1
|
Masand VH, Al-Hussain S, Masand GS, Samad A, Gawali R, Jadhav S, Zaki MEA. e-QSAR (Explainable AI-QSAR), molecular docking, and ADMET analysis of structurally diverse GSK3-beta modulators to identify concealed modulatory features vindicated by X-ray. Comput Biol Chem 2024; 115:108324. [PMID: 39740643 DOI: 10.1016/j.compbiolchem.2024.108324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Glycogen Synthase Kinase-3 beta (GSK-3β) is a crucial enzyme linked to various cellular processes, including neurodegeneration, autophagy, and diabetes. A structurally diverse set of 1293 molecules having GSK-3β modulatory activity has been used. Molecular docking and eXplainable Artificial Intelligence (XAI) have been used concomitantly. The approach involves using GA for feature selection and XGBoost for in-depth analysis, yielding strong statistical validation with R2tr = 0.9075, R2L10 %O = 0.9116, and Q2F3 = 0.7841. Molecular docking provided complementary and similar results. Machine learning model interpretation using SHapley Additive exPlanations (SHAP) revealed that specific structural features like aromatic carbon with specific partial charges, non-ring nitrogen atoms, sp3-hybrid carbon atoms, and the topological distance between carbon and nitrogen atoms, among others, significantly influence the modulatory profile. The results are also supported by reported X-ray resolved structures. In addition, in-silico ADMET analysis is also accomplished. This research underscores the value of advanced machine learning techniques in understanding complex biological phenomena and supporting rational drug design.
Collapse
Affiliation(s)
- Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, Maharashtra 444 602, India.
| | - Sami Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Gaurav S Masand
- Department of Artificial Intelligence and Data Science, Dr. D. Y. Patil Institute of Engineering and Technology, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra, India
| | - Abdul Samad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq..
| | - Rakhi Gawali
- Department of Chemistry, D.B.F. Dayanand College of Arts & Science, Solapur, 413002 India
| | - Shravan Jadhav
- Department of Chemistry, D.B.F. Dayanand College of Arts & Science, Solapur, 413002 India
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| |
Collapse
|
2
|
Soltan OM, Abdelrahman KS, Bass AKA, Takizawa K, Narumi A, Konno H. Design of Multi-Target drugs of HDACs and other Anti-Alzheimer related Targets: Current strategies and future prospects in Alzheimer's diseases therapy. Bioorg Chem 2024; 151:107651. [PMID: 39029320 DOI: 10.1016/j.bioorg.2024.107651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia that develops spontaneously in the elderly. It's worth mentioning that as people age, the epigenetic profile of the central nervous system cells changes, which may speed up the development of various neurodegenerative disorders including AD. Histone deacetylases (HDACs) are a class of epigenetic enzymes that can control gene expression without altering the gene sequence. Moreover, a promising strategy for multi-target hybrid design was proposed to potentially improve drug efficacy and reduce side effects. These hybrids are monocular drugs that contain various pharmacophore components and have the ability to bind to different targets at the same time. The HDACs ability to synergistically boost the performance of other anti-AD drugs, as well as the ease with which HDACs inhibitor cap group, can be modified. This has prompted numerous medicinal chemists to design a novel generation of HDACs multi-target inhibitors. Different HDACs inhibitors and other ones such as acetylcholinesterase, butyryl-cholinesterase, phosphodiesterase 9, phosphodiesterase 5 or glycogen synthase kinase 3β inhibitors were merged into hybrids for treatment of AD. This review goes over the scientific rationale for targeting HDACs along with several other crucial targets in AD therapy. This review presents the latest hybrids of HDACs and other AD target pharmacophores.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Kamal S Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Amr K A Bass
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia 6131567, Egypt
| | - Kazuki Takizawa
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroyuki Konno
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
3
|
Youn K, Jun M. Determination of Potential Lead Compound from Magnolia officinalis for Alzheimer's Disease through Pharmacokinetic Prediction, Molecular Docking, Dynamic Simulation, and Experimental Validation. Int J Mol Sci 2024; 25:10507. [PMID: 39408835 PMCID: PMC11477134 DOI: 10.3390/ijms251910507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Amyloid β protein (Aβ) deposition has been implicated as the molecular driver of Alzheimer's disease (AD) progression. The modulation of the formation of abnormal aggregates and their post-translational modification is strongly suggested as the most effective approach to anti-AD. Beta-site APP-cleaving enzyme 1 (BACE1) acts upstream in amyloidogenic processing to generate Aβ, which rapidly aggregates alone or in combination with acetylcholinesterase (AChE) to form fibrils. Accumulated Aβ promotes BACE1 activation via glycogen synthase kinase-3β (GSK-3β) and is post-translationally modified by glutaminyl cyclase (QC), resulting in increased neurotoxicity. A novel multi-target inhibitor as a potential AD agent was identified using an in silico approach and experimental validation. Magnolia officinalis, which showed the best anti-AD activity in our preliminary study, was subjected to analysis, and 82 compounds were studied. Among 23 compounds with drug-likeness, blood-brain barrier penetration, and safety, honokiol emerged as a lead structure for the inhibition of BACE1, AChE, QC, and GSK-3β in docking and molecular dynamics (MD) simulations. Furthermore, honokiol was found to be an excellent multi-target inhibitor of these enzymes with an IC50 of 6-90 μM, even when compared to other natural single-target inhibitors. Taken together, the present study is the first to demonstrate that honokiol acts as a multiple enzyme inhibitor with an excellent pharmacokinetic and safety profile which may provide inhibitory effects in broad-range areas including the overproduction, aggregation, and post-translational modification of Aβ. It also provides insight into novel structural features for the design and discovery of multi-target inhibitors for anti-AD.
Collapse
Affiliation(s)
- Kumju Youn
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea;
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Republic of Korea
| | - Mira Jun
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea;
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Republic of Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
4
|
Ding Y, Wang T, Xu Z, Fu Y, Liu Y, Tao L. A Novel 3-Benzyloxychromone From Celastrus orbiculatus Thunb. Exhibits Anticancer Effects on Non-Small Cell Lung Cancer Cells via GSK-3β-Dependent c-Jun/ATF2 Pathway. Cell Biochem Funct 2024; 42:e4120. [PMID: 39215681 DOI: 10.1002/cbf.4120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Celastrus orbiculatus Thunb. is a vine used as a traditional Chinese medicinal herb. In this study, we focused on the anticancer cytotoxicity and underlying mechanism of previously unreported 3-oxygen-substituted isoflavone analogue (3-benzyloxychromone, 3-Boc) from the herb. Initially, we established cell line-derived xenograft mouse model using H1299 non-small cell lung cancer (NSCLC) cells and found that the ethanol crude extracts of the stem part of C. orbiculatus (200 mg/kg) could substantially suppress the growth of xenograft tumors in athymic nu/nu mice. We compared 3-Boc with three other flavonoid analogues isolated from the stem part of C. orbiculatus. Among these, 3-Boc showed the most potent cytotoxicity against H1299 and H1975 NSCLC cells. Colony formation, EdU incorporation and Annexin V-FITC/PI apoptosis assays demonstrated that 3-Boc induced growth inhibition primarily by inhibiting DNA replication and inducing apoptotic death of NSCLC cells. Structure-based target prediction and MD simulation suggested that 3-Boc potentially suppressed the activity of glycogen synthase kinase-3β (GSK-3β) by interacting with the ATP-binding site. Western blot analysis indicated that 3-Boc triggered the phosphorylation of Serine 21 of GSK-3α or Serine 9 of GSK-3β in a time- and dose-dependent manner. To investigate the dependency of GSK-3β, we established GSK-3β knockout in H1299 cells. Depletion of GSK-3β enhanced 3-Boc-induced cytotoxicity compared with wild-type counterparts through activated c-Jun/ATF2 signaling pathway. Altogether, our study highlights the anticancer potential of C. orbiculatus and the discovery of novel 3-oxygen-substituted chromone from the herb, which may have important implications for screening promising modulators of GSK-3β and related signaling pathways in the treatment of cancer.
Collapse
Affiliation(s)
- Yanlin Ding
- Department of Pharmacy, College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tingye Wang
- Department of Pharmacy, College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhenyu Xu
- Department of Pharmacy, College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuxuan Fu
- Department of Pharmacy, College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yanqing Liu
- Department of Pharmacy, College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Tao
- Department of Pharmacy, College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Kuzu B, Alagoz MA, Demir Y, Gulcin I, Burmaoglu S, Algul O. Structure-based inhibition of acetylcholinesterase and butyrylcholinesterase with 2-Aryl-6-carboxamide benzoxazole derivatives: synthesis, enzymatic assay, and in silico studies. Mol Divers 2024:10.1007/s11030-024-10828-6. [PMID: 38554169 DOI: 10.1007/s11030-024-10828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/21/2024] [Indexed: 04/01/2024]
Abstract
An important research topic is the discovery of multifunctional compounds targeting different disease-causing components. This research aimed to design and synthesize a series of 2-aryl-6-carboxamide benzoxazole derivatives that inhibit cholinesterases on both the peripheral anionic and catalytic anionic sides. Compounds (7-48) were prepared from 4-amino-3-hydroxybenzoic acid in three steps. The Ellman test, molecular docking with Maestro, and molecular dynamics simulation studies with Desmond were done (Schrodinger, 12.8.117). Compound 36, the most potent compound among the 42 new compounds synthesized, had an inhibitory concentration of IC50 12.62 nM for AChE and IC50 25.45 nM for BChE (whereas donepezil was 69.3 nM and 63.0 nM, respectively). Additionally, compound 36 had docking values of - 7.29 kcal/mol for AChE and - 6.71 kcal/mol for BChE (whereas donepezil was - 6.49 kcal/mol and - 5.057 kcal/mol, respectively). Furthermore, molecular dynamics simulations revealed that compound 36 is stable in the active gorges of both AChE (average RMSD: 1.98 Å) and BChE (average RMSD: 2.2 Å) (donepezil had average RMSD: 1.65 Å and 2.7 Å, respectively). The results show that compound 36 is a potent, selective, mixed-type dual inhibitor of both acetylcholinesterase and butyrylcholinesterase. It does this by binding to both the catalytically active and peripheral anionic sites of cholinesterases at the same time. These findings show that target compounds may be useful for establishing the structural basis for new anti-Alzheimer agents.
Collapse
Affiliation(s)
- Burak Kuzu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, 65080, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, 33169, Turkey
| | - M Abdullah Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, İnonu University, Malatya, 44280, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, 75000, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey
| | - Serdar Burmaoglu
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey.
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, 33169, Turkey.
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey.
| |
Collapse
|
6
|
Basli A, Bounaas J. Pathophysiological mechanism and natural preventive and therapeutic strategies of Alzheimer's disease. Nutr Health 2023; 29:403-413. [PMID: 36377316 DOI: 10.1177/02601060221137104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is characterized by the presence of two types of protein deposits in the brain, amyloid plaques and neurofibrillary tangles. The first one are dense deposits of beta amyloid protein, the second one are dense deposits of the protein tau. These proteins are present in all of our brains, but in AD they act unusually, leading to neuronal degeneration. This review will provide an overview of the AD, including the role of amyloid beta and tau, and mechanisms that lead to the formation of plaques and tangles. The review will also cover the existing researches that have focused on the inhibition of amyloid beta formation, cholinesterase, tau hyperphosphorylation, the pathogenic mechanisms of apoE4, and GSK-3 as a solution that could be used to slow or prevent the disease.
Collapse
Affiliation(s)
- Abdelkader Basli
- Laboratory of Interaction Research, Biodiversity, Ecosystems and Biotechnology, Faculty of Sciences, University of Skikda, Skikda, Algeria
| | - Jihane Bounaas
- Laboratory of Interaction Research, Biodiversity, Ecosystems and Biotechnology, Faculty of Sciences, University of Skikda, Skikda, Algeria
| |
Collapse
|
7
|
Tabassum N, Khalid S, Ghafoor S, Woo KM, Lee EH, Samie M, Konain K, Ponnusamy S, Arany P, Rahman SU. Tideglusib-incorporated nanofibrous scaffolds potently induce odontogenic differentiation. J Biomater Appl 2023:8853282231190470. [PMID: 37485690 DOI: 10.1177/08853282231190470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Pulp-Dentin regeneration is a key aspect of maintain tooth vitality and enabling good oral-systemic health. This study aimed to investigate a nanofibrous scaffold loaded with a small molecule i.e. Tideglusib to promote odontogenic differentiation. Tideglusib (GSK-3β inhibitor) interaction with GSK-3β was determined using molecular docking and stabilization of β-catenin was examined by confocal microscopy. 3D nanofibrous scaffolds were fabricated through electrospinning and their physicochemical characterizations were performed. Scaffolds were seeded with mesenchymal stem cells or pre-odontoblast cells to determine the cells proliferation and odontogenic differentiation. Our results showed that Tideglusib (TG) binds with GSK-3β at Cys199 residue. Stabilization and nuclear translocation of β-catenin was increased in the odontoblast cells treated with TG. SEM analysis revealed that nanofibers exhibited controlled architectural features that effectively mimicked the natural ECM. UV-Vis spectroscopy demonstrated that TG was incorporated successfully and released in a controlled manner. Both kinds of biomimetic nanofibrous matrices (PCLF-TG100, PCLF-TG1000) significantly stimulated cells proliferation. Furthermore, these scaffolds significantly induced dentinogenic markers (ALP, and DSPP) expression and biomineralization. In contrast to current pulp capping material driving dentin repair, the sophisticated, polymeric scaffold systems with soluble and insoluble spatiotemporal cues described here can direct stem cell differentiation and dentin regeneration. Hence, bioactive small molecule-incorporated nanofibrous scaffold suggests an innovative clinical tool for dentin tissue engineering.
Collapse
Affiliation(s)
- Nadia Tabassum
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
- PGMI, De Montmorency College of Dentistry, Lahore, Pakistan
| | - Saira Khalid
- PGMI, De Montmorency College of Dentistry, Lahore, Pakistan
| | - Sarah Ghafoor
- Oral Biology, University of Health Sciences, Lahore, Pakistan
| | - Kyung Mi Woo
- Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Eun Hye Lee
- Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Muhammad Samie
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Kiran Konain
- Molecular Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Sasikumar Ponnusamy
- Oral Biology, Surgery and Biomedial Engineering, University at Buffalo, NY, USA
| | - Praveen Arany
- Oral Biology, Surgery and Biomedial Engineering, University at Buffalo, NY, USA
| | - Saeed Ur Rahman
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
- Oral Biology, Surgery and Biomedial Engineering, University at Buffalo, NY, USA
- Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
8
|
Nassar H, Sippl W, Dahab RA, Taha M. Molecular docking, molecular dynamics simulations and in vitro screening reveal cefixime and ceftriaxone as GSK3β covalent inhibitors. RSC Adv 2023; 13:11278-11290. [PMID: 37057264 PMCID: PMC10087387 DOI: 10.1039/d3ra01145c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
GSK3β is a serine/threonine kinase that has been suggested as a putative drug target for several diseases. Recent studies have reported the beneficial effects of cephalosporin antibiotics in cancer and Alzheimer's disease, implying potential inhibition of GSK3β. To investigate this mechanism, four cephalosporins, namely, cefixime, ceftriaxone, cephalexin and cefadroxil were docked into the GSK3β binding pocket. The third-generation cephalosporins, cefixime and ceftriaxone, exhibited the best docking scores due to the exclusive hydrogen bonding between their aminothiazole group and hinge residues of GSK3β. The stability of top-ranked poses and the possibility of covalent bond formation between the carbonyl carbon of the β-lactam ring and the nucleophilic thiol of Cys-199 were evaluated by molecular dynamics simulations and covalent docking. Finally, the in vitro inhibitory activities of the four cephalosporins were measured against GSK3β with and without preincubation. In agreement with the results of molecular docking, cefixime and ceftriaxone exhibited the best inhibitory activities with IC50 values of 2.55 μM and 7.35 μM, respectively. After 60 minutes preincubation with GSK3β, the IC50 values decreased to 0.55 μM for cefixime and 0.78 μM for ceftriaxone, supporting a covalent bond formation as suggested by molecular dynamics simulations and covalent docking. In conclusion, the third-generation cephalosporins are reported herein as GSK3β covalent inhibitors, offering insight into the mechanism behind their benefits in cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Husam Nassar
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) 06120 Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) 06120 Germany
| | - Rana Abu Dahab
- Department of Clinical Pharmacy and Biopharmaceutics, School of Pharmacy, University of Jordan Amman 11942 Jordan
| | - Mutasem Taha
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan Amman 11942 Jordan
| |
Collapse
|
9
|
Chandel S, Singh R, Gautam A, Ravichandiran V. Screening of Azadirachta indica phytoconstituents as GSK-3β inhibitor and its implication in neuroblastoma: molecular docking, molecular dynamics, MM-PBSA binding energy, and in-vitro study. J Biomol Struct Dyn 2022; 40:12827-12840. [PMID: 34569452 DOI: 10.1080/07391102.2021.1977705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3), a constitutively active serine/threonine kinase, primary regulator of various cellular activities varying from glycogen metabolism to cell proliferation and regulation. GSK-3β is associated with the pathogenesis of numerous human diseases, including cancer, metabolic disorder, and Alzheimer's disease. In this study, Azadirachta indica compounds were selected and further screened on the BOILED-Egg model. The compounds showing good GIT absorption were docked with the crystal structure of GSK-3β. The compounds with high docking score were submitted for the molecular dynamic simulation (MDS) and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA). Based upon the MDS and MM-PBSA study, gedunin showed the highest binding energy throughout the MDS process. Gedunin was isolated from the Azadirachta indica, and its efficacy on GSK-3β inhibition was studied in the human neuroblastoma (SH-SY5Y) cells. Gedunin induced apoptosis and anti-proliferative activity by arresting G2/M phase, as evident by cell-cycle analysis. From immunoblot study, gedunin significantly enhanced the expression of an inhibitory form of GSK-3β (p-GSK-3β Ser9) in concentration-dependent manner. Our findings demonstrate that gedunin may act as an effective GSK-3β inhibitor suggesting that this compound may be used for the management of neuroblastoma. Further preclinical and clinical investigation is desirable.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani Chandel
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Rajveer Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.,International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
10
|
Ferreira RB, Fu L, Jung Y, Yang J, Carroll KS. Reaction-based fluorogenic probes for detecting protein cysteine oxidation in living cells. Nat Commun 2022; 13:5522. [PMID: 36130931 PMCID: PMC9492777 DOI: 10.1038/s41467-022-33124-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 09/01/2022] [Indexed: 01/12/2023] Open
Abstract
'Turn-on' fluorescence probes for detecting H2O2 in cells are established, but equivalent tools to monitor the products of its reaction with protein cysteines have not been reported. Here we describe fluorogenic probes for detecting sulfenic acid, a redox modification inextricably linked to H2O2 signaling and oxidative stress. The reagents exhibit excellent cell permeability, rapid reactivity, and high selectivity with minimal cytotoxicity. We develop a high-throughput assay for measuring S-sulfenation in cells and use it to screen a curated kinase inhibitor library. We reveal a positive association between S-sulfenation and inhibition of TK, AGC, and CMGC kinase group members including GSK3, a promising target for neurological disorders. Proteomic mapping of GSK3 inhibitor-treated cells shows that S-sulfenation sites localize to the regulatory cysteines of antioxidant enzymes. Our studies highlight the ability of kinase inhibitors to modulate the cysteine sulfenome and should find broad application in the rapidly growing field of redox medicine.
Collapse
Affiliation(s)
- Renan B Ferreira
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, FL, 33458, US
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing, 102206, China
- Innovation Institute of Medical School, Medical College, Qingdao University, Qingdao, 266071, China
| | - Youngeun Jung
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, FL, 33458, US
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Kate S Carroll
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, FL, 33458, US.
| |
Collapse
|
11
|
Balboni B, Tripathi SK, Veronesi M, Russo D, Penna I, Giabbai B, Bandiera T, Storici P, Girotto S, Cavalli A. Identification of Novel GSK-3β Hits Using Competitive Biophysical Assays. Int J Mol Sci 2022; 23:ijms23073856. [PMID: 35409221 PMCID: PMC8998611 DOI: 10.3390/ijms23073856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Glycogen synthase kinase 3 beta (GSK-3β) is an evolutionarily conserved serine-threonine kinase dysregulated in numerous pathologies, such as Alzheimer’s disease and cancer. Even though GSK-3β is a validated pharmacological target most of its inhibitors have two main limitations: the lack of selectivity due to the high homology that characterizes the ATP binding site of most kinases, and the toxicity that emerges from GSK-3β complete inhibition which translates into the impairment of the plethora of pathways GSK-3β is involved in. Starting from a 1D 19F NMR fragment screening, we set up several biophysical assays for the identification of GSK-3β inhibitors capable of binding protein hotspots other than the ATP binding pocket or to the ATP binding pocket, but with an affinity able of competing with a reference binder. A phosphorylation activity assay on a panel of several kinases provided selectivity data that were further rationalized and corroborated by structural information on GSK-3β in complex with the hit compounds. In this study, we identified promising fragments, inhibitors of GSK-3β, while proposing an alternative screening workflow that allows facing the flaws that characterize the most common GSK-3β inhibitors through the identification of selective inhibitors and/or inhibitors able to modulate GSK-3β activity without leading to its complete inhibition.
Collapse
Affiliation(s)
- Beatrice Balboni
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (B.B.); (S.K.T.)
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Shailesh Kumar Tripathi
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (B.B.); (S.K.T.)
| | - Marina Veronesi
- D3 Pharmachemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (M.V.); (D.R.); (I.P.); (T.B.)
| | - Debora Russo
- D3 Pharmachemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (M.V.); (D.R.); (I.P.); (T.B.)
| | - Ilaria Penna
- D3 Pharmachemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (M.V.); (D.R.); (I.P.); (T.B.)
| | - Barbara Giabbai
- Structural Biology Laboratory, Elettra Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy; (B.G.); (P.S.)
| | - Tiziano Bandiera
- D3 Pharmachemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (M.V.); (D.R.); (I.P.); (T.B.)
| | - Paola Storici
- Structural Biology Laboratory, Elettra Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy; (B.G.); (P.S.)
| | - Stefania Girotto
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (B.B.); (S.K.T.)
- Correspondence: (S.G.); (A.C.); Tel.: +39-010-2896-983 (S.G.); +39-010-2897-403 (A.C.)
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (B.B.); (S.K.T.)
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Correspondence: (S.G.); (A.C.); Tel.: +39-010-2896-983 (S.G.); +39-010-2897-403 (A.C.)
| |
Collapse
|
12
|
Rodríguez-Urgellés E, Sancho-Balsells A, Chen W, López-Molina L, Ballasch I, Del Castillo I, Avila C, Alberch J, Giralt A. Meridianins Rescue Cognitive Deficits, Spine Density and Neuroinflammation in the 5xFAD Model of Alzheimer's Disease. Front Pharmacol 2022; 13:791666. [PMID: 35281935 PMCID: PMC8908099 DOI: 10.3389/fphar.2022.791666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3β) is a core protein, with a relevant role in many neurodegenerative disorders including Alzheimer’s disease. The enzyme has been largely studied as a potential therapeutic target for several neurological diseases. Unfortunately, preclinical and clinical studies with several GSK3β inhibitors have failed due to many reasons such as excessive toxicity or lack of effects in human subjects. We previously reported that meridianins are potent GSK3β inhibitors without altering neuronal viability. In the present work, we examine whether meridianins are capable to inhibit neural GSK3β in vivo and if such inhibition induces improvements in the 5xFAD mouse model of Alzheimer’s Disease. Direct administration of meridianins in the third ventricle of 5xFAD mice induced robust improvements of recognition memory and cognitive flexibility as well as a rescue of the synaptic loss and an amelioration of neuroinflammatory processes. In summary, our study points out meridianins as a potential compound to treat neurodegenerative disorders associated with an hyperactivation of GSK3β such as Alzheimer’s disease.
Collapse
Affiliation(s)
- Ened Rodríguez-Urgellés
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Wanqi Chen
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Laura López-Molina
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Ivan Ballasch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Ignacio Del Castillo
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), Universitat de Barcelona, Catalonia, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Natural products as novel scaffolds for the design of glycogen synthase kinase 3β inhibitors. Expert Opin Drug Discov 2022; 17:377-396. [PMID: 35262427 DOI: 10.1080/17460441.2022.2043845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The different and relevant roles of GSK-3 are of critical importance since they deal with development, metabolic homeostasis, cell polarity and fate, neuronal growth and differentiation as well as modulation of apoptotic potential. Given their involvement with different diseases, many investigations have been undertaken with the aim of discovering new and promising inhibitors for this target. In this context, atural products represent an invaluable source of active molecules. AREAS COVERED In order to overcome issues such as poor pharmacokinetic properties or efficacy, frequently associated with natural compounds, different GSK-3β inhibitors belonging to alkaloid or flavonoid classes have been subjected to structural modifications in order to obtain more potent and safer compounds. Herein, the authors report the results obtained from studies where natural compounds have been used as hits with the aim of providing new kinase inhibitors endowed with a better inhibitory profile. EXPERT OPINION Structurally modification of natural scaffolds is a proven approach taking advantage of their pharmacological characteristics. Indeed, whatever the strategy adopted is and, despite the limitations associated with the structural complexity of natural products, the authors recommend the use of natural scaffolds as a promising strategy for the discovery of novel and potent GSK-3β inhibitors.
Collapse
|
14
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
15
|
Singh K, Bhatia R, Kumar B, Singh G, Monga V. Design Strategies, Chemistry and Therapeutic Insights of Multi-target Directed Ligands as Antidepressant Agents. Curr Neuropharmacol 2022; 20:1329-1358. [PMID: 34727859 PMCID: PMC9881079 DOI: 10.2174/1570159x19666211102154311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022] Open
Abstract
Depression is one of the major disorders of the central nervous system worldwide and causes disability and functional impairment. According to the World Health Organization, around 265 million people worldwide are affected by depression. Currently marketed antidepressant drugs take weeks or even months to show anticipated clinical efficacy but remain ineffective in treating suicidal thoughts and cognitive impairment. Due to the multifactorial complexity of the disease, single-target drugs do not always produce satisfactory results and lack the desired level of therapeutic efficacy. Recent literature reports have revealed improved therapeutic potential of multi-target directed ligands due to their synergistic potency and better safety. Medicinal chemists have gone to great extents to design multitarget ligands by generating structural hybrids of different key pharmacophores with improved binding affinities and potency towards different receptors or enzymes. This article has compiled the design strategies of recently published multi-target directed ligands as antidepressant agents. Their biological evaluation, structural-activity relationships, mechanistic and in silico studies have also been described. This article will prove to be highly useful for the researchers to design and develop multi-target ligands as antidepressants with high potency and therapeutic efficacy.
Collapse
Affiliation(s)
- Karanvir Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda-151401, Punjab, India
| |
Collapse
|
16
|
Ajiboye BO, Iwaloye O, Owolabi OV, Ejeje JN, Okerewa A, Johnson OO, Udebor AE, Oyinloye BE. Screening of potential antidiabetic phytochemicals from Gongronema latifolium leaf against therapeutic targets of type 2 diabetes mellitus: multi-targets drug design. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04880-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AbstractDiabetes mellitus (DM) is the most predominant group of metabolic disorders wreaking havoc on the wellbeing of man, with type 2 diabetes mellitus (type 2 DM) accounting for most DM related cases. This study, hence, investigated the antidiabetic potential of Gongronema latifolium leaf fractionated compounds against proteins implicated in different molecular pathways related to the onset and progression of type 2 DM. A total of fifteen proteins that can act as type 2 DM therapeutic targets were identified from the literature and downloaded/modelled using respective repositories. After docking the compounds with the fifteen proteins, glycogen synthase kinase 3 beta (GSK 3β), glucagon-like peptide-1 receptor (GLP-1R) and human aldose reductase were chosen as the ideal targets due to their high binding affinities with the compounds. Subsequent in silico analysis like binding free energy, ADMET predictions using different servers, and machine-learning predictive models (QSAR) using kernel partial least square regression were employed to identify promising compounds against the three targets. The eleven identified compounds (Luteonin, Kampferol, Robinetin, Gallocatechin, Baicalin, Apigenin, Genistein, Rosmaric acid, Chicoric acid and Naringenin) formed stable complexes with the proteins, showed moderation for toxicity, drugability, GI absorptions and drug-drug interactions, though structure modifications may be needed for lead optimization. The predictive QSAR models with reliable correlation coefficient (R2) showed the potency of the compounds to act as inhibitors (pIC50) of aldose reductase and GSK 3β, and act as agonists (pEC50) of GLP-1R. Thus, this study experimental framework can be used to design compounds that can modulate proteins related to type 2 DM without inducing off-target effects.
Collapse
|
17
|
Piazzi M, Bavelloni A, Cenni V, Faenza I, Blalock WL. Revisiting the Role of GSK3, A Modulator of Innate Immunity, in Idiopathic Inclusion Body Myositis. Cells 2021; 10:cells10113255. [PMID: 34831477 PMCID: PMC8625526 DOI: 10.3390/cells10113255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Idiopathic or sporadic inclusion body myositis (IBM) is the leading age-related (onset >50 years of age) autoimmune muscular pathology, resulting in significant debilitation in affected individuals. Once viewed as primarily a degenerative disorder, it is now evident that much like several other neuro-muscular degenerative disorders, IBM has a major autoinflammatory component resulting in chronic inflammation-induced muscle destruction. Thus, IBM is now considered primarily an inflammatory pathology. To date, there is no effective treatment for sporadic inclusion body myositis, and little is understood about the pathology at the molecular level, which would offer the best hopes of at least slowing down the degenerative process. Among the previously examined potential molecular players in IBM is glycogen synthase kinase (GSK)-3, whose role in promoting TAU phosphorylation and inclusion bodies in Alzheimer’s disease is well known. This review looks to re-examine the role of GSK3 in IBM, not strictly as a promoter of TAU and Abeta inclusions, but as a novel player in the innate immune system, discussing some of the recent roles discovered for this well-studied kinase in inflammatory-mediated pathology.
Collapse
Affiliation(s)
- Manuela Piazzi
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Bavelloni
- Laboratorio di Oncologia Sperimentale, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Vittoria Cenni
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Irene Faenza
- Dipartimento di Scienze Biomediche and Neuromotorie, Università di Bologna, 40136 Bologna, Italy;
| | - William L. Blalock
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence:
| |
Collapse
|
18
|
Chen X, Sun G, Tian E, Zhang M, Davtyan H, Beach TG, Reiman EM, Blurton‐Jones M, Holtzman DM, Shi Y. Modeling Sporadic Alzheimer's Disease in Human Brain Organoids under Serum Exposure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101462. [PMID: 34337898 PMCID: PMC8456220 DOI: 10.1002/advs.202101462] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Indexed: 05/30/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no cure. Huge efforts have been made to develop anti-AD drugs in the past decades. However, all drug development programs for disease-modifying therapies have failed. Possible reasons for the high failure rate include incomplete understanding of complex pathophysiology of AD, especially sporadic AD (sAD), and species difference between humans and animal models used in preclinical studies. In this study, sAD is modeled using human induced pluripotent stem cell (hiPSC)-derived 3D brain organoids. Because the blood-brain barrier (BBB) leakage is a well-known risk factor for AD, brain organoids are exposed to human serum to mimic the serum exposure consequence of BBB breakdown in AD patient brains. The serum-exposed brain organoids are able to recapitulate AD-like pathologies, including increased amyloid beta (Aβ) aggregates and phosphorylated microtubule-associated tau protein (p-Tau) level, synaptic loss, and impaired neural network. Serum exposure increases Aβ and p-Tau levels through inducing beta-secretase 1 (BACE) and glycogen synthase kinase-3 alpha / beta (GSK3α/β) levels, respectively. In addition, single-cell transcriptomic analysis of brain organoids reveals that serum exposure reduced synaptic function in both neurons and astrocytes and induced immune response in astrocytes. The human brain organoid-based sAD model established in this study can provide a powerful platform for both mechanistic study and therapeutic development in the future.
Collapse
Affiliation(s)
- Xianwei Chen
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte RdDuarteCA91010USA
| | - Guoqiang Sun
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte RdDuarteCA91010USA
| | - E Tian
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte RdDuarteCA91010USA
| | - Mingzi Zhang
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte RdDuarteCA91010USA
| | - Hayk Davtyan
- Institute for Memory Impairments & Neurological Disorders and Sue & Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCA92697USA
| | - Thomas G. Beach
- Banner Sun Health Research Institute105015 West Santa Fe DriveSun CityAZ85351USA
| | - Eric M. Reiman
- Banner Alzheimer Institute901 East Willetta StreetPhoenixAZ95006USA
| | - Mathew Blurton‐Jones
- Department of Neurobiology & BehaviorInstitute for Memory Impairments & Neurological Disorders and Sue & Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCA92697USA
| | - David M. Holtzman
- Department of NeurologyHope Center for Neurological DisordersKnight Alzheimer's Disease Research CenterWashington University in St. LouisSt. LouisMO63110USA
| | - Yanhong Shi
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte RdDuarteCA91010USA
| |
Collapse
|
19
|
Epibrassinolide prevents tau hyperphosphorylation via GSK3β inhibition in vitro and improves Caenorhabditis elegans lifespan and motor deficits in combination with roscovitine. Amino Acids 2021; 53:1373-1389. [PMID: 34386848 DOI: 10.1007/s00726-021-03027-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/23/2021] [Indexed: 01/17/2023]
Abstract
Glycogen synthase kinase 3β (GSK3β) is considered an important element of glycogen metabolism; however, it has many other regulatory roles. Changes in the GSK3β signaling mechanism have been associated with various disorders, such as Alzheimer's disease (AD), type II diabetes, and cancer. Although the effects of GSK3β inhibitors on reducing the pathological effects of AD have been described, an effective inhibitor has not yet been developed. Epibrassinolide (EBR), a brassinosteroid (BR), is structurally similar to mammalian steroid hormones. Our studies have shown that EBR has an inhibitory effect on GSK3β in different cell lines. Roscovitine (ROSC), a cyclin-dependent kinase (CDK) inhibitor, has also been identified as a potential GSK3 inhibitor. Within the scope of this study, we propose that EBR and/or ROSC might have mechanistic action in AD models. To test this hypothesis, we used in vitro models and Caenorhabditis elegans (C. elegans) AD strains. Finally, EBR treatment successfully protected cells from apoptosis and increased the inhibitory phosphorylation of GSK3β. In addition, EBR and/or ROSC treatment had a positive effect on the survival rates of C. elegans strains. More interestingly, the paralysis phenotype of the C. elegans AD model due to Aβ42 toxicity was prevented by EBR and/or ROSC. Our findings suggest that EBR and ROSC administration have neuroprotective effects on both in vitro and C. elegans models via inhibitory GSK3β phosphorylation at Ser9.
Collapse
|
20
|
Zhang P, Min Z, Gao Y, Bian J, Lin X, He J, Ye D, Li Y, Peng C, Cheng Y, Chu Y. Discovery of Novel Benzothiazepinones as Irreversible Covalent Glycogen Synthase Kinase 3β Inhibitors for the Treatment of Acute Promyelocytic Leukemia. J Med Chem 2021; 64:7341-7358. [PMID: 34027661 DOI: 10.1021/acs.jmedchem.0c02254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, irreversible inhibitors have attracted great interest in antitumors due to their advantages of forming covalent bonds to target proteins. Herein, some benzothiazepinone compounds (BTZs) have been designed and synthesized as novel covalent GSK-3β inhibitors with high selectivity for the kinase panel. The irreversible covalent binding mode was identified by kinetics and mass spectrometry, and the main labeled residue was confirmed to be the unique Cys14 that exists only in GSK-3β. The candidate 4-3 (IC50 = 6.6 μM) showed good proliferation inhibition and apoptosis-inducing ability to leukemia cell lines, low cytotoxicity on normal cell lines, and no hERG inhibition, which hinted the potential efficacy and safety. Furthermore, 4-3 exhibited decent pharmacokinetic properties in vivo and remarkably inhibited tumor growth in the acute promyelocytic leukemia (APL) mouse model. All the results suggest that these newly irreversible BTZ compounds might be useful in the treatment of cancer such as APL.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.,State Key Lab of New Drug & Pharmaceutical Process, Shanghai Key Lab of Anti-Infectives, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Zhihui Min
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yang Gao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiang Bian
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xin Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jie He
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Deyong Ye
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yilin Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Yunfeng Cheng
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yong Chu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
21
|
Jankowska A, Satała G, Bojarski AJ, Pawłowski M, Chłoń-Rzepa G. Multifunctional Ligands with Glycogen Synthase Kinase 3 Inhibitory Activity as a New Direction in Drug Research for Alzheimer's Disease. Curr Med Chem 2021; 28:1731-1745. [PMID: 32338201 DOI: 10.2174/0929867327666200427100453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) belongs to the most common forms of dementia that causes a progressive loss of brain cells and leads to memory impairment and decline of other thinking skills. There is yet no effective treatment for AD; hence, the search for new drugs that could improve memory and other cognitive functions is one of the hot research topics worldwide. Scientific efforts are also directed toward combating behavioral and psychological symptoms of dementia, which are an integral part of the disease. Several studies have indicated that glycogen synthase kinase 3 beta (GSK3β) plays a crucial role in the pathogenesis of AD. Moreover, GSK3β inhibition provided beneficial effects on memory improvement in multiple animal models of AD. The present review aimed to update the most recent reports on the discovery of novel multifunctional ligands with GSK3β inhibitory activity as potential drugs for the symptomatic and disease-modifying therapy of AD. Compounds with GSK3β inhibitory activity seem to be an effective pharmacological approach for treating the causes and symptoms of AD as they reduced neuroinflammation and pathological hallmarks in animal models of AD and provided relief from cognitive and neuropsychiatric symptoms. These compounds have the potential to be used as drugs for the treatment of AD, but their precise pharmacological, pharmacokinetic, toxicological and clinical profiles need to be defined.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Maciej Pawłowski
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688 Krakow, Poland
| | - GraŻyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
22
|
Mangangcha IR, Brojen Singh RK, Lebeche D, Ali S. Xanthone glucoside 2-β-D-glucopyranosyl-1,3,6,7-tetrahydroxy-9H-xanthen-9-one binds to the ATP-binding pocket of glycogen synthase kinase 3β and inhibits its activity: implications in prostate cancer and associated cardiovascular disease risk. J Biomol Struct Dyn 2021; 40:7868-7884. [PMID: 33769184 DOI: 10.1080/07391102.2021.1902857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Glycogen synthase kinase 3 (GSK3) is a serine/threonine kinase which in the presence of ATP in its ATP-binding pocket transfers a phosphate to a primed substrate. GSK3β is an isoform of GSK3 which has been projected as a potent therapeutic target in human diseases including cancers and metabolic syndrome. Incidentally, cardiovascular disease is a common cause of non-cancer related deaths in prostate cancer (PCa) patients, mainly due to the effects of androgen-deprivation therapy (ADT), a mainstay for PCa treatment. Several small molecular inhibitors of GSK3 are either ATP-competitive (bind to the ATP-binding pocket), or non-ATP-competitive inhibitors (binding to the substrate-binding site of the enzyme). In this study, 2-β-D-glucopyranosyl-1,3,6,7-tetrahydroxy-9H-xanthen-9-one (βDGT), a natural xanthonoid present in many plant species, is reported to bind to the ATP-binding pocket of GSK3β and inhibit its activity, as demonstrated by the molecular docking and molecular dynamics simulation analysis and experimental validation in vitro. A comparison of the binding affinities with five known ATP-competitive inhibitors of GSK3β suggested similarity in binding site residues in the ATP-binding pocket of the enzyme. The optimum inhibitory concentration of the xanthonoid as determined by the luminescent kinase assay was 200 µM. The study envisages the use of βDGT as a natural ATP-competitive inhibitor of GSK3β and implicates its use in PCa patients on ADT, a cardiovascular disease risk, and other pathological conditions where GSK3 inhibition may be clinically important. HighlightsGSK3β is a multifaceted kinase known for its role in cancers, cardiovascular, and other diseases.In this study, βDGT, a xanthonoid, is reported to bind to the ATP-binding pocket of GSK3β.A comparison of βDGT binding with 5 known ATP-competitive inhibitors of GSK3β suggested the involvement of residues at the ATP binding site.The binding site analysis suggested an ATP-competitive mechanism of enzyme inhibition.Study envisages the use of βDGT as a natural ATP-competitive inhibitor of GSK3β and implicates its use in prostate cancer patients on androgen-deprivation therapy, a cardiovascular disease risk, and other pathological conditions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Irengbam Rocky Mangangcha
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard (Deemed University), Delhi, India.,School of Interdisciplinary Sciences and Technology, Jamia Hamdard (Deemed University), Delhi, India.,Bioinformatics Center, BIF, Jamia Hamdard (Deemed University), Delhi, India.,Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Raj Kumar Brojen Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, Delhi, India
| | - Djamel Lebeche
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Diabetes, Obesity and Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard (Deemed University), Delhi, India.,School of Interdisciplinary Sciences and Technology, Jamia Hamdard (Deemed University), Delhi, India.,Bioinformatics Center, BIF, Jamia Hamdard (Deemed University), Delhi, India
| |
Collapse
|
23
|
Rizk M, Saker Z, Harati H, Fares Y, Bahmad HF, Nabha S. Deciphering the roles of glycogen synthase kinase 3 (GSK3) in the treatment of autism spectrum disorder and related syndromes. Mol Biol Rep 2021; 48:2669-2686. [PMID: 33650079 DOI: 10.1007/s11033-021-06237-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Autism spectrum disorder (ASD) is a complex and multifactorial neurodevelopmental disorder characterized by the presence of restricted interests and repetitive behaviors besides deficits in social communication. Syndromic ASD is a subset of ASD caused by underlying genetic disorders, most commonly Fragile X Syndrome (FXS) and Rett Syndrome (RTT). Various mutations and consequent malfunctions in core signaling pathways have been identified in ASD, including glycogen synthase kinase 3 (GSK3). A growing body of evidence suggests a key role of GSK3 dysregulation in the pathogenesis of ASD and its related disorders. Here, we provide a synopsis of the implication of GSK3 in ASD, FXS, and RTT as a promising therapeutic target for the treatment of ASD.
Collapse
Affiliation(s)
- Mahdi Rizk
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Zahraa Saker
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.,Department of Neurosurgery, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hisham F Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL, 33140, USA
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
24
|
Modulation of Differentiation of Embryonic Stem Cells by Polypyrrole: The Impact on Neurogenesis. Int J Mol Sci 2021; 22:ijms22020501. [PMID: 33419082 PMCID: PMC7825406 DOI: 10.3390/ijms22020501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/30/2022] Open
Abstract
The active role of biomaterials in the regeneration of tissues and their ability to modulate the behavior of stem cells in terms of their differentiation is highly advantageous. Here, polypyrrole, as a representantive of electro-conducting materials, is found to modulate the behavior of embryonic stem cells. Concretely, the aqueous extracts of polypyrrole induce neurogenesis within embryonic bodies formed from embryonic stem cells. This finding ledto an effort to determine the physiological cascade which is responsible for this effect. The polypyrrole modulates signaling pathways of Akt and ERK kinase through their phosphorylation. These effects are related to the presence of low-molecular-weight compounds present in aqueous polypyrrole extracts, determined by mass spectroscopy. The results show that consequences related to the modulation of stem cell differentiation must also be taken into account when polypyrrole is considered as a biomaterial.
Collapse
|
25
|
Discovery of potent glycogen synthase kinase 3/cholinesterase inhibitors with neuroprotection as potential therapeutic agent for Alzheimer’s disease. Bioorg Med Chem 2021; 30:115940. [DOI: 10.1016/j.bmc.2020.115940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023]
|
26
|
De Simone A, Tumiatti V, Andrisano V, Milelli A. Glycogen Synthase Kinase 3β: A New Gold Rush in Anti-Alzheimer's Disease Multitarget Drug Discovery? J Med Chem 2020; 64:26-41. [PMID: 33346659 PMCID: PMC8016207 DOI: 10.1021/acs.jmedchem.0c00931] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Alzheimer’s
disease (AD), like other multifactorial diseases,
is the result of a systemic breakdown of different physiological networks.
As result, several lines of evidence suggest that it could be more
efficiently tackled by molecules directed toward different dysregulated
biochemical targets or pathways. In this context, the selection of
targets to which the new molecules will be directed is crucial. For
years, the design of such multitarget-directed ligands (MTDLs) has
been based on the selection of main targets involved in the “cholinergic”
and the “β-amyloid” hypothesis. Recently, there
have been some reports on MTDLs targeting the glycogen synthase kinase
3β (GSK-3β) enzyme, due to its appealing properties. Indeed,
this enzyme is involved in tau hyperphosphorylation, controls a multitude
of CNS-specific signaling pathways, and establishes strict connections
with several factors implicated in AD pathogenesis. In the present
Miniperspective, we will discuss the reasons behind the development
of GSK-3β-directed MTDLs and highlight some of the recent efforts
to obtain these new classes of MTDLs as potential disease-modifying
agents.
Collapse
Affiliation(s)
- Angela De Simone
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy
| | - Vincenzo Tumiatti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
27
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
28
|
Jungers CF, Elliff JM, Masson-Meyers DS, Phiel CJ, Origanti S. Regulation of eukaryotic translation initiation factor 6 dynamics through multisite phosphorylation by GSK3. J Biol Chem 2020; 295:12796-12813. [PMID: 32703900 DOI: 10.1074/jbc.ra120.013324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/16/2020] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic translation initiation factor 6 (eIF6) is essential for the synthesis of 60S ribosomal subunits and for regulating the association of 60S and 40S subunits. A mechanistic understanding of how eIF6 modulates translation in response to stress, specifically starvation-induced stress, is lacking. We here show a novel mode of eIF6 regulation by glycogen synthase kinase 3 (GSK3) that is predominantly active in response to serum starvation. Both GSK3α and GSK3β phosphorylate human eIF6. Multiple residues in the C terminus of eIF6 are phosphorylated by GSK3 in a sequential manner. In response to serum starvation, eIF6 accumulates in the cytoplasm, and this altered localization depends on phosphorylation by GSK3. Disruption of eIF6 phosphorylation exacerbates the translation inhibitory response to serum starvation and stalls cell growth. These results suggest that eIF6 regulation by GSK3 contributes to the attenuation of global protein synthesis that is critical for adaptation to starvation-induced stress.
Collapse
Affiliation(s)
- Courtney F Jungers
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Jonah M Elliff
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | | | - Christopher J Phiel
- Department of Integrative Biology, University of Colorado Denver, Colorado, USA
| | - Sofia Origanti
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA .,Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
29
|
Yadikar H, Torres I, Aiello G, Kurup M, Yang Z, Lin F, Kobeissy F, Yost R, Wang KK. Screening of tau protein kinase inhibitors in a tauopathy-relevant cell-based model of tau hyperphosphorylation and oligomerization. PLoS One 2020; 15:e0224952. [PMID: 32692785 PMCID: PMC7373298 DOI: 10.1371/journal.pone.0224952] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Tauopathies are a class of neurodegenerative disorders characterized by abnormal deposition of post-translationally modified tau protein in the human brain. Tauopathies are associated with Alzheimer's disease (AD), chronic traumatic encephalopathy (CTE), and other diseases. Hyperphosphorylation increases tau tendency to aggregate and form neurofibrillary tangles (NFT), a pathological hallmark of AD. In this study, okadaic acid (OA, 100 nM), a protein phosphatase 1/2A inhibitor, was treated for 24h in mouse neuroblastoma (N2a) and differentiated rat primary neuronal cortical cell cultures (CTX) to induce tau-hyperphosphorylation and oligomerization as a cell-based tauopathy model. Following the treatments, the effectiveness of different kinase inhibitors was assessed using the tauopathy-relevant tau antibodies through tau-immunoblotting, including the sites: pSer202/pThr205 (AT8), pThr181 (AT270), pSer202 (CP13), pSer396/pSer404 (PHF-1), and pThr231 (RZ3). OA-treated samples induced tau phosphorylation and oligomerization at all tested epitopes, forming a monomeric band (46-67 kDa) and oligomeric bands (170 kDa and 240 kDa). We found that TBB (a casein kinase II inhibitor), AR and LiCl (GSK-3 inhibitors), cyclosporin A (calcineurin inhibitor), and Saracatinib (Fyn kinase inhibitor) caused robust inhibition of OA-induced monomeric and oligomeric p-tau in both N2a and CTX culture. Additionally, a cyclin-dependent kinase 5 inhibitor (Roscovitine) and a calcium chelator (EGTA) showed contrasting results between the two neuronal cultures. This study provides a comprehensive view of potential drug candidates (TBB, CsA, AR, and Saracatinib), and their efficacy against tau hyperphosphorylation and oligomerization processes. These findings warrant further experimentation, possibly including animal models of tauopathies, which may provide a putative Neurotherapy for AD, CTE, and other forms of tauopathy-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Hamad Yadikar
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
- Department of Chemistry, Chemistry Laboratory Building, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| | - Isabel Torres
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Gabrielle Aiello
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Milin Kurup
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Fan Lin
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Richard Yost
- Department of Chemistry, Chemistry Laboratory Building, University of Florida, Gainesville, FL, United States of America
| | - Kevin K. Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States of America
| |
Collapse
|
30
|
Raut GK, Manchineela S, Chakrabarti M, Bhukya CK, Naini R, Venkateshwari A, Reddy VD, Mendonza JJ, Suresh Y, Nallari P, Bhadra MP. Imine stilbene analog ameliorate isoproterenol-induced cardiac hypertrophy and hydrogen peroxide-induced apoptosis. Free Radic Biol Med 2020; 153:80-88. [PMID: 32311492 DOI: 10.1016/j.freeradbiomed.2020.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
Cardiac hypertrophy is an adaptive response to stress, in order to maintain proper cardiac function. However, sustained stress leads to pathological hypertrophy accompanied by maladaptive responses and ultimately heart failure. At the cellular level, cardiomyocyte hypertrophy is characterized by an increase in myocyte size, reactivation of the fetal gene markers, disassembly of the sarcomere and transcriptional remodelling which are regulated by heart-specific transcription factors like MEF2, GATA4 and immediate early genes like c-jun and c-fos.2. It has been explored and established that the hypertrophic process is associated by oxidative stress and mediated by pathways involving several terminal stress kinases like P38, JNK and ERK1/2. Stilbenoids are bioactive polyphenols and earlier studies have shown that imine stilbene exert cardioprotective and anti aging effects by acting as modulators of Sirt1. The present study was aimed at designing and synthesizing a series of imine stilbene analogs and investigate its anti hypertrophic effects and regulatory mechanism in cardiac hypertrophy and apoptosis. Interestingly one of the analog, compound 3e (10 μM) alleviated isoproterenol (ISO, 25 μM) induced hypertrophy in rat cardiomyocyte (H9c2) cells by showing a marked decrease in the myocyte size. Further, compound 3e also restored the cardiac function by activating the metabolic stress sensor, AMPK. Moreover, molecular docking studies showed stable binding between compound 3e and GSK3β suggesting that compound 3e may directly regulate GSK3β activity and ameliorate ISO-induced cardiac hypertrophy. In agreement with this, compound 3e also modulated the crosstalk of all the hypertrophy inducing terminal Kinases by bringing down the expression to near control conditions. The compound also relieved H2O2 (100 μM) mediated ROS and normalized abnormal mitochondrial oxygen demand in hypertrophic conditions indicating the possibility of the compound to show promise in playing a role in cardiac hypertrophy.
Collapse
Affiliation(s)
- Ganesh Kumar Raut
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, 600113, India
| | - Sairam Manchineela
- Department of Genetics, Osmania University, Amberpet, Hyderabad, 500007, Telangana State, India
| | - Moumita Chakrabarti
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, 600113, India
| | - Chaitanya Kumar Bhukya
- Department of Genetics, Osmania University, Amberpet, Hyderabad, 500007, Telangana State, India
| | - Raju Naini
- Center for Plant Molecular Biology, Osmania University, Amberpet, Hyderabad, 500007, Telangana State, India
| | - A Venkateshwari
- Institute of Genetics & Hospital for Genetics Disease, Osmania University, Ameerpet, Hyderabad, 500007, Telangana State, India
| | - V D Reddy
- Center for Plant Molecular Biology, Osmania University, Amberpet, Hyderabad, 500007, Telangana State, India
| | - Jolly Janette Mendonza
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, 600113, India
| | - Y Suresh
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, Telangana State, India
| | - Pratibha Nallari
- Department of Genetics, Osmania University, Amberpet, Hyderabad, 500007, Telangana State, India
| | - Manika Pal Bhadra
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, 600113, India.
| |
Collapse
|
31
|
Lin K, Liu B, Lim SL, Fu X, Sze SCW, Yung KKL, Zhang S. 20(S)-protopanaxadiol promotes the migration, proliferation, and differentiation of neural stem cells by targeting GSK-3β in the Wnt/GSK-3β/β-catenin pathway. J Ginseng Res 2020; 44:475-482. [PMID: 32372869 PMCID: PMC7195587 DOI: 10.1016/j.jgr.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/02/2019] [Accepted: 03/06/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Active natural ingredients, especially small molecules, have recently received wide attention as modifiers used to treat neurodegenerative disease by promoting neurogenic regeneration of neural stem cell (NSC) in situ. 20(S)-protopanaxadiol (PPD), one of the bioactive ingredients in ginseng, possesses neuroprotective properties. However, the effect of PPD on NSC proliferation and differentiation and its mechanism of action are incompletely understood. METHODS In this study, we investigated the impact of PPD on NSC proliferation and neuronal lineage differentiation through activation of the Wnt/glycogen synthase kinase (GSK)-3β/β-catenin pathway. NSC migration and proliferation were investigated by neurosphere assay, Cell Counting Kit-8 assay, and EdU assay. NSC differentiation was analyzed by Western blot and immunofluorescence staining. Involvement of the Wnt/GSK3β/β-catenin pathway was examined by molecular simulation and Western blot and verified using gene transfection. RESULTS PPD significantly promoted neural migration and induced a significant increase in NSC proliferation in a time- and dose-dependent manner. Furthermore, a remarkable increase in antimicrotubule-associated protein 2 expression and decrease in nestin protein expression were induced by PPD. During the differentiation process, PPD targeted and stimulated the phosphorylation of GSK-3β at Ser9 and the active forms of β-catenin, resulting in activation of the Wnt/GSK-3β/β-catenin pathway. Transfection of NSCs with a constitutively active GSK-3β mutant at S9A significantly hampered the proliferation and neural differentiation mediated by PPD. CONCLUSION PPD promotes NSC proliferation and neural differentiation in vitro via activation of the Wnt/GSK-3β/β-catenin pathway by targeting GSK-3β, potentially having great significance for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Kaili Lin
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China
- HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sze-Lam Lim
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China
- HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Xiuqiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, HKBU, Kowloon Tong, HKSAR, China
| | - Stephen C.-W. Sze
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China
- HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ken K.-L. Yung
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China
- HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Shiqing Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China
- HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| |
Collapse
|
32
|
Pacureanu L, Avram S, Crisan L. Comprehensive investigation of selectivity landscape of glycogen synthase kinase-3 inhibitors. J Biomol Struct Dyn 2020; 39:2318-2337. [PMID: 32216607 DOI: 10.1080/07391102.2020.1747544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Interaction signatures of drug candidates are characteristic to off-target (neutral) and antitarget (negative) effects, inferring reduced efficiency, side-effects and high attrition rate. Today's retroactive scaled-down virtual screening (VS) experiments relying on benchmarking datasets are extensively involved to assess ligand enrichment in the real-world problem. In recent years, unbiased benchmarking sets turned into a tremendous need to assist virtual screening methodologies for emerging drug targets. To date, the benchmarking datasets are quite limited, whereas glycogen synthase kinase-3 (GSK-3) is not included into directories of benchmarking datasets such as DUD-e, MUV, etc. Herein we introduced our in-house algorithm to build an unbiased benchmarking dataset, including highly selective, moderately selective and nonselective inhibitors for a significant therapeutic target - GSK-3, suitable for both ligand-based and structure-based VS approaches. These datasets are unbiased in terms of physico-chemical properties and topological descriptors, as resulted from mean(ROC-AUC) leave-one-out cross-validation (LOO CV). and additional 2 D similarity search. Moreover, we investigated the gradual selectivity dataset by application of multiple 2 D similarity coefficients and distances, 3 D similarity and docking. Besides the resulted links between the enrichment of selective GSK-3 inhibitors and their chemical structures, a database of compounds and their 3 D similarity signatures including cut-off thresholds for enhanced selectivity was generated. 2 D similarity space analysis revealed that selectivity problem cannot be evaluated appropriately with 2 D similarity searching alone. The current analysis provided useful, comprehensive insights, which may facilitate the knowledge-based identification of novel selective GSK-3 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Liliana Pacureanu
- "Coriolan Dragulescu" Institute of Chemistry, Romanian Academy, Timisoara, Romania
| | - Sorin Avram
- "Coriolan Dragulescu" Institute of Chemistry, Romanian Academy, Timisoara, Romania
| | - Luminita Crisan
- "Coriolan Dragulescu" Institute of Chemistry, Romanian Academy, Timisoara, Romania
| |
Collapse
|
33
|
Nguyen TMX, Vegrichtova M, Tlapakova T, Krulova M, Krylov V. The interconnection between cytokeratin and cell membrane-bound β-catenin in Sertoli cells derived from juvenile Xenopus tropicalis testes. Biol Open 2019; 8:bio.043950. [PMID: 31822471 PMCID: PMC6955214 DOI: 10.1242/bio.043950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sertoli cells (SCs) play a central role in the determination of male sex during embryogenesis and spermatogenesis in adulthood. Failure in SC development is responsible for male sterility and testicular cancer. Before the onset of puberty, SCs are immature and differ considerably from mature cells in post-pubertal individuals regarding their morphology and biochemical activity. The major intermediate filament (IF) in mature SCs is vimentin, anchoring germ cells to the seminiferous epithelium. The collapse of vimentin has resulted in the disintegration of seminiferous epithelium and subsequent germ cell apoptosis. However, another IF, cytokeratin (CK) is observed only transiently in immature SCs in many species. Nevertheless, its function in SC differentiation is poorly understood. We examined the interconnection between CK and cell junctions using membrane β-catenin as a marker during testicular development in the Xenopus tropicalis model. Immunohistochemistry on juvenile (5 months old) testes revealed co-expression of CK, membrane β-catenin and E-cadherin. Adult (3-year-old males) samples confirmed only E-cadherin expression; CK and β-catenin were lost. To study the interconnection between CK and β-catenin-based cell junctions, the culture of immature SCs (here called XtiSCs) was employed. Suppression of CK by acrylamide in XtiSCs led to breakdown of membrane-bound β-catenin but not F-actin and β-tubulin or cell-adhesion proteins (focal adhesion kinase and integrin β1). In contrast to the obvious dependence of membrane β-catenin on CK stability, the detachment of β-catenin from the plasma membrane via uncoupling of cadherins by Ca2+ chelator EGTA had no effect on CK integrity. Interestingly, CHIR99021, a GSK3 inhibitor, also suppressed the CK network, resulting in the inhibition of XtiSCs cell-to-cell contacts and testicular development in juvenile frogs. This study suggests a novel role of CK in the retention of β-catenin-based junctions in immature SCs, and thus provides structural support for seminiferous tubule formation and germ cell development. Summary: Cytokeratin (CK) and β-catenin are expressed in juvenile testicles and cultivated Xenopus tropicalis immature Sertoli cells (SC). Acrylamide and CHIR99021 disrupted the CK network, immature SC connections and testes development.
Collapse
Affiliation(s)
- Thi Minh Xuan Nguyen
- Charles University, Faculty of Science, Vinicna 7, 128 44, Prague 2, Czech Republic.,Department of Biotechnology, The University of Da-Nang, University of Science and Technology, 54 Nguyen Luong Bang, Da-Nang, 550000, Vietnam
| | - Marketa Vegrichtova
- Charles University, Faculty of Science, Vinicna 7, 128 44, Prague 2, Czech Republic
| | - Tereza Tlapakova
- Charles University, Faculty of Science, Vinicna 7, 128 44, Prague 2, Czech Republic
| | - Magdalena Krulova
- Charles University, Faculty of Science, Vinicna 7, 128 44, Prague 2, Czech Republic
| | - Vladimir Krylov
- Charles University, Faculty of Science, Vinicna 7, 128 44, Prague 2, Czech Republic
| |
Collapse
|
34
|
Kishimoto K, Sugano-Yasunaga W, Taniguchi A, Agata K, Nonaka S, Funayama N. Skeleton construction upon local regression of the sponge body. Dev Growth Differ 2019; 61:485-500. [PMID: 31820450 DOI: 10.1111/dgd.12636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 10/04/2019] [Accepted: 10/18/2019] [Indexed: 12/09/2022]
Abstract
We previously revealed that the mechanism of demosponge skeleton construction is self-organization by multiple rounds of sequential mechanical reactions of player cells. In these reactions, "transport cells" dynamically carry fine skeletal elements (spicules) on epithelia surrounding the inner body space of sponges (basal epithelium (basopinacoderm) and the endodermal epithelium (ENCM)). Once spicules pierce ENCM and apical pinacoderm, subsequently they are cemented to the substratum under the sponge body, or connected to other skeleton-constructing spicules. Thus, the "pierce" step is the key to holding up spicules in the temporary periphery of growing sponges' bodies. Since sponges can regress as well as grow, here we asked how skeleton construction occurs during local regression of the body. We found that prior to local basopinacoderm retraction (and thus body regression), the body became thinner. Some spicules that were originally carried outward stagnated for a while, and were then carried inwards either on ENCM or basopinacoderm. Spicules that were carried inwards on ENCM pierced epithelia after a short transport, and thus became held up at relatively inward positions compared to spicules carried on outwardly extending basopinacoderm. The switch of epithelia on which transport cells migrate efficiently occurred in thinner body spaces where basopinacoderm and ENCM became close to each other. Thus, the mechanisms underlying this phenomenon are rather mechanical: the combination of sequential reactions of skeleton construction and the narrowed body space upon local retraction of basopinacoderm cause spicules to be held up at more-inward positions, which might strengthen the basopinacoderm's attachment to substratum.
Collapse
Affiliation(s)
- Kouji Kishimoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | - Atsushi Taniguchi
- Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Laboratory of regeneration biology, National Institute for Basic Biology, Okazaki, Japan
| | - Shigenori Nonaka
- Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki, Japan
| | - Noriko Funayama
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
35
|
Wagner FF, Benajiba L, Campbell AJ, Weïwer M, Sacher JR, Gale JP, Ross L, Puissant A, Alexe G, Conway A, Back M, Pikman Y, Galinsky I, DeAngelo DJ, Stone RM, Kaya T, Shi X, Robers MB, Machleidt T, Wilkinson J, Hermine O, Kung A, Stein AJ, Lakshminarasimhan D, Hemann MT, Scolnick E, Zhang YL, Pan JQ, Stegmaier K, Holson EB. Exploiting an Asp-Glu "switch" in glycogen synthase kinase 3 to design paralog-selective inhibitors for use in acute myeloid leukemia. Sci Transl Med 2019. [PMID: 29515000 DOI: 10.1126/scitranslmed.aam8460] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glycogen synthase kinase 3 (GSK3), a key regulatory kinase in the wingless-type MMTV integration site family (WNT) pathway, is a therapeutic target of interest in many diseases. Although dual GSK3α/β inhibitors have entered clinical trials, none has successfully translated to clinical application. Mechanism-based toxicities, driven in part by the inhibition of both GSK3 paralogs and subsequent β-catenin stabilization, are a concern in the translation of this target class because mutations and overexpression of β-catenin are associated with many cancers. Knockdown of GSK3α or GSK3β individually does not increase β-catenin and offers a conceptual resolution to targeting GSK3: paralog-selective inhibition. However, inadequate chemical tools exist. The design of selective adenosine triphosphate (ATP)-competitive inhibitors poses a drug discovery challenge due to the high homology (95% identity and 100% similarity) in this binding domain. Taking advantage of an Asp133→Glu196 "switch" in their kinase hinge, we present a rational design strategy toward the discovery of paralog-selective GSK3 inhibitors. These GSK3α- and GSK3β-selective inhibitors provide insights into GSK3 targeting in acute myeloid leukemia (AML), where GSK3α was identified as a therapeutic target using genetic approaches. The GSK3α-selective compound BRD0705 inhibits kinase function and does not stabilize β-catenin, mitigating potential neoplastic concerns. BRD0705 induces myeloid differentiation and impairs colony formation in AML cells, with no apparent effect on normal hematopoietic cells. Moreover, BRD0705 impairs leukemia initiation and prolongs survival in AML mouse models. These studies demonstrate feasibility of paralog-selective GSK3α inhibition, offering a promising therapeutic approach in AML.
Collapse
Affiliation(s)
- Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.
| | - Lina Benajiba
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,INSERM U1163 and CNRS 8254, Imagine Institute, Université Paris Saclay, 91190 Paris, France
| | - Arthur J Campbell
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Michel Weïwer
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Joshua R Sacher
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Jennifer P Gale
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Linda Ross
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alexandre Puissant
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,INSERM U944, Institute of Hematology, St. Louis Hospital, 75010 Paris, France
| | - Gabriela Alexe
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,Bioinformatics Graduate Program, Boston University, Boston, MA 02215, USA
| | - Amy Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Morgan Back
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yana Pikman
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ilene Galinsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Taner Kaya
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Xi Shi
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Matthew B Robers
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA
| | - Thomas Machleidt
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA
| | | | - Olivier Hermine
- INSERM U1163 and CNRS 8254, Imagine Institute, Université Sorbonne Paris Cité, Paris, France.,Department of Hematology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, University Paris Descartes, 75006 Paris, France
| | - Andrew Kung
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | - Michael T Hemann
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Edward Scolnick
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Yan-Ling Zhang
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Kimberly Stegmaier
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA. .,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Edward B Holson
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| |
Collapse
|
36
|
p53-Mediated Oxidative Stress Enhances Indirubin-3'-Monoxime-Induced Apoptosis in HCT116 Colon Cancer Cells by Upregulating Death Receptor 5 and TNF-Related Apoptosis-Inducing Ligand Expression. Antioxidants (Basel) 2019; 8:antiox8100423. [PMID: 31546731 PMCID: PMC6826553 DOI: 10.3390/antiox8100423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/02/2023] Open
Abstract
Indirubin-3′-monoxime (I3M) exhibits anti-proliferative activity in various cancer cells; however, its anti-cancer mechanism remains incompletely elucidated. This study revealed that I3M promotes the expression of death receptor 5 (DR5) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in HCT116 p53+/+ cells, resulting in caspase-mediated apoptosis. However, this study demonstrated that HCT116 p53−/− cells were insensitive to I3M-mediated apoptosis, indicating that I3M-induced apoptosis depends on the p53 status of HCT116 cells. Additionally, in HCT116 p53-/- cells, I3M significantly increased Ras expression, while in HCT116 p53+/+ cells, it reduced Ras expression. Furthermore, I3M remarkably increased the production of reactive oxygen species (ROS), which were reduced in transient p53 knockdown, indicating that I3M-mediated apoptosis was promoted by p53-mediated ROS production. Our results also showed that I3M enhanced transcription factor C/EBP homologous protein (CHOP) expression, resulted in endoplasmic reticulum (ER) stress-mediated DR5 expression, which was upregulated by ROS production in HCT116 p53+/+ cells. Moreover, co-treatment with I3M and TRAIL enhanced DR5 expression, thereby triggering TRAIL-induced apoptosis of HCT116 p53+/+ cells, which was interfered by a DR5-specific blocking chimeric antibody. In summary, I3M potently enhances TRAIL-induced apoptosis by upregulating DR5 expression via p53-mediated ROS production in HCT116 p53+/+ cells. However, HCT116 p53−/− cells were less sensitive to I3M-mediated apoptosis, suggesting that I3M could be a promising anti-cancer candidate against TRAIL-resistant p53+/+ cancer cells. Additionally, this study also revealed that I3M sensitizes colorectal cancer cells such as HT29 and SW480 to TRAIL-mediated apoptosis.
Collapse
|
37
|
Venter J, Perez C, van Otterlo WA, Martínez A, Blackie MA. 1-Aryl-3-(4-methoxybenzyl)ureas as potentially irreversible glycogen synthase kinase 3 inhibitors: Synthesis and biological evaluation. Bioorg Med Chem Lett 2019; 29:1597-1600. [DOI: 10.1016/j.bmcl.2019.04.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 10/26/2022]
|
38
|
GSK3 regulates hair cell fate in the developing mammalian cochlea. Dev Biol 2019; 453:191-205. [PMID: 31185200 DOI: 10.1016/j.ydbio.2019.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022]
Abstract
The development of asymmetric patterns along biologically relevant axes is a hallmark of many vertebrate organs or structures. One example is the sensory epithelium of the mammalian auditory system. Two distinct types of mechanosensory hair cells (inner and outer) and at least six types of associated supporting cells are precisely and asymmetrically arrayed along the radial (medial-lateral) axis of the cochlear spiral. Immunolabeling of developing cochleae indicates differential expression of Glycogen synthase kinase 3β (GSK3β) along the same axis. To determine whether GSK3β plays a role in specification of cell fates along the medial-lateral axis, GSK3 activity was blocked pharmacologically in cochlear explants. Results indicate significant changes in both the number of hair cells and in the specification of hair cell phenotypes. The overall number of inner hair cells increased as a result of both a shift in the medial boundary between sensory and non-sensory regions of the cochlea and a change in the specification of inner and outer hair cell phenotypes. Previous studies have inhibited GSK3 as a method to examine effects of canonical Wnt signaling. However, quantification of changes in Wnt pathway target genes in GSK3-inhibited cochleae, and treatment with more specific Wnt agonists, indicated that the Wnt pathway is not activated. Instead, expression of Bmp4 in a population of GSK3β-expressing cells was shown to be down-regulated. Finally, addition of BMP4 to GSK3-inhibited cochleae achieved a partial rescue of the hair cell phenotype. These results demonstrate a role for GSK3β in the specification of cellular identities along the medial-lateral axis of the cochlea and provide evidence for a positive role for GSK3β in the expression of Bmp4.
Collapse
|
39
|
Valzania L, Mattee MT, Strand MR, Brown MR. Blood feeding activates the vitellogenic stage of oogenesis in the mosquito Aedes aegypti through inhibition of glycogen synthase kinase 3 by the insulin and TOR pathways. Dev Biol 2019; 454:85-95. [PMID: 31153832 DOI: 10.1016/j.ydbio.2019.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
Most mosquitoes, including Aedes aegypti, only produce eggs after blood feeding on a vertebrate host. Oogenesis in A. aegypti consists of a pre-vitellogenic stage before blood feeding and a vitellogenic stage after blood feeding. Primary egg chambers remain developmentally arrested during the pre-vitellogenic stage but complete oogenesis to form mature eggs during the vitellogenic stage. In contrast, the signaling factors that maintain primary egg chambers in pre-vitellogenic arrest or that activate vitellogenic growth are largely unclear. Prior studies showed that A. aegypti females release insulin-like peptide 3 (ILP3) and ovary ecdysteroidogenic hormone (OEH) from brain neurosecretory cells after blood feeding. Here, we report that primary egg chambers exit pre-vitellogenic arrest by 8 h post-blood meal as evidenced by proliferation of follicle cells, endoreplication of nurse cells, and formation of cytoophidia. Ex vivo assays showed that ILP3 and OEH stimulate primary egg chambers to exit pre-vitellogenic arrest in the presence of nutrients but not in their absence. Characterization of associated pathways indicated that activation of insulin/insulin growth factor signaling (IIS) by ILP3 or OEH inactivated glycogen synthase kinase 3 (GSK3) via phosphorylation by phosphorylated Akt. GSK3 inactivation correlated with accumulation of the basic helix-loop-helix transcription factor Max and primary egg chambers exiting pre-vitellogenic arrest. Direct inhibition of GSK3 by CHIR-99021 also stimulated Myc/Max accumulation and primary egg chambers exiting pre-vitellogenic arrest. Collectively, our results identify GSK3 as a key factor in regulating the pre- and vitellogenic stages of oogenesis in A. aegypti.
Collapse
Affiliation(s)
- Luca Valzania
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Melissa T Mattee
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
40
|
Paudel P, Seong SH, Zhou Y, Ha MT, Min BS, Jung HA, Choi JS. Arylbenzofurans from the Root Bark of Morus alba as Triple Inhibitors of Cholinesterase, β-Site Amyloid Precursor Protein Cleaving Enzyme 1, and Glycogen Synthase Kinase-3β: Relevance to Alzheimer's Disease. ACS OMEGA 2019; 4:6283-6294. [PMID: 31459768 PMCID: PMC6649263 DOI: 10.1021/acsomega.9b00198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/25/2019] [Indexed: 05/07/2023]
Abstract
Cholinesterase, β-site amyloid precursor protein cleaving enzyme 1 (BACE1), and glycogen synthase kinase-3β (GSK-3β) are the three main enzymes responsible for the early onset of Alzheimer's disease (AD). The main aim of the present study was to delineate and accentuate the triple-inhibitory potential of arylbenzofurans from Morus alba against these enzymes. Overall, the enzyme inhibition assays demonstrated the prominence of mulberrofuran D2 as an inhibitor of AChE, BChE, BACE1, and GSK-3β enzymes with IC50 values of 4.61, 1.51, 0.73, and 6.36 μM, respectively. Enzyme kinetics revealed different modes of inhibition, and in silico modeling suggested that mulberrofuran D2 inhibited these enzymes with low binding energy through hydrophilic, hydrophobic, and π-cation interactions in the active site cavities. Similarly, in Aβ-aggregation assays, mulberrofuran D2 inhibited self-induced and AChE-induced Aβ aggregation in a concentration-dependent manner that was superior to reference drugs. These results suggest that arylbenzofurans from M. alba, especially mulberrofuran D2, are triple inhibitors of cholinesterase, BACE1, and GSK-3β and may represent a novel class of anti-AD drugs.
Collapse
Affiliation(s)
- Pradeep Paudel
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| | - Su Hui Seong
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| | - Yajuan Zhou
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| | - Manh Tuan Ha
- College
of Pharmacy, Drug Research and Development Center, Catholic University of Daegu, Gyeongbuk 38430, Republic of Korea
| | - Byung Sun Min
- College
of Pharmacy, Drug Research and Development Center, Catholic University of Daegu, Gyeongbuk 38430, Republic of Korea
| | - Hyun Ah Jung
- Department
of Food Science and Human Nutrition, Chonbuk
National University, Jeonju 54896, Republic of Korea
- E-mail: . Tel: +82-63-270-4882 (H.A.J.)
| | - Jae Sue Choi
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
- E-mail: . Tel: +82-51-629-5845 (J.S.C.)
| |
Collapse
|
41
|
Gamir-Morralla A, Sacristán S, Medina M, Iglesias T. Effects of Thioflavin T and GSK-3 Inhibition on Lifespan and Motility in a Caenorhabditis elegans Model of Tauopathy. J Alzheimers Dis Rep 2019; 3:47-57. [PMID: 30842997 PMCID: PMC6400111 DOI: 10.3233/adr-180087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The nematode Caenorhabditis elegans (C. elegans) is a powerful model organism to study lifespan and aging, protein aggregation, and neurodegeneration, as well as to carry out drug screenings. The C. elegans strain aex-3/T337 expresses human pathogenic V337M mutant tau under a pan-neuronal promoter and presents uncoordinated locomotion, accumulation of phosphorylated insoluble tau, and shortened lifespan. Herein we have used this strain to assay two compounds that could affect tau aggregation and/or phosphorylation, and looked for phenotypic changes in their lifespan and motility. The first compound is Thioflavin T (ThT), a member of the tetracycline family with protein antiaggregant properties, yet to be tested in a tauopathy model. The second is a novel small molecule, NP103, a highly selective inhibitor of glycogen synthase kinase-3 (GSK-3), the main kinase contributing to pathogenic tau hyperphosphorylation. Importantly, we find that ThT extends lifespan of aex-3/T337 worms as it does with control N2 animals, showing both strains similar locomotion features under this treatment. By contrast, NP103 improves the paralysis phenotype of aex-3/T337 mutants but not their lifespan. Our results show that both treatments present beneficial effects for this model of tauopathy and encourage pursuing further investigations on their therapeutic potential for AD and other tauopathies.
Collapse
Affiliation(s)
- Andrea Gamir-Morralla
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Sacristán
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Miguel Medina
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
42
|
Szamborska-Gbur A, Rutkowska E, Dreas A, Frid M, Vilenchik M, Milik M, Brzózka K, Król M. How to design potent and selective DYRK1B inhibitors? Molecular modeling study. J Mol Model 2019; 25:41. [PMID: 30673861 DOI: 10.1007/s00894-018-3921-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022]
Abstract
DYRK1B protein kinase is an emerging anticancer target due to its overexpression in a variety of cancers and its role in cancer chemoresistance through maintaining cancer cells in the G0 (quiescent) state. Consequently, there is a growing interest in the development of potent and selective DYRK1B inhibitors for anticancer therapy. One of the major off-targets is another protein kinase, GSK3β, which phosphorylates an important regulator of cell cycle progression on the same residue as DYRK1B and is involved in multiple signaling pathways. In the current work, we performed a detailed comparative structural analysis of DYRK1B and GSK3β ATP-binding sites and identified key regions responsible for selectivity. As the crystal structure of DYRK1B has never been reported, we built and optimized a homology model by comparative modeling and metadynamics simulations. Calculation of interaction energies between docked ligands in the ATP-binding sites of both kinases allowed us to pinpoint key residues responsible for potency and selectivity. Specifically, the role of the gatekeeper residues in DYRK1B and GSK3β is discussed in detail, and two other residues are identified as key to selectivity of DYRK1B inhibition versus GSK3β. The analysis presented in this work was used to support the design of potent and selective azaindole-quinoline-based DYRK1B inhibitors and can facilitate development of more selective inhibitors for DYRK kinases.
Collapse
Affiliation(s)
| | | | | | - Michael Frid
- Felicitex Therapeutics, Inc., 27 Strathmore Road, Natick, MA, 01760, USA
| | - Maria Vilenchik
- Felicitex Therapeutics, Inc., 27 Strathmore Road, Natick, MA, 01760, USA
| | - Mariusz Milik
- Selvita S.A., Bobrzyńskiego 14, 30-348, Kraków, Poland
| | | | - Marcin Król
- Selvita S.A., Bobrzyńskiego 14, 30-348, Kraków, Poland.
| |
Collapse
|
43
|
Pacureanu L, Avram S, Bora A, Kurunczi L, Crisan L. Portraying the selectivity of GSK-3 inhibitors towards CDK-2 by 3D similarity and molecular docking. Struct Chem 2018. [DOI: 10.1007/s11224-018-1224-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Llorach-Pares L, Nonell-Canals A, Avila C, Sanchez-Martinez M. Kororamides, Convolutamines, and Indole Derivatives as Possible Tau and Dual-Specificity Kinase Inhibitors for Alzheimer's Disease: A Computational Study. Mar Drugs 2018; 16:md16100386. [PMID: 30332805 PMCID: PMC6213646 DOI: 10.3390/md16100386] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
Alzheimer’s disease (AD) is becoming one of the most disturbing health and socioeconomic problems nowadays, as it is a neurodegenerative pathology with no treatment, which is expected to grow further due to population ageing. Actual treatments for AD produce only a modest amelioration of symptoms, although there is a constant ongoing research of new therapeutic strategies oriented to improve the amelioration of the symptoms, and even to completely cure the disease. A principal feature of AD is the presence of neurofibrillary tangles (NFT) induced by the aberrant phosphorylation of the microtubule-associated protein tau in the brains of affected individuals. Glycogen synthetase kinase-3 beta (GSK3β), casein kinase 1 delta (CK1δ), dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) and dual-specificity kinase cdc2-like kinase 1 (CLK1) have been identified as the principal proteins involved in this process. Due to this, the inhibition of these kinases has been proposed as a plausible therapeutic strategy to fight AD. In this study, we tested in silico the inhibitory activity of different marine natural compounds, as well as newly-designed molecules from some of them, over the mentioned protein kinases, finding some new possible inhibitors with potential therapeutic application.
Collapse
Affiliation(s)
- Laura Llorach-Pares
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain.
- Mind the Byte S.L., 08007 Barcelona, Catalonia, Spain.
| | | | - Conxita Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology and Biodiversity Research Institute (IRBio), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain.
| | | |
Collapse
|
45
|
Engel T, Gómez-Sintes R, Alves M, Jimenez-Mateos EM, Fernández-Nogales M, Sanz-Rodriguez A, Morgan J, Beamer E, Rodríguez-Matellán A, Dunleavy M, Sano T, Avila J, Medina M, Hernandez F, Lucas JJ, Henshall DC. Bi-directional genetic modulation of GSK-3β exacerbates hippocampal neuropathology in experimental status epilepticus. Cell Death Dis 2018; 9:969. [PMID: 30237424 PMCID: PMC6147910 DOI: 10.1038/s41419-018-0963-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) is ubiquitously expressed throughout the brain and involved in vital molecular pathways such as cell survival and synaptic reorganization and has emerged as a potential drug target for brain diseases. A causal role for GSK-3, in particular the brain-enriched GSK-3β isoform, has been demonstrated in neurodegenerative diseases such as Alzheimer’s and Huntington’s, and in psychiatric diseases. Recent studies have also linked GSK-3 dysregulation to neuropathological outcomes in epilepsy. To date, however, there has been no genetic evidence for the involvement of GSK-3 in seizure-induced pathology. Status epilepticus (prolonged, damaging seizure) was induced via a microinjection of kainic acid into the amygdala of mice. Studies were conducted using two transgenic mouse lines: a neuron-specific GSK-3β overexpression and a neuron-specific dominant-negative GSK-3β (GSK-3β-DN) expression in order to determine the effects of increased or decreased GSK-3β activity, respectively, on seizures and attendant pathological changes in the hippocampus. GSK-3 inhibitors were also employed to support the genetic approach. Status epilepticus resulted in a spatiotemporal regulation of GSK-3 expression and activity in the hippocampus, with decreased GSK-3 activity evident in non-damaged hippocampal areas. Consistent with this, overexpression of GSK-3β exacerbated status epilepticus-induced neurodegeneration in mice. Surprisingly, decreasing GSK-3 activity, either via overexpression of GSK-3β-DN or through the use of specific GSK-3 inhibitors, also exacerbated hippocampal damage and increased seizure severity during status epilepticus. In conclusion, our results demonstrate that the brain has limited tolerance for modulation of GSK-3 activity in the setting of epileptic brain injury. These findings caution against targeting GSK-3 as a treatment strategy for epilepsy or other neurologic disorders where neuronal hyperexcitability is an underlying pathomechanism.
Collapse
Affiliation(s)
- Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Raquel Gómez-Sintes
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM) and Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CIB-CSIC, C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Eva M Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Marta Fernández-Nogales
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM) and Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Amaya Sanz-Rodriguez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - James Morgan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Alberto Rodríguez-Matellán
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM) and Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Mark Dunleavy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Takanori Sano
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jesus Avila
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM) and Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Miguel Medina
- CIEN Foundation-Queen Sofia Foundation Alzheimer Center and CIBERNED, Instituto de Salud Carlos III Madrid, Madrid, Spain
| | - Felix Hernandez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM) and Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José J Lucas
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM) and Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,FutureNeuro Research Centre, Dublin 2, Ireland
| |
Collapse
|
46
|
Fluoxetine Inhibits Natural Decay of Long-Term Memory via Akt/GSK-3β Signaling. Mol Neurobiol 2018; 55:7453-7462. [DOI: 10.1007/s12035-018-0919-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/21/2018] [Indexed: 01/23/2023]
|
47
|
Patterson AR, Endale M, Lampe K, Aksoylar HI, Flagg A, Woodgett JR, Hildeman D, Jordan MB, Singh H, Kucuk Z, Bleesing J, Hoebe K. Gimap5-dependent inactivation of GSK3β is required for CD4 + T cell homeostasis and prevention of immune pathology. Nat Commun 2018; 9:430. [PMID: 29382851 PMCID: PMC5789891 DOI: 10.1038/s41467-018-02897-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
GTPase of immunity-associated protein 5 (Gimap5) is linked with lymphocyte survival, autoimmunity, and colitis, but its mechanisms of action are unclear. Here, we show that Gimap5 is essential for the inactivation of glycogen synthase kinase-3β (GSK3β) following T cell activation. In the absence of Gimap5, constitutive GSK3β activity constrains c-Myc induction and NFATc1 nuclear import, thereby limiting productive CD4+ T cell proliferation. Additionally, Gimap5 facilitates Ser389 phosphorylation and nuclear translocation of GSK3β, thereby limiting DNA damage in CD4+ T cells. Importantly, pharmacological inhibition and genetic targeting of GSK3β can override Gimap5 deficiency in CD4+ T cells and ameliorates immunopathology in mice. Finally, we show that a human patient with a GIMAP5 loss-of-function mutation has lymphopenia and impaired T cell proliferation in vitro that can be rescued with GSK3 inhibitors. Given that the expression of Gimap5 is lymphocyte-restricted, we propose that its control of GSK3β is an important checkpoint in lymphocyte proliferation. Loss of function GIMAP5 mutation is associated with lymphopenia, but how it mediates T cell homeostasis is unclear. Here the authors study Gimap5−/− mice and a patient with GIMAP5 deficiency to show how this GTPAse negatively regulates GSK3β activity to prevent DNA damage and cell death.
Collapse
Affiliation(s)
- Andrew R Patterson
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA
| | - Mehari Endale
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Kristin Lampe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Halil I Aksoylar
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Aron Flagg
- Pediatric Hematology/Oncology and Blood & Marrow Transplant, Cleveland Clinic Children's, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jim R Woodgett
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - David Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA
| | - Michael B Jordan
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA
| | - Harinder Singh
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA
| | - Zeynep Kucuk
- Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Jack Bleesing
- Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Kasper Hoebe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA. .,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA. .,Department of Pediatrics, University of Cincinnati, College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA.
| |
Collapse
|
48
|
Golkowski M, Perera GK, Vidadala VN, Ojo KK, Van Voorhis WC, Maly DJ, Ong SE. Kinome chemoproteomics characterization of pyrrolo[3,4-c]pyrazoles as potent and selective inhibitors of glycogen synthase kinase 3. Mol Omics 2018; 14:26-36. [PMID: 29725679 DOI: 10.1039/c7mo00006e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Glycogen synthase kinase 3 has evolutionarily conserved roles in cell signaling and metabolism and is a recognized drug target in neurological pathologies, most prominently bipolar disorder. More recently it has been suggested that GSK3 may be a target for the treatment of trypanosomatid parasite infections, e.g. with T. brucei, due to the lethal phenotype observed in parasite GSK3 short RNAi knockdown experiments. Here we investigated the kinome selectivity of a library of pyrrolo[3,4-c]pyrazol inhibitors that were developed against T. brucei GSK3 but that also interact with the human orthologue and other protein kinases. We applied label-free MS-based kinome chemoproteomics profiling with kinobeads to obtain the selectivity profiles of all 39 library members against 217 human protein and lipid kinases. This allowed us to study the structure-activity relationship of the library members as well as the chemical genetic relationships between kinase targets. As a result, we identified a novel and highly selective HsGSK3 inhibitor containing a 2-chloroaniline-substituted squaric acid amide pharmacophore that confers low nanomolar (IC50 = 2.8 nM) and sub-micromolar potency against purified and cellular HsGSK3. The inhibitor will be useful as a new lead for GSK3 inhibitor development and as a chemical genetic probe to study roles of GSK3 in cell signaling.
Collapse
Affiliation(s)
- Martin Golkowski
- School of Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Kumar A, Srivastava G, Srivastava S, Verma S, Negi AS, Sharma A. Investigation of naphthofuran moiety as potential dual inhibitor against BACE-1 and GSK-3β: molecular dynamics simulations, binding energy, and network analysis to identify first-in-class dual inhibitors against Alzheimer's disease. J Mol Model 2017; 23:239. [PMID: 28741112 DOI: 10.1007/s00894-017-3396-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/25/2017] [Indexed: 12/11/2022]
Abstract
BACE-1 and GSK-3β are potential therapeutic drug targets for Alzheimer's disease. Recently, both the targets received attention for designing dual inhibitors for Alzheimer's disease. Until now, only two-scaffold triazinone and curcumin have been reported as BACE-1 and GSK-3β dual inhibitors. Docking, molecular dynamics, clustering, binding energy, and network analysis of triazinone derivatives with BACE-1 and GSK-3β was performed to get molecular insight into the first reported dual inhibitor. Further, we designed and evaluated a naphthofuran series for its ability to inhibit BACE-1 and GSK-3β with the computational approaches. Docking study of naphthofuran series showed a good binding affinity towards both the targets. Molecular dynamics, binding energy, and network analysis were performed to compare their binding with the targets and amino acids responsible for binding. Naphthofuran series derivatives showed good interaction within the active site residues of both of the targets. Hydrogen bond occupancy and binding energy suggested strong binding with the targets. Dual-inhibitor binding was mostly governed by the hydrophobic interactions for both of the targets. Per residue energy decomposition and network analysis identified the key residues involved in the binding and inhibiting BACE-1 and GSK-3β. The results indicated that naphthofuran series derivative 11 may be a promising first-in-class dual inhibitor against BACE-1 and GSK-3β. This naphthofuran series may be further explored to design better dual inhibitors. Graphical abstract Naphthofuran derivative as a dual inhibitor for BACE-1 and GSK-3β.
Collapse
Affiliation(s)
- Akhil Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, UP, 226015, India
| | - Gaurava Srivastava
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, UP, 226015, India
| | - Swati Srivastava
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, UP, 226015, India
| | - Seema Verma
- Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, UP, 226015, India
| | - Arvind S Negi
- Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, UP, 226015, India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, UP, 226015, India.
| |
Collapse
|
50
|
Jeon KI, Phipps RP, Sime PJ, Huxlin KR. Antifibrotic Actions of Peroxisome Proliferator-Activated Receptor γ Ligands in Corneal Fibroblasts Are Mediated by β-Catenin-Regulated Pathways. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1660-1669. [PMID: 28606794 DOI: 10.1016/j.ajpath.2017.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 01/08/2023]
Abstract
Wound healing after corneal injury typically involves fibrosis, with transforming growth factor β1 (TGF-β1) as one of its strongest mediators. A class of small molecules-peroxisome proliferator-activated receptor γ (PPARγ) ligands-exert potent antifibrotic effects in the cornea by blocking phosphorylation of p38 mitogen-activated protein kinase (MAPK). However, why this blocks fibrosis remains unknown. Herein, we show that PPARγ ligands (rosiglitazone, troglitazone, and 15-deoxy-Δ12,14-prostaglandin J2) decrease levels of β-catenin. We also show that β-catenin siRNA and the Wingless/integrated (Wnt) inhibitor pyrvinium block the ability of corneal fibroblasts to up-regulate synthesis of α-smooth muscle actin (α-SMA), collagen 1 (COL1), and fibronectin (FN) in response to TGF-β1. Activation of TGF-β receptors and p38 MAPK increased glycogen synthase kinase 3β (GSK3β) phosphorylation, whereas a chemical inhibitor of p38 MAPK (SB203580) reduced the phosphorylation of GSK3β, decreasing active β-catenin levels in both cytoplasmic and nuclear fractions. Finally, lithium chloride, a GSK3 inhibitor, also attenuated the TGF-β1-induced increase in α-SMA, COL1, and FN expression. All in all, our results suggest that TGF-β1 stimulation increases active β-catenin concentration in cultured corneal fibroblasts through p38 MAPK regulation of canonical Wnt/β-catenin signaling, increasing α-SMA, COL1, and FN synthesis. Thus, PPARγ ligands, by blocking TGF-β1-induced p38 MAPK phosphorylation, prevent increases in both total and active β-catenin through p38 MAPK-GSK3β signaling.
Collapse
Affiliation(s)
- Kye-Im Jeon
- Flaum Eye Institute, University of Rochester, Rochester, New York
| | - Richard P Phipps
- Flaum Eye Institute, University of Rochester, Rochester, New York; Department of Medicine, University of Rochester, Rochester, New York; Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - Patricia J Sime
- Department of Medicine, University of Rochester, Rochester, New York; Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - Krystel R Huxlin
- Flaum Eye Institute, University of Rochester, Rochester, New York; Center for Visual Science, University of Rochester, Rochester, New York.
| |
Collapse
|