1
|
Neuroprotection of Kaji-Ichigoside F1 via the BDNF/Akt/mTOR Signaling Pathways against NMDA-Induced Neurotoxicity. Int J Mol Sci 2022; 23:ijms232416150. [PMID: 36555790 PMCID: PMC9785992 DOI: 10.3390/ijms232416150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Kaji-ichigoside F1 (KF1), a natural oleanane-type triterpenoid saponin, is the main active constituent from Rosa roxburghii. In the southwest regions of China, particularly in Guizhou Province, this plant was used as a Miao ethnic medicine to prevent and treat dyspepsia, dysentery, hypoimmunity, and neurasthenia. In the present study, the neuroprotective effect of KF1 was evaluated against N-methyl-D-aspartate (NMDA)-induced neurotoxicity in vivo and in vitro. An NMDA-induced PC12 cell neurotoxicity assay showed that KF1 effectively improved cellular viability, inhibited the release of lactate dehydrogenase (LDH), and reduced cell apoptosis. Furthermore, KF1-treated NMDA-induced excitotoxicity mice displayed a remarkable capacity for improving spatial learning memory in the Y-maze and Morris water maze tests. In addition, KF1 increased the levels of the neurotransmitters 5-hydroxytryptamine, dopamine, and monoamine oxidase and reduced the calcium ion concentration in the hippocampus of mice. Hematoxylin and eosin and Nissl staining indicated that KF1 effectively reduced the impairment of neurons. Furthermore, Western blot assays showed that KF1 decreased NMDAR1 expression. In contrast, the NMDAR2B (NR2B), glutamate receptor (AMPA), TrkB, protein kinase B (AKT), mammalian target of rapamycin (mTOR), PSD95, and synapsin 1 were upregulated in NMDA-induced PC12 cells and an animal model. These results suggest that KF1 has a remarkable protective effect against NMDA-induced neurotoxicity, which is directly related to the regulation of the NMDA receptor and the activation of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) and BDNF/AKT/mTOR signaling pathways.
Collapse
|
2
|
Solinc J, Ribot J, Soubrier F, Pavoine C, Dierick F, Nadaud S. The Platelet-Derived Growth Factor Pathway in Pulmonary Arterial Hypertension: Still an Interesting Target? Life (Basel) 2022; 12:life12050658. [PMID: 35629326 PMCID: PMC9143262 DOI: 10.3390/life12050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
The lack of curative options for pulmonary arterial hypertension drives important research to understand the mechanisms underlying this devastating disease. Among the main identified pathways, the platelet-derived growth factor (PDGF) pathway was established to control vascular remodeling and anti-PDGF receptor (PDGFR) drugs were shown to reverse the disease in experimental models. Four different isoforms of PDGF are produced by various cell types in the lung. PDGFs control vascular cells migration, proliferation and survival through binding to their receptors PDGFRα and β. They elicit multiple intracellular signaling pathways which have been particularly studied in pulmonary smooth muscle cells. Activation of the PDGF pathway has been demonstrated both in patients and in pulmonary hypertension (PH) experimental models. Tyrosine kinase inhibitors (TKI) are numerous but without real specificity and Imatinib, one of the most specific, resulted in beneficial effects. However, adverse events and treatment discontinuation discouraged to pursue this therapy. Novel therapeutic strategies are currently under experimental evaluation. For TKI, they include intratracheal drug administration, low dosage or nanoparticles delivery. Specific anti-PDGF and anti-PDGFR molecules can also be designed such as new TKI, soluble receptors, aptamers or oligonucleotides.
Collapse
Affiliation(s)
- Julien Solinc
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (J.S.); (J.R.); (F.S.); (C.P.)
| | - Jonathan Ribot
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (J.S.); (J.R.); (F.S.); (C.P.)
| | - Florent Soubrier
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (J.S.); (J.R.); (F.S.); (C.P.)
| | - Catherine Pavoine
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (J.S.); (J.R.); (F.S.); (C.P.)
| | - France Dierick
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada;
| | - Sophie Nadaud
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (J.S.); (J.R.); (F.S.); (C.P.)
- Correspondence: ; Tel.: +33-14077-9681
| |
Collapse
|
3
|
Huynh DTN, Jin Y, Van Nguyen D, Myung CS, Heo KS. Ginsenoside Rh1 Inhibits Angiotensin II-Induced Vascular Smooth Muscle Cell Migration and Proliferation through Suppression of the ROS-Mediated ERK1/2/p90RSK/KLF4 Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11040643. [PMID: 35453328 PMCID: PMC9030830 DOI: 10.3390/antiox11040643] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration play key roles in the progression of atherosclerosis and restenosis. A variety of ginsenosides exert various cardiovascular benefits. However, whether and how ginsenoside Rh1 (Rh1) inhibits VSMC dysfunction remain unclear. Here, we investigated the inhibitory effects of Rh1 on rat aortic smooth muscle cell (RASMC) migration and proliferation induced by angiotensin II (Ang II) and the underlying mechanisms. Cell proliferation and migration were evaluated using sulforhodamine B and wound-healing assay. The molecular mechanisms were investigated using Western blotting, quantitative reverse-transcription polymerase chain reaction analysis, immunofluorescence staining, and luciferase assay. Reactive oxygen species (ROS) production was measured using dihydroethidium and MitoSOX staining. We found that Rh1 dose-dependently suppressed Ang II-induced cell proliferation and migration. Concomitantly, Ang II increased protein levels of osteopontin, vimentin, MMP2, MMP9, PCNA, and cyclin D1, while these were reduced by Rh1 pretreatment. Notably, Ang II enhanced both the protein expression and promoter activity of KLF4, a key regulator of phenotypic switching, whereas pretreatment with Rh1 reversed these effects. Mechanistically, the effects of Rh1 on VSMC proliferation and migration were found to be associated with inhibition of ERK1/2/p90RSK signaling. Furthermore, the inhibitory effects of Rh1 were accompanied by inhibition of ROS production. In conclusion, Rh1 inhibited the Ang II-induced migration and proliferation of RASMCs by suppressing the ROS-mediated ERK1/2/p90RSK signaling pathway.
Collapse
Affiliation(s)
- Diem Thi Ngoc Huynh
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Korea; (D.T.N.H.); (Y.J.); (D.V.N.); (C.-S.M.)
- Department of Pharmacy, Da Nang University of Medical Technology and Pharmacy, Da Nang 550000, Vietnam
| | - Yujin Jin
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Korea; (D.T.N.H.); (Y.J.); (D.V.N.); (C.-S.M.)
| | - Dung Van Nguyen
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Korea; (D.T.N.H.); (Y.J.); (D.V.N.); (C.-S.M.)
| | - Chang-Seon Myung
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Korea; (D.T.N.H.); (Y.J.); (D.V.N.); (C.-S.M.)
| | - Kyung-Sun Heo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Korea; (D.T.N.H.); (Y.J.); (D.V.N.); (C.-S.M.)
- Correspondence: ; Tel.: +82-42-821-5927
| |
Collapse
|
4
|
Yes-associated protein reacts differently in vascular smooth muscle cells under different intensities of mechanical stretch. Aging (Albany NY) 2022; 14:286-296. [PMID: 34983026 PMCID: PMC8791225 DOI: 10.18632/aging.203768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/18/2021] [Indexed: 11/25/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are stromal cells of the vascular wall and are continually exposed to mechanical signals. The loss of VSMCs is closely related to the occurrence of many vascular diseases, such as aortic aneurysms and aortic dissection. The proliferation and apoptosis of VSMCs are mechanically stimulated. Yes-associated protein (YAP), one of the core components of the Hippo pathway, plays a key role in the response of VSMCs to mechanical signals. In this study, we tested the impact of different intensities of mechanical stretch on the proliferation and apoptosis of VSMCs, as well as YAP. We tested VSMCs’ proliferation and apoptosis and YAP reaction via immunocytochemistry, western blotting, CCK-8 and flow cytometric analysis. We found that 10% elongation could increase the phosphorylation of YAP and prevent it from entering the nucleus, as well as inhibit cell proliferation and promote apoptosis. However, 15% elongation reduced YAP phosphorylation and promoted its nuclear entry, thereby promoting cell proliferation and inhibiting apoptosis. Accordingly, YAP knockdown suppressed the phenotype of VMSCs induced by 15% elongation. Taken together, YAP regulates proliferation and apoptosis of VSMCs differently under different intensity of mechanical stretch. Mechanical stretch with appropriate intensity can promote the proliferation and inhibit apoptosis of VSMCs by activating YAP.
Collapse
|
5
|
Hong J, Gwon D, Jang CY. Ginsenoside Rg1 suppresses cancer cell proliferation through perturbing mitotic progression. J Ginseng Res 2021; 46:481-488. [PMID: 35600766 PMCID: PMC9120780 DOI: 10.1016/j.jgr.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 10/27/2022] Open
|
6
|
Zhu GX, Zuo JL, Xu L, Li SQ. Ginsenosides in vascular remodeling: Cellular and molecular mechanisms of their therapeutic action. Pharmacol Res 2021; 169:105647. [PMID: 33964471 DOI: 10.1016/j.phrs.2021.105647] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
Evidence is mounting that abnormal vascular remodeling (VR) is a vital pathological event that precedes many cardiovascular diseases (CVD). This provides us with a new research perspective that VR can be a pivotal target for CVD treatment and prevention. However, the current drugs for treating CVD do not fundamentally reverse VR and repair vascular function. The reason may be that a complicated regulatory network is formed between the various signaling pathways involved in VR. Recently, ginsenoside, the main active substance of ginseng, has become increasingly the focus of many researchers for its multiple targets, multiple pathways, and few side effects. Several data have revealed that ginsenosides can improve VR caused by vasodilation dysfunction, abnormal vascular structure and blood pressure. This review is intended to discuss the therapeutic effects and mechanisms of ginsenosides in some diseases involved in VR. Besides, we herein also give a new and contradictory insight into intracellular and molecular signaling of ginsenosides in all kinds of vascular cells. Most importantly, we also discuss the feasibility of ginsenosides Rb1/Rg1/Rg3 in drug development by combining the pharmacodynamics and pharmacokinetics of ginsenosides, and provide a pharmacological basis for the development of ginsenosides in clinical applications.
Collapse
Affiliation(s)
- Guang-Xuan Zhu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China.
| | - Jian-Li Zuo
- College of Pharmacy, Chongqing Medical University, Chongqing 410016, China
| | - Lin Xu
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Shu-Qing Li
- The Second Xiangya Hospital of Central South University Shenzhen Hospital, Shenzhen, Guangdong 518067, China
| |
Collapse
|
7
|
Li YQ, Li YL, Li XT, Lv JY, Gao Y, Li WN, Gong QH, Yang DL. Osthole Alleviates Neointimal Hyperplasia in Balloon-Induced Arterial Wall Injury by Suppressing Vascular Smooth Muscle Cell Proliferation and Downregulating Cyclin D1/CDK4 and Cyclin E1/CDK2 Expression. Front Physiol 2021; 11:514494. [PMID: 33574763 PMCID: PMC7870719 DOI: 10.3389/fphys.2020.514494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Percutaneous coronary intervention (PCI) is the most widely used therapy for treating ischemic heart disease. However, intimal hyperplasia and restenosis usually occur within months after angioplasty. Modern pharmacological researchers have proven that osthole, the major active coumarin of Cnidium monnieri (L.) Cusson, exerts potent antiproliferative effects in lung cancer cells, the human laryngeal cancer cell line RK33 and TE671 medulloblastoma cells, and its mechanism of action is related to cell cycle arrest. The goal of the present study was to observe the effect of osthole on vascular smooth muscle cell (VSMC) proliferation using platelet-derived growth factor-BB (PDGF-BB)-stimulated VSMCs isolated from rats and vascular balloon injury as models to further elucidate the molecular mechanisms underlying this activity. We detected the relative number of VSMCs by the MTT assay and EdU staining and examined cell cycle progression by flow cytometry. To more deeply probe the mechanisms, the protein expression levels of PCNA, the cyclin D1/CDK4 complex and the cyclin E1/CDK2 complex in balloon-treated rat carotid arteries and the mRNA and protein expression levels of the cyclin D1/CDK4 and cyclin E1/CDK2 complexes in VSMCs were detected by real-time RT-PCR and western blotting. The data showed that osthole significantly inhibited the proliferation of VSMCs induced by PDGF-BB. Furthermore, osthole caused apparent VSMC cycle arrest early in G0/G1 phase and decreased the expression of cyclin D1/CDK4 and cyclin E1/CDK2. Our results demonstrate that osthole can significantly inhibit PDGF-BB-induced VSMC proliferation and that its regulatory effects on cell cycle progression and proliferation may be related to the downregulation of cyclin D1/CDK4 and cyclin E1/CDK2 expression as well as the prevention of cell cycle progression from G0/G1 phase to S phase. The abovementioned mechanism may be responsible for the alleviation of neointimal hyperplasia in balloon-induced arterial wall injury by osthole.
Collapse
Affiliation(s)
- Yi-Qi Li
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of the Ministry of Education, The Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Ye-Li Li
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of the Ministry of Education, The Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xiao-Tong Li
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of the Ministry of Education, The Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jun-Yuan Lv
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yang Gao
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of the Ministry of Education, The Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Wen-Na Li
- Department of Pharmacology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Qi-Hai Gong
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of the Ministry of Education, The Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Dan-Li Yang
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of the Ministry of Education, The Key Laboratory of Basic Pharmacology of Guizhou Province, Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
8
|
Jie Z, Baoqin W, Changan L, Xiangli T, Zegeng L. Qibai Pingfei capsule medicated serum inhibits the proliferation of hypoxia-induced pulmonary arterial smooth muscle cells via the Ca 2+ /calcineurin/nuclear factor of activated T-cells 3 pathway. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
The Role of Biologically Active Ingredients from Natural Drug Treatments for Arrhythmias in Different Mechanisms. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4615727. [PMID: 28497050 PMCID: PMC5405360 DOI: 10.1155/2017/4615727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/09/2017] [Indexed: 12/13/2022]
Abstract
Arrhythmia is a disease that is caused by abnormal electrical activity in the heart rate or rhythm. It is the major cause of cardiovascular morbidity and mortality. Although several antiarrhythmic drugs have been used in clinic for decades, their application is often limited by their adverse effects. As a result, natural drugs, which have fewer side effects, are now being used to treat arrhythmias. We searched for all articles on the role of biologically active ingredients from natural drug treatments for arrhythmias in different mechanisms in PubMed. This study reviews 19 natural drug therapies, with 18 active ingredient therapies, such as alkaloids, flavonoids, saponins, quinones, and terpenes, and two kinds of traditional Chinese medicine compound (Wenxin-Keli and Shensongyangxin), all of which have been studied and reported as having antiarrhythmic effects. The primary focus is the proposed antiarrhythmic mechanism of each natural drug agent. Conclusion. We stress persistent vigilance on the part of the provider in discussing the use of natural drug agents to provide a solid theoretical foundation for further research on antiarrhythmia drugs.
Collapse
|
10
|
Li LS, Lu YL, Nie J, Xu YY, Zhang W, Yang WJ, Gong QH, Lu YF, Lu Y, Shi JS. Dendrobium nobile Lindl alkaloid, a novel autophagy inducer, protects against axonal degeneration induced by Aβ 25-35 in hippocampus neurons in vitro. CNS Neurosci Ther 2017; 23:329-340. [PMID: 28261990 DOI: 10.1111/cns.12678] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/19/2022] Open
Abstract
AIMS Axonal degeneration is a pathological symbol in the early stage of Alzheimer's disease (AD), which can be triggered by amyloid-β (Aβ) peptide deposition. Growing evidence indicates that deficit of autophagy eventually leads to the axonal degeneration. Our previous studies have shown that Dendrobium nobile Lindl alkaloid (DNLA) had protective effect on neuron impairment in vivo and in vitro; however, the underlying mechanisms is still unclear. METHODS We exposed cultured hippocampus neurons to Aβ25-35 to investigate the effect of DNLA in vitro. Axonal degeneration was evaluated by immunofluorescence staining and MTT assay. Neurons overexpressing GFP-LC3B were used to measure the formation of autophagosome. Autophagosome-lysosome fusion, the lysosomal pH, and cathepsin activity were assessed to reflect autophagy process. Proteins of interest were analyzed by Western blot. RESULTS DNLA pretreatment significantly inhibited axonal degeneration induced by Aβ25-35 peptide in vitro. Further studies revealed DNLA treatment increased autophagic flux through promoting formation and degradation of autophagosome in hippocampus neurons. Moreover, enhancement of autophagic flux was responsible for the protective effects of DNLA on axonal degeneration. CONCLUSIONS DNLA prevents Aβ25-35 -induced axonal degeneration via activation of autophagy process and could be a novel therapeutic target.
Collapse
Affiliation(s)
- Li-Sheng Li
- Department of Chemistry, Basic Medical Faculty, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmacology, Key Lab of Basic Pharmacology of Education Ministry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yan-Liu Lu
- Department of Pharmacology, Key Lab of Basic Pharmacology of Education Ministry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jing Nie
- Department of Pharmacology, Key Lab of Basic Pharmacology of Education Ministry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yun-Yan Xu
- Department of Pharmacology, Key Lab of Basic Pharmacology of Education Ministry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei Zhang
- Department of Pharmacology, Key Lab of Basic Pharmacology of Education Ministry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wen-Jin Yang
- Department of Pharmacology, Key Lab of Basic Pharmacology of Education Ministry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qi-Hai Gong
- Department of Pharmacology, Key Lab of Basic Pharmacology of Education Ministry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuan-Fu Lu
- Department of Pharmacology, Key Lab of Basic Pharmacology of Education Ministry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yang Lu
- Department of Chemistry, Basic Medical Faculty, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Shan Shi
- Department of Pharmacology, Key Lab of Basic Pharmacology of Education Ministry, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
11
|
Mohanan P, Subramaniyam S, Mathiyalagan R, Yang DC. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res 2017; 42:123-132. [PMID: 29719458 PMCID: PMC5926405 DOI: 10.1016/j.jgr.2017.01.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/16/2017] [Indexed: 11/02/2022] Open
Abstract
Ginseng has gained its popularity as an adaptogen since ancient days because of its triterpenoid saponins, known as ginsenosides. These triterpenoid saponins are unique and classified as protopanaxatriol and protopanaxadiol saponins based on their glycosylation patterns. They play many protective roles in humans and are under intense research as various groups continue to study their efficacy at the molecular level in various disorders. Ginsenosides Rb1 and Rg1 are the most abundant ginsenosides present in ginseng roots, and they confer the pharmacological properties of the plant, whereas ginsenoside Rg3 is abundantly present in Korean Red Ginseng preparation, which is highly known for its anticancer effects. These ginsenosides have a unique mode of action in modulating various signaling cascades and networks in different tissues. Their effect depends on the bioavailability and the physiological status of the cell. Mostly they amplify the response by stimulating phosphotidylinositol-4,5-bisphosphate 3-kinase/protein kinase B pathway, caspase-3/caspase-9-mediated apoptotic pathway, adenosine monophosphate-activated protein kinase, and nuclear factor kappa-light-chain-enhancer of activated B cells signaling. Furthermore, they trigger receptors such as estrogen receptor, glucocorticoid receptor, and N-methyl-d-aspartate receptor. This review critically evaluates the signaling pathways attenuated by ginsenosides Rb1, Rg1, and Rg3 in various tissues with emphasis on cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Padmanaban Mohanan
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Suwon, Republic of Korea
| | - Sathiyamoorthy Subramaniyam
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Suwon, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Suwon, Republic of Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Suwon, Republic of Korea.,Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Suwon, Republic of Korea
| |
Collapse
|
12
|
Quan KT, Park HS, Oh J, Park HB, Ferreira D, Myung CS, Na M. Arborinane Triterpenoids from Rubia philippinensis Inhibit Proliferation and Migration of Vascular Smooth Muscle Cells Induced by the Platelet-Derived Growth Factor. JOURNAL OF NATURAL PRODUCTS 2016; 79:2559-2569. [PMID: 27704813 DOI: 10.1021/acs.jnatprod.6b00489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are associated with cardiovascular diseases and related complications. Such deleterious proliferation and migration events are triggered by cytokines and growth factors, and among them, platelet-derived growth factor (PDGF) is recognized as the most potent inducer. Despite the genus Rubia being researched to identify valuable commercial and medicinal virtues, Rubia philippinensis has rarely been investigated. Nine arborinane-type triterpenoids (1-9) were identified from this underutilized plant species. In particular, 4 was identified as the first arborinane derivative carrying a ketocarbonyl motif at C-19. The presence of the cyclopentanone moiety and the associated configurational assignment were determined by utilizing NOE and coupling constant analysis. These compounds were assessed for their inhibitory potential on PDGF-induced proliferation and the migration of VSMCs. Treatment with 5 μM compound 5 (62.6 ± 10.7%) and compound 9 (41.1 ± 4.7%) impeded PDGF-stimulated proliferation without exerting cytotoxicity. Compound 7 exhibited antimigration activity in a dose-dependent manner (38.5 ± 3.0% at 10 μM, 57.6 ± 3.2% at 30 μM). These results suggest that the arborinane-type triterpenoids may be a pertinent starting point for the development of cardiovascular drugs capable of preventing the intimal accumulation of VSMCs.
Collapse
Affiliation(s)
- Khong Trong Quan
- Department of Pharmaceutical Analysis and Standardization, National Institute of Medicinal Materials , Hanoi, Vietnam
| | | | - Joonseok Oh
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University , New Haven, Connecticut 06516, United States
| | - Hyun Bong Park
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University , New Haven, Connecticut 06516, United States
| | - Daneel Ferreira
- Department of BioMolecular Sciences, Division of Pharmacognosy, and Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi , University, Mississippi 38677, United States
| | - Chang-Seon Myung
- Institute of Drug Research & Development, Chungnam National University , Daejeon 34134, Republic of Korea
| | | |
Collapse
|
13
|
MA YI, GONG XUN, MO YINGLI, WU SAIZHU. Polydatin inhibits the oxidative stress-induced proliferation of vascular smooth muscle cells by activating the eNOS/SIRT1 pathway. Int J Mol Med 2016; 37:1652-60. [DOI: 10.3892/ijmm.2016.2554] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 03/28/2016] [Indexed: 11/06/2022] Open
|
14
|
Qin N, Yang W, Feng D, Wang X, Qi M, Du T, Sun H, Wu S. Total ginsenosides suppress monocrotaline-induced pulmonary hypertension in rats: involvement of nitric oxide and mitogen-activated protein kinase pathways. J Ginseng Res 2015; 40:285-91. [PMID: 27616905 PMCID: PMC5005363 DOI: 10.1016/j.jgr.2015.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 11/28/2022] Open
Abstract
Background Ginsenosides have been shown to exert beneficial pharmacological effects on the central nervous, cardiovascular, and endocrine systems. We sought to determine whether total ginsenosides (TG) inhibit monocrotaline (MCT)-induced pulmonary hypertension and to elucidate the underlying mechanism. Methods MCT-intoxicated rats were treated with gradient doses of TG, with or without NG-nitro-l-arginine methyl ester. The levels of molecules involving the regulation of nitric oxide and mitogen-activated protein kinase pathways were determined. Results TG ameliorated MCT-induced pulmonary hypertension in a dose-dependent manner, as assessed by the right ventricular systolic pressure, the right ventricular hypertrophy index, and pulmonary arterial remodeling. Furthermore, TG increased the levels of pulmonary nitric oxide, endothelial nitric oxide synthase, and cyclic guanosine monophosphate. Lastly, TG increased mitogen-activated protein kinase phosphatase-1 expression and promoted the dephosphorylation of extracellular signal-regulated protein kinases 1/2, p38 mitogen-activated protein kinase, and c-Jun NH2-terminal kinase 1/2. Conclusion TG attenuates MCT-induced pulmonary hypertension, which may involve in part the regulation of nitric oxide and mitogen-activated protein kinase pathways.
Collapse
Affiliation(s)
- Na Qin
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China; Department of Pharmacy, Luoyang Orthopedic Hospital, Orthopedics Hospital of Henan Province, Luoyang, Henan, China
| | - Wei Yang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Dongxu Feng
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China; Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Xinwen Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China; Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Muyao Qi
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Tianxin Du
- Department of Pharmacy, Luoyang Orthopedic Hospital, Orthopedics Hospital of Henan Province, Luoyang, Henan, China
| | - Hongzhi Sun
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Hsu JH, Liou SF, Yang SN, Wu BN, Dai ZK, Chen IJ, Yeh JL, Wu JR. B-type natriuretic peptide inhibits angiotensin II-induced proliferation and migration of pulmonary arterial smooth muscle cells. Pediatr Pulmonol 2014; 49:734-44. [PMID: 24167111 DOI: 10.1002/ppul.22904] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/21/2013] [Accepted: 08/13/2013] [Indexed: 01/10/2023]
Abstract
Pulmonary vascular remodeling, characterized by disordered proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), is a pathognomonic feature of pulmonary arterial hypertension. Thus, pharmacologic strategy targeting on anti-proliferation and anti-migration of PASMCs may have therapeutic implications for PAH. Here we investigated the effects and underlying mechanisms of B-type natriuretic peptide (BNP) on angiotensin II (Ang II)-induced proliferation and migration of PASMCs. Proliferation and migration of PASMCs cultured from Wistar rats were induced by Ang II, with or without BNP treatment. In addition, potential underlying mechanisms including cell cycle progression, Ca(2+) overload, reactive oxygen species (ROS) production, signal transduction of MAPK and Akt, and the cGMP/PKG pathway were examined. We found that BNP inhibited Ang II-induced PASMCs proliferation and migration dose dependently. BNP could also arrest the cell cycle progression in the G0/G1-phase. In addition, BNP attenuated intracellular calcium overload caused by Ang II. Moreover, Ang II-induced ROS production was mitigated by BNP, with associated down-regulation of NAD(P)H oxidase 1 (Nox1) and reduced mitochondrial ROS production. Finally, Ang II-activated MAPKs and Akt were also counteracted by BNP. Of note, all these effects of BNP were abolished by a PKG inhibitor (Rp-8-Br-PET-cGMPS). In conclusion, BNP inhibits Ang II-induced PASMCs proliferation and migration. These effects are potentially mediated by decreased calcium influx, reduced ROS production by Nox1 and mitochondria, and down-regulation of MAPK and Akt signal transduction, through the cGMP/PKG pathway. Therefore, this study implicates that BNP may have a therapeutic role in pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Jong-Hau Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Pediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen J, Dai M, Wang Y. Paeonol Inhibits Proliferation of Vascular Smooth Muscle Cells Stimulated by High Glucose via Ras-Raf-ERK1/2 Signaling Pathway in Coculture Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:484269. [PMID: 25002903 PMCID: PMC4068084 DOI: 10.1155/2014/484269] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/29/2014] [Accepted: 05/18/2014] [Indexed: 11/17/2022]
Abstract
Paeonol (Pae) has been previously reported to protect against atherosclerosis (AS) by inhibiting vascular smooth muscle cell (VSMC) proliferation or vascular endothelial cell (VEC) injury. But studies lack how VSMCs and VECs interact when Pae plays a role. The current study was based on a coculture model of VSMCs and VECs to investigate the protective mechanisms of Pae on atherosclerosis (AS) by determining the secretory function of VECs and proliferation of VSMCs focusing on the Ras-Raf-ERK1/2 signaling pathway. VECs were stimulated by high glucose. Our data showed that high concentration (35.5 mM) of glucose induced damage in VECs. Injury of VECs stimulated VSMC proliferation in the coculture model. Pae (120 μ M) decreased vascular endothelial growth factor (VEGF) and platelet derivative growth factor B (PDGF-B) release from VECs and inhibited overexpression of Ras, P-Raf, and P-ERK proteins in VSMCs. The results indicate that diabetes modulates the inflammatory response in VECs to stimulate VSMC proliferation and promote the development of AS. Pae was beneficial by inhibiting the inflammatory effects of VECs on VSMC proliferation. This study suggests the inhibitory mechanism of Pae due to the inhibition of VEGF and PDGF-B secretion in VECs and Ras-Raf-ERK1/2 signaling pathway in VSMCs.
Collapse
Affiliation(s)
- Junjun Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Traditional Chinese Medicine, Hefei 230038, China
| | - Min Dai
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Traditional Chinese Medicine, Hefei 230038, China
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Shihe Road 45, Hefei, Anhui 230031, China
| | - Yueqin Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Traditional Chinese Medicine, Hefei 230038, China
| |
Collapse
|
17
|
Haghdoost F, Baradaran Mahdavi MM, Zandifar A, Sanei MH, Zolfaghari B, Javanmard SH. Pistacia atlantica Resin Has a Dose-Dependent Effect on Angiogenesis and Skin Burn Wound Healing in Rat. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:893425. [PMID: 24285978 PMCID: PMC3826334 DOI: 10.1155/2013/893425] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/07/2013] [Accepted: 09/14/2013] [Indexed: 12/22/2022]
Abstract
Objectives. The aim of the present study was to evaluate the effect of Pistacia atlantica resin extract on the rat skin burn wound healing. Methods. Thirty-two Wistar rats were divided into four groups and treated by vehicle, 5%, 10%, and 20% concentration of Pistacia atlantica resin extract for 14 days (G1, G2, G3, and G4, resp.). The efficacy of treatment was assessed based on reduction of burn wound size and histological and molecular characteristics. Results. α -Pinene (46.57%) was the main content of essential oil of resin. There were no statistically significant differences between groups according to wound size analysis. The mean histological wound healing scores were not statistically different. Capillary counts of G2 and G3 were significantly higher than those of the G1 (P = 0.042 and 0.032, resp.). NO concentration in wound fluids on the 5th day of study was not significantly different between groups (P = 0.468). But bFGF concentration in G2 and G3 and PDGF concentration in G3 were significantly higher in comparison to G1 (P = 0.043, 0.017, and 0.019, resp.). Conclusion. Our results revealed that Pistacia atlantica resin extract has a concentration-dependent effect on the healing of burn wounds after 14 days of treatment by increasing the concentration of bFGF and PDGF and also through improving the angiogenesis.
Collapse
Affiliation(s)
- Faraidoon Haghdoost
- Medical Students' Research Center, Isfahan University of Medical Sciences, Isfahan 81745-319, Iran
| | | | - Alireza Zandifar
- Medical Students' Research Center, Isfahan University of Medical Sciences, Isfahan 81745-319, Iran
- Physiology Research Centre, Department of Physiology, Isfahan University of Medical Sciences, Isfahan 81745-319, Iran
| | - Mohammad Hossein Sanei
- Department of Pathology, Isfahan University of Medical Sceinces, Isfahan 81745-319, Iran
| | - Behzad Zolfaghari
- Department of Pharmacognosy and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy, Isfahan University of Medical Sciences, Hezar Jarib Avenue, Isfahan 81745-319, Iran
| | - Shaghayegh Haghjooy Javanmard
- Physiology Research Centre, Department of Physiology, Isfahan University of Medical Sciences, Isfahan 81745-319, Iran
| |
Collapse
|
18
|
Sun X, Han F, Yi J, Hou N, Cao Z. The effect of telomerase activity on vascular smooth muscle cell proliferation in type 2 diabetes in vivo and in vitro. Mol Med Rep 2013; 7:1636-40. [PMID: 23450462 DOI: 10.3892/mmr.2013.1350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 02/12/2013] [Indexed: 02/07/2023] Open
Abstract
Serious complications as a result of type 2 diabetes mellitus (T2DM) are becoming a major health concern. In the present study, it was hypothesized that telomerase activity is upregulated in vascular smooth muscle cells (VSMCs) during proliferation in T2DM and that the application of telomerase inhibitors impedes the proliferation of VSMCs in vitro. Male Wistar rats were randomly allocated into the normal control (NC) or diabetic (DM) group. Diabetes was induced by high‑fat feeding and a low dose of streptozotocin (STZ; 30 mg/kg). Primary VSMC cultures were exposed to normal (5.5 mM) or high (25 mM) glucose and insulin (100 nM) in the presence and absence of various concentrations of antisense oligoribonucleotides (ASODNs) for varying lengths of time. Telomerase activity and the proliferation of VSMCs were measured. Results showed that there was a significant increase in the levels of fasting glucose, insulin, triglycerides (TG) and free fatty acids (FFAs) in the diabetic group. Telomerase activity and the proliferation of VSMCs were significantly higher in the diabetic group in vivo and in the high glucose and insulin (HGI)-treated group in vitro (P<0.01). ASODNs significantly inhibited the proliferation of VSMCs in a concentration- and time‑dependent manner (P<0.01). In conclusion, hyperglycemia and hyperinsulinemia stimulate telomerase activity and the proliferation of VSMCs, while the inhibition of telomerase activity reduces the proliferation of VSMCs, indicating that telomerase may be involved in the pathological process of diabetic vascular disease.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- Cell Proliferation
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/pathology
- Fatty Acids/blood
- Male
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Oligoribonucleotides/pharmacology
- Rats
- Rats, Wistar
- Telomerase/metabolism
- Triglycerides/blood
Collapse
Affiliation(s)
- Xiaodong Sun
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang, Shangdong 261031, PR China.
| | | | | | | | | |
Collapse
|