Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Dimitrios S Basilakos
- Department of Oral Health Sciences and the Center for Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Courtney Browne
- Department of Oral Health Sciences and the Center for Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Hong Yu
- Department of Oral Health Sciences and the Center for Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Keith L Kirkwood
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
32
|
Palm E, Khalaf H, Bengtsson T. Suppression of inflammatory responses of human gingival fibroblasts by gingipains fromPorphyromonas gingivalis. Mol Oral Microbiol 2014; 30:74-85. [DOI: 10.1111/omi.12073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2014] [Indexed: 12/13/2022]
Affiliation(s)
- E. Palm
- Department of Biomedicine; School of Health and Medical Sciences; Örebro University; Örebro Sweden
| | - H. Khalaf
- Department of Biomedicine; School of Health and Medical Sciences; Örebro University; Örebro Sweden
| | - T. Bengtsson
- Department of Biomedicine; School of Health and Medical Sciences; Örebro University; Örebro Sweden
| |
Collapse
|
33
|
Pirih FQ, Hiyari S, Leung HY, Barroso ADV, Jorge ACA, Perussolo J, Atti E, Lin YL, Tetradis S, Camargo PM. A Murine Model of Lipopolysaccharide-Induced Peri-Implant Mucositis and Peri-Implantitis. J ORAL IMPLANTOL 2014; 41:e158-64. [PMID: 24967609 DOI: 10.1563/aaid-joi-d-14-00068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dental implants are a widely used treatment option for tooth replacement. However, they are susceptible to inflammatory diseases such as peri-implant mucositis and peri-implantitis, which are highly prevalent and may lead to implant loss. Unfortunately, the understanding of the pathogenesis of peri-implant mucositis and peri-implantitis is fragmented and incomplete. Therefore, the availability of a reproducible animal model to study these inflammatory diseases would facilitate the dissection of their pathogenic mechanisms. The objective of this study is to propose a murine model of experimental peri-implant mucositis and peri-implantitis. Screw-shaped titanium implants were placed in the upper healed edentulous alveolar ridges of C57BL/6J mice 8 weeks after tooth extraction. Following 4 weeks of osseointegration, Porphyromonas gingivalis -lipolysaccharide (LPS) injections were delivered to the peri-implant soft tissues for 6 weeks. No-injections and vehicle injections were utilized as controls. Peri-implant mucositis and peri-implantitis were assessed clinically, radiographically (microcomputerized tomograph [CT]), and histologically following LPS-treatment. LPS-injections resulted in a significant increase in soft tissue edema around the head of the implants as compared to the control groups. Micro-CT analysis revealed significantly greater bone loss in the LPS-treated implants. Histological analysis of the specimens demonstrated that the LPS-group had increased soft tissue vascularity, which harbored a dense mixed inflammatory cell infiltrate, and the bone exhibited noticeable osteoclast activity. The induction of peri-implant mucositis and peri-implantitis in mice via localized delivery of bacterial LPS has been demonstrated. We anticipate that this model will contribute to the development of more effective preventive and therapeutic approaches for these 2 conditions.
Collapse
Affiliation(s)
- Flavia Q Pirih
- 1 University of California, Los Angeles, School of Dentistry, Section of Periodontics, Los Angeles, Calif
| | - Sarah Hiyari
- 1 University of California, Los Angeles, School of Dentistry, Section of Periodontics, Los Angeles, Calif
| | - Ho-Yin Leung
- 1 University of California, Los Angeles, School of Dentistry, Section of Periodontics, Los Angeles, Calif
| | - Ana D V Barroso
- 2 Universidade Federal do Espirito Santo, School of Dentistry, Brazil
| | - Adrian C A Jorge
- 3 Universidade Estadual de Ponta Grossa, School of Dentistry, Brazil
| | | | - Elisa Atti
- 4 University of California, Los Angeles, School of Dentistry, Section of Oral Radiology, Los Angeles, Calif
| | - Yi-Ling Lin
- 5 University of California, Los Angeles, School of Dentistry, Section of Oral Pathology, Los Angeles, Calif
| | - Sotirios Tetradis
- 4 University of California, Los Angeles, School of Dentistry, Section of Oral Radiology, Los Angeles, Calif
| | - Paulo M Camargo
- 1 University of California, Los Angeles, School of Dentistry, Section of Periodontics, Los Angeles, Calif
| |
Collapse
|
34
|
Pacios S, Andriankaja O, Kang J, Alnammary M, Bae J, de Brito Bezerra B, Schreiner H, Fine DH, Graves DT. Bacterial infection increases periodontal bone loss in diabetic rats through enhanced apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1928-1935. [PMID: 24113454 DOI: 10.1016/j.ajpath.2013.08.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/05/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
Periodontal disease is the most common osteolytic disease in humans and is significantly increased by diabetes mellitus. We tested the hypothesis that bacterial infection induces bone loss in diabetic animals through a mechanism that involves enhanced apoptosis. Type II diabetic rats were inoculated with Aggregatibacter actinomycetemcomitans and treated with a caspase-3 inhibitor, ZDEVD-FMK, or vehicle alone. Apoptotic cells were measured with TUNEL; osteoblasts and bone area were measured in H&E sections. New bone formation was assessed by labeling with fluorescent dyes and by osteocalcin mRNA levels. Osteoclast number, eroded bone surface, and new bone formation were measured by tartrate-resistant acid phosphatase staining. Immunohistochemistry was performed with an antibody against tumor necrosis factor-α. Bacterial infection doubled the number of tumor necrosis factor-α-expressing cells and increased apoptotic cells adjacent to bone 10-fold (P < 0.05). Treatment with caspase inhibitor blocked apoptosis, increased the number of osteoclasts, and eroded bone surface (P < 0.05); yet, inhibition of apoptosis resulted in significantly greater net bone area because of an increase in new bone formation, osteoblast numbers, and an increase in bone coupling. Thus, bacterial infection in diabetic rats stimulates periodontitis, in part through enhanced apoptosis of osteoblastic cells that reduces osseous coupling through a caspase-3-dependent mechanism.
Collapse
Affiliation(s)
- Sandra Pacios
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Oelisoa Andriankaja
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Clinical Research and Health Promotion, School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Jun Kang
- Department of Periodontology, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Maher Alnammary
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason Bae
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Beatriz de Brito Bezerra
- Prosthodontics and Periodontics Department, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Helen Schreiner
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Daniel H Fine
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
35
|
Abstract
Periodontitis is a chronic inflammatory condition of the periodontium involving interactions between bacterial products, numerous cell populations and inflammatory mediators. It is generally accepted that periodontitis is initiated by complex and diverse microbial biofilms which form on the teeth, i.e. dental plaque. Substances released from this biofilm such as lipopolysaccharides, antigens and other virulence factors, gain access to the gingival tissue and initiate an inflammatory and immune response, leading to the activation of host defence cells. As a result of cellular activation, inflammatory mediators, including cytokines, chemokines, arachidonic acid metabolites and proteolytic enzymes collectively contribute to tissue destruction and bone resorption. This review summarises recent studies on the pathogenesis of periodontitis, with the main focus on inflammatory mediators and their role in periodontal disease.
Collapse
|
36
|
Travan S, Li F, D'Silva NJ, Slate EH, Kirkwood KL. Differential expression of mitogen activating protein kinases in periodontitis. J Clin Periodontol 2013; 40:757-64. [PMID: 23742695 DOI: 10.1111/jcpe.12123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2013] [Indexed: 02/06/2023]
Abstract
AIM Following toll-like receptor (TLR) engagement, lipopolysaccharide (LPS) can stimulate the expression of pro-inflammatory cytokines thus activating the innate immune response. The production of inflammatory cytokines results, in part, from the activation of kinase-induced signalling cascades and transcriptional factors. Of the four distinct classes of mitogen-activated protein kinases (MAPK) described in mammals, p38, c-Jun N-terminal activated kinases (JNK1-3) and extracellular activated kinases (ERK1,2) are the best studied. Previous data have established that p38 MAPK signalling is required for inflammation and bone loss in periodontal disease pre-clinical animal models. MATERIALS & METHODS In this study, we obtained healthy and diseased periodontal tissues along with clinical parameters and microbiological parameters. Excised fixed tissues were immunostained with total and phospho-specific antibodies against p38, JNK and ERK kinases. RESULTS Intensity scoring from immunostained tissues was correlated with clinical periodontal parameters. Rank correlations with clinical indices were statistically significantly positive (p-value < 0.05) for total p38 (correlations ranging 0.49-0.68), phospho-p38 (range 0.44-0.56), and total ERK (range 0.52-0.59) levels, and correlations with JNK levels also supported association (range 0.42-0.59). Phospho-JNK and phospho-ERK showed no significant positive correlation with clinical parameters of disease. CONCLUSION These data strongly implicate p38 MAPK as a major MAPK involved in human periodontal inflammation and severity.
Collapse
Affiliation(s)
- Suncica Travan
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
37
|
Jiang H, Chen W, Zhu G, Zhang L, Tucker B, Hao L, Feng S, Ci H, Ma J, Wang L, Stashenko P, Li YP. RNAi-mediated silencing of Atp6i and Atp6i haploinsufficiency prevents both bone loss and inflammation in a mouse model of periodontal disease. PLoS One 2013; 8:e58599. [PMID: 23577057 PMCID: PMC3618217 DOI: 10.1371/journal.pone.0058599] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 02/07/2013] [Indexed: 12/29/2022] Open
Abstract
Periodontal disease affects about 80% of adults in America, and is characterized by oral bacterial infection-induced gingival inflammation, oral bone resorption, and tooth loss. Periodontitis is also associated with other diseases such as rheumatoid arthritis, diabetes, and heart disease. Although many efforts have been made to develop effective therapies for this disease, none have been very effective and there is still an urgent need for better treatments and preventative strategies. Herein we explored for the first time the possibility that adeno-associated virus (AAV)-mediated RNAi knockdown could be used to treat periodontal disease with improved efficacy. For this purpose, we used AAV-mediated RNAi knockdown of Atp6i/TIRC7 gene expression to target bone resorption and gingival inflammation simultaneously. Mice were infected with the oral pathogen Porphyromonas gingivalis W50 (P. gingivalis) in the maxillary periodontium to induce periodontitis. We found that Atp6i depletion impaired extracellular acidification and osteoclast-mediated bone resorption. Furthermore, local injection of AAV-shRNA-Atp6i/TIRC7 into the periodontal tissues in vivo protected mice from P. gingivalis infection-stimulated bone resorption by >85% and decreased the T-cell number in periodontal tissues. Notably, AAV-mediated Atp6i/TIRC7 knockdown also reduced the expression of osteoclast marker genes and inflammation-induced cytokine genes. Atp6i(+/-) mice with haploinsufficiency were similarly protected from P. gingivalis infection-stimulated bone loss and gingival inflammation. This suggests that AAV-shRNA-Atp6i/TIRC7 therapeutic treatment may significantly improve the health of millions who suffer from P. gingivalis-mediated periodontal disease.
Collapse
Affiliation(s)
- Hongbing Jiang
- Department of Pathology, University of Alabama at Birmingham, Alabama, United States of America
- College of Stomatology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham, Alabama, United States of America
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham, Alabama, United States of America
| | - Lijie Zhang
- Department of Immunology and Infectious Disease, The Forsyth Institute, Cambridge, Massachusetts, United States of America
- Department of Clinical Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Byron Tucker
- Department of Pathology, University of Alabama at Birmingham, Alabama, United States of America
- Harvard School of Dental Medicine Department of Restorative Dentistry and in Endodontics, Boston, Massachusetts, United States of America
| | - Liang Hao
- Department of Pathology, University of Alabama at Birmingham, Alabama, United States of America
| | - Shengmei Feng
- Department of Pathology, University of Alabama at Birmingham, Alabama, United States of America
| | - Hongliang Ci
- Department of Pathology, University of Alabama at Birmingham, Alabama, United States of America
| | - Junqing Ma
- Department of Pathology, University of Alabama at Birmingham, Alabama, United States of America
- College of Stomatology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Lin Wang
- College of Stomatology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Philip Stashenko
- Department of Immunology and Infectious Disease, The Forsyth Institute, Cambridge, Massachusetts, United States of America
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, Alabama, United States of America
| |
Collapse
|
38
|
Adamowicz K, Wang H, Jotwani R, Zeller I, Potempa J, Scott DA. Inhibition of GSK3 abolishes bacterial-induced periodontal bone loss in mice. Mol Med 2012; 18:1190-6. [PMID: 22847803 DOI: 10.2119/molmed.2012.00180] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/26/2012] [Indexed: 11/06/2022] Open
Abstract
The tissue destruction that characterizes periodontitis is driven by the host response to bacterial pathogens. Inhibition of glycogen synthase kinase 3β (GSK3β) in innate cells leads to suppression of Toll-like receptor (TLR)-initiated proinflammatory cytokines under nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 transcriptional control and promotion of cyclic adenosine monophosphate response element-binding (CREB)-dependent gene activation. Therefore, we hypothesized that the cell permeable GSK3-specific inhibitor, SB216763, would protect against alveolar bone loss induced by the key periodontal pathogen, Porphyromonas gingivalis (P. gingivalis), in a murine model. B6129SF2/J mice either were infected orally with P. gingivalis ATCC 33277; or treated with SB216763 and infected with P. gingivalis; sham infected; or exposed to vehicle only (dimethyl sulfoxide [DMSO]); or to GSK3 inhibitor only (SB216763). Alveolar bone loss and local (neutrophil infiltration and interleukin [IL]-17) and systemic (tumor necrosis factor [TNF], IL-6, Il-1β and IL-12/IL-23 p40) inflammatory indices also were monitored. SB216763 unequivocally abrogated mean P. gingivalis-induced bone resorption, measured at 14 predetermined points on the molars of defleshed maxillae as the distance from the cementoenamel junction to the alveolar bone crest (p < 0.05). The systemic cytokine response, the local neutrophil infiltration and the IL-17 expression were suppressed (p < 0.001). These data confirm the relevance of prior in vitro phenomena and establish GSK3 as a novel, efficacious therapeutic preventing periodontal disease progression in a susceptible host. These findings also may have relevance to other chronic inflammatory diseases and the systemic sequelae associated with periodontal infections.
Collapse
Affiliation(s)
- Karina Adamowicz
- Center for Oral Health and Systemic Disease, University of Louisville, Louisville, Kentucky 40292, United States of America
| | | | | | | | | | | |
Collapse
|