1
|
Abdelrahman SA, Raafat N, Abdelaal GMM, Aal SMA. Electric field-directed migration of mesenchymal stem cells enhances their therapeutic potential on cisplatin-induced acute nephrotoxicity in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1077-1093. [PMID: 36640200 DOI: 10.1007/s00210-022-02380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
Cisplatin is widely used as an anti-neoplastic agent but is limited by its nephrotoxicity. The use of mesenchymal stem cells (MSCs) for the management of acute kidney injury (AKI) represents a new era in treatment but effective homing of administered cells is needed. This study aimed to investigate the effect of bone marrow-derived mesenchymal stem cells (BM-MSCs) on cisplatin-induced AKI in rats after directed migration by electric field (EF). Forty-eight adult male albino rats were equally classified into four groups: control, cisplatin-treated, cisplatin plus BM-MSCs, and cisplatin plus BM-MSCs exposed to EF. Serum levels of IL-10 and TNF-α were measured by ELISA. Quantitative real-time PCR analysis for gene expression of Bcl2, Bax, caspase-3, and caspase-8 was measured. Hematoxylin and eosin (H&E) staining, periodic acid Schiff staining, and immunohistochemical analysis were also done. MSC-treated groups showed improvement of kidney function; increased serum levels of IL-10 and decreased levels of TNF-α; and increased mRNA expression of Bcl2 and decreased expression of Bax, caspase-3, and caspase-8 proteins comparable to the cisplatin-injured group. EF application increased MSCs homing with significant decrease in serum urea level and caspase-3 gene expression together with significant increase in Bcl2 expression than occurred in the MSCs group. Restoration of normal kidney histomorphology with significant decrease in immunohistochemical expression of caspase-3 protein was observed in the BM-MSCs plus EF group compared to the BM-MSCs group. EF stimulation enhanced the MSCs homing and improved their therapeutic potential on acute cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Shaimaa A Abdelrahman
- Medical Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Nermin Raafat
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ghadeer M M Abdelaal
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sara M Abdel Aal
- Medical Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Swaminathan M, Kopyt N, Atta MG, Radhakrishnan J, Umanath K, Nguyen S, O'Rourke B, Allen A, Vaninov N, Tilles A, LaPointe E, Blair A, Gemmiti C, Miller B, Parekkadan B, Barcia RN. Pharmacological effects of ex vivo mesenchymal stem cell immunotherapy in patients with acute kidney injury and underlying systemic inflammation. Stem Cells Transl Med 2021; 10:1588-1601. [PMID: 34581517 PMCID: PMC8641088 DOI: 10.1002/sctm.21-0043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/07/2021] [Accepted: 06/30/2021] [Indexed: 01/20/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have natural immunoregulatory functions that have been explored for medicinal use as a cell therapy with limited success. A phase Ib study was conducted to evaluate the safety and immunoregulatory mechanism of action of MSCs using a novel ex vivo product (SBI-101) to preserve cell activity in patients with severe acute kidney injury. Pharmacological data demonstrated MSC-secreted factor activity that was associated with anti-inflammatory signatures in the molecular and cellular profiling of patient blood. Systems biology analysis captured multicompartment effects consistent with immune reprogramming and kidney tissue repair. Although the study was not powered for clinical efficacy, these results are supportive of the therapeutic hypothesis, namely, that treatment with SBI-101 elicits an immunotherapeutic response that triggers an accelerated phenotypic switch from tissue injury to tissue repair. Ex vivo administration of MSCs, with increased power of testing, is a potential new biological delivery paradigm that assures sustained MSC activity and immunomodulation.
Collapse
Affiliation(s)
- Madhav Swaminathan
- Department of Anesthesiology, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - Nelson Kopyt
- Nephrology Section, Department of Medicine, Lehigh Valley Health Network, Allentown, Pennsylvania, USA
| | - Mohamed G Atta
- Department of Medicine, Division of Nephrology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jai Radhakrishnan
- Columbia University Medical Center, Division of Nephrology, NY Presbyterian Hospital/Columbia, New York, New York, USA
| | - Kausik Umanath
- Division of Nephrology and Hypertension, Henry Ford Hospital, Detroit, Michigan, USA.,Division of Nephrology and Hypertension, Wayne State University, Detroit, Michigan, USA
| | - Sunny Nguyen
- Sentien Biotechnologies, Lexington, Massachusetts, USA
| | | | - Ashley Allen
- Sentien Biotechnologies, Lexington, Massachusetts, USA
| | | | - Arno Tilles
- Sentien Biotechnologies, Lexington, Massachusetts, USA
| | | | - Andrew Blair
- Sentien Biotechnologies, Lexington, Massachusetts, USA
| | - Chris Gemmiti
- Sentien Biotechnologies, Lexington, Massachusetts, USA
| | - Brian Miller
- Sentien Biotechnologies, Lexington, Massachusetts, USA
| | - Biju Parekkadan
- Sentien Biotechnologies, Lexington, Massachusetts, USA.,Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Rita N Barcia
- Sentien Biotechnologies, Lexington, Massachusetts, USA
| |
Collapse
|
3
|
Chen Z, Ren X, Ren R, Wang Y, Shang J. The combination of G-CSF and AMD3100 mobilizes bone marrow-derived stem cells to protect against cisplatin-induced acute kidney injury in mice. Stem Cell Res Ther 2021; 12:209. [PMID: 33761993 PMCID: PMC7992860 DOI: 10.1186/s13287-021-02268-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Several studies have confirmed that mobilizing bone marrow-derived stem cells (BMSCs) ameliorates renal function loss following cisplatin-induced acute kidney injury (AKI). The aim of this study was to explore whether the combination of granulocyte-colony stimulating factor (G-CSF) and plerixafor (AMD3100) exerts beneficial effects on renal function recovery in a model of cisplatin-induced nephrotoxicity. METHODS C57BL/6J mice received intraperitoneal injections of G-CSF (200 μg/kg/day) for 5 consecutive days. On the day of the last injection, the mice received a single subcutaneous dose of AMD3100 (5 mg/kg) 1 h before cisplatin 20 mg/kg injection. Ninety-six hours after cisplatin injection, the mice were euthanized, and blood and tissue samples were collected to assess renal function and tissue damage. Cell mobilization was assessed by flow cytometry (FCM). RESULTS Mice pretreated with G-CSF/AMD3100 exhibited longer survival and lower serum creatinine and blood urea nitrogen (BUN) levels than mice treated with only G-CSF or saline. Combinatorial G-CSF/AMD3100 treatment attenuated tissue injury and cell death, enhanced cell regeneration, and mobilized a higher number of stem cells in the peripheral blood than G-CSF or saline treatment. Furthermore, the mRNA expression of proinflammatory factors was lower, whereas that of anti-inflammatory factors was higher, in the G-CSF/AMD3100 group than in the G-CSF or saline group (all P < 0.05). CONCLUSIONS These results suggest that combinatorial G-CSF/AMD3100 therapy mobilizes BMSCs to accelerate improvements in renal functions and prevent cisplatin-induced renal tubular injury. This combinatorial therapy may represent a new therapeutic option for the treatment of AKI and should be further investigated in the future.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang Ren
- Department of Urology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China.,Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China
| | - Ruimin Ren
- Department of Urology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China.,Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China
| | - Yonghong Wang
- Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China.,Department of Neurosurgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Jiwen Shang
- Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China. .,Department of Ambulatory Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99 Longcheng Street, Taiyuan, 030032, Shanxi, China.
| |
Collapse
|
4
|
Ramírez-Bajo MJ, Martín-Ramírez J, Bruno S, Pasquino C, Banon-Maneus E, Rovira J, Moya-Rull D, Lazo-Rodriguez M, Campistol JM, Camussi G, Diekmann F. Nephroprotective Potential of Mesenchymal Stromal Cells and Their Extracellular Vesicles in a Murine Model of Chronic Cyclosporine Nephrotoxicity. Front Cell Dev Biol 2020; 8:296. [PMID: 32432111 PMCID: PMC7214690 DOI: 10.3389/fcell.2020.00296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background Cell therapies and derived products have a high potential in aiding tissue and organ repairing and have therefore been considered as potential therapies for treating renal diseases. However, few studies have evaluated the impact of these therapies according to the stage of chronic kidney disease. The aim of this study was to evaluate the renoprotective effect of murine bone marrow mesenchymal stromal cells (BM-MSCs), their extracellular vesicles (EVs) and EVs-depleted conditioned medium (dCM) in an aggressive mouse model of chronic cyclosporine (CsA) nephrotoxicity in a preventive and curative manner. Methods After 4 weeks of CsA-treatment (75 mg/kg daily) mice developed severe nephrotoxicity associated with a poor survival rate of 25%, and characterized by tubular vacuolization, casts, and cysts in renal histology. BM-MSC, EVs and dCM groups were administered as prophylaxis or as treatment of CsA nephrotoxicity. The effect of the cell therapies was analyzed by assessing renal function, histological damage, apoptotic cell death, and gene expression of fibrotic mediators. Results Combined administration of CsA and BM-MSCs ameliorated the mice survival rates (6-15%), but significantly renal function, and histological parameters, translating into a reduction of apoptosis and fibrotic markers. On the other hand, EVs and dCM administration were only associated with a partial recovery of renal function or histological damage. Better results were obtained when used as treatment rather than as prophylactic regimen i.e., cell therapy was more effective once the damage was established. Conclusion In this study, we showed that BM-MSCs induce an improvement in renal outcomes in an animal model of CsA nephrotoxicity, particularly if the inflammatory microenvironment is already established. EVs and dCM treatment induce a partial recovery, indicating that further experiments are required to adjust timing and dose for better long-term outcomes.
Collapse
Affiliation(s)
- María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Javier Martín-Ramírez
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Stefania Bruno
- Dipartimento di Scienze Mediche, Università degli Studi di Torino, Centro di Biotecnologie Molecolari, Turin, Italy
| | - Chiara Pasquino
- Dipartimento di Scienze Mediche, Università degli Studi di Torino, Centro di Biotecnologie Molecolari, Turin, Italy
| | - Elisenda Banon-Maneus
- Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Daniel Moya-Rull
- Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Marta Lazo-Rodriguez
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Josep M Campistol
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain.,Departament de Nefrologia i Trasplantament Renal, ICNU, Hospital Clínic, Barcelona, Spain
| | - Giovanni Camussi
- Dipartimento di Scienze Mediche, Università degli Studi di Torino, Centro di Biotecnologie Molecolari, Turin, Italy
| | - Fritz Diekmann
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain.,Departament de Nefrologia i Trasplantament Renal, ICNU, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
5
|
Farina M, Alexander JF, Thekkedath U, Ferrari M, Grattoni A. Cell encapsulation: Overcoming barriers in cell transplantation in diabetes and beyond. Adv Drug Deliv Rev 2019; 139:92-115. [PMID: 29719210 DOI: 10.1016/j.addr.2018.04.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/19/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
Cell-based therapy is emerging as a promising strategy for treating a wide range of human diseases, such as diabetes, blood disorders, acute liver failure, spinal cord injury, and several types of cancer. Pancreatic islets, blood cells, hepatocytes, and stem cells are among the many cell types currently used for this strategy. The encapsulation of these "therapeutic" cells is under intense investigation to not only prevent immune rejection but also provide a controlled and supportive environment so they can function effectively. Some of the advanced encapsulation systems provide active agents to the cells and enable a complete retrieval of the graft in the case of an adverse body reaction. Here, we review various encapsulation strategies developed in academic and industrial settings, including the state-of-the-art technologies in advanced preclinical phases as well as those undergoing clinical trials, and assess their advantages and challenges. We also emphasize the importance of stimulus-responsive encapsulated cell systems that provide a "smart and live" therapeutic delivery to overcome barriers in cell transplantation as well as their use in patients.
Collapse
|
6
|
|
7
|
DA COSTA GONÇALVES FABIANY, SERAFINI MICHELEARAMBURU, MELLO HELENAFLORES, PFAFFENSELLER BIANCA, ARAÚJO ANELISEBERGMANN, VISIOLI FERNANDA, PAZ ANAHELENA. Bioactive factors secreted from mesenchymal stromal cells protect the intestines from experimental colitis in a three-dimensional culture. Cytotherapy 2018; 20:1459-1471. [PMID: 30523788 DOI: 10.1016/j.jcyt.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/24/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023]
|
8
|
Torres Crigna A, Daniele C, Gamez C, Medina Balbuena S, Pastene DO, Nardozi D, Brenna C, Yard B, Gretz N, Bieback K. Stem/Stromal Cells for Treatment of Kidney Injuries With Focus on Preclinical Models. Front Med (Lausanne) 2018; 5:179. [PMID: 29963554 PMCID: PMC6013716 DOI: 10.3389/fmed.2018.00179] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
Within the last years, the use of stem cells (embryonic, induced pluripotent stem cells, or hematopoietic stem cells), Progenitor cells (e.g., endothelial progenitor cells), and most intensely mesenchymal stromal cells (MSC) has emerged as a promising cell-based therapy for several diseases including nephropathy. For patients with end-stage renal disease (ESRD), dialysis or finally organ transplantation are the only therapeutic modalities available. Since ESRD is associated with a high healthcare expenditure, MSC therapy represents an innovative approach. In a variety of preclinical and clinical studies, MSC have shown to exert renoprotective properties, mediated mainly by paracrine effects, immunomodulation, regulation of inflammation, secretion of several trophic factors, and possibly differentiation to renal precursors. However, studies are highly diverse; thus, knowledge is still limited regarding the exact mode of action, source of MSC in comparison to other stem cell types, administration route and dose, tracking of cells and documentation of therapeutic efficacy by new imaging techniques and tissue visualization. The aim of this review is to provide a summary of published studies of stem cell therapy in acute and chronic kidney injury, diabetic nephropathy, polycystic kidney disease, and kidney transplantation. Preclinical studies with allogeneic or xenogeneic cell therapy were first addressed, followed by a summary of clinical trials carried out with autologous or allogeneic hMSC. Studies were analyzed with respect to source of cell type, mechanism of action etc.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Cristina Daniele
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Carolina Gamez
- Department for Experimental Orthopaedics and Trauma Surgery, Medical Faculty Mannheim, Orthopaedic and Trauma Surgery Centre (OUZ), Heidelberg University, Mannheim, Germany
| | - Sara Medina Balbuena
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Diego O. Pastene
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniela Nardozi
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Cinzia Brenna
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Benito Yard
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Karen Bieback
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| |
Collapse
|
9
|
Miller BLK, Garg P, Bronstein B, LaPointe E, Lin H, Charytan DM, Tilles AW, Parekkadan B. Extracorporeal Stromal Cell Therapy for Subjects With Dialysis-Dependent Acute Kidney Injury. Kidney Int Rep 2018; 3:1119-1127. [PMID: 30197978 PMCID: PMC6127415 DOI: 10.1016/j.ekir.2018.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 12/29/2022] Open
Abstract
Introduction The pathophysiology of acute kidney injury (AKI) involves damage to renal epithelial cells, podocytes, and vascular beds that manifests into a deranged, self-perpetuating immune response and peripheral organ dysfunction. Such an injury pattern requires a multifaceted therapeutic to alter the wound healing response systemically. Mesenchymal stromal cells (MSCs) are a unique source of secreted factors that can modulate an inflammatory response to acute organ injury and enhance the repair of injured tissue at the parenchymal and endothelial levels. This phase Ib/IIa clinical trial evaluates SBI-101, a combination product that administers MSCs extracorporeally to overcome pharmacokinetic barriers of MSC transplantation. SBI-101 contains allogeneic human MSCs inoculated into a hollow-fiber hemofilter for the treatment of patients with severe AKI who are receiving continuous renal replacement therapy (CRRT). SBI-101 therapy is designed to reprogram the molecular and cellular components of blood in patients with severe organ injury. Methods This study is a prospective, multicenter, randomized, double-blind, sham-controlled, study of subjects with a clinical diagnosis of AKI who are receiving CRRT. Up to 32 subjects may be enrolled to provide 24 evaluable subjects (as a per protocol population). Subjects will receive CRRT in tandem with a sham control (0 MSCs), or the low- (250 × 106 MSCs) or high-dose (750 × 106 MSCs) SBI-101 therapeutic. Results The study will measure dose-dependent safety, renal efficacy, and exploratory biomarkers to characterize the pharmacokinetics and pharmacodynamics of SBI-101 in treated subjects. Conclusion This first-in-human clinical trial will evaluate the safety and tolerability of SBI-101 in patients with AKI who require CRRT.
Collapse
Affiliation(s)
| | - Payal Garg
- Sentien Biotechnologies, Inc., Lexington, Massachusetts, USA
| | - Ben Bronstein
- Cold Spring Venture Advisors, LLC, Watertown, Massachusetts, USA
| | | | - Herb Lin
- Department of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David M Charytan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Arno W Tilles
- Sentien Biotechnologies, Inc., Lexington, Massachusetts, USA
| | - Biju Parekkadan
- Sentien Biotechnologies, Inc., Lexington, Massachusetts, USA.,Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
10
|
Ohtake T, Kobayashi S, Slavin S, Mochida Y, Ishioka K, Moriya H, Hidaka S, Matsuura R, Sumida M, Katagiri D, Noiri E, Okada K, Mizuno H, Tanaka R. Human Peripheral Blood Mononuclear Cells Incubated in Vasculogenic Conditioning Medium Dramatically Improve Ischemia/Reperfusion Acute Kidney Injury in Mice. Cell Transplant 2018; 27:520-530. [PMID: 29737200 PMCID: PMC6038042 DOI: 10.1177/0963689717753186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Acute kidney injury (AKI) is a major clinical problem that still has no established treatment. We investigated the efficacy of cultured human peripheral blood mononuclear cells (PBMNCs) for AKI. Ischemia/reperfusion injury (IRI) was used to induce AKI in male nonobese diabetic (NOD/severe combined immunodeficiency) mice aged 7 to 8 wk. PBMNCs were isolated from healthy volunteers and were subjected to quality and quantity controlled (QQc) culture for 7 d in medium containing stem cell factor, thrombopoietin, Flt-3 ligand, vascular endothelial growth factor, and interleukin 6. IRI-induced mice were divided into 3 groups and administered (1) 1 × 106 PBMNCs after QQc culture (QQc PBMNCs group), (2) 1 × 106 PBMNCs without QQc culture (non-QQc PBMNCs group), or (3) vehicle without PBMNCs (IRI control group). PBMNCs were injected via the tail vein 24 h after induction of IRI, followed by assessment of renal function, histological changes, and homing of injected cells. Blood urea nitrogen and serum creatinine (Cr) 72 h after induction of IRI in the QQc PBMNCs group dramatically improved compared with those in the IRI control and the non-QQc PBMNCs groups, accompanied by the improvement of tubular damages. Interstitial fibrosis 14 d after induction of IRI was also significantly improved in the QQc PBMNCs group compared with the other groups. The renoprotective effect noted in the QQc PBMNCs group was accompanied by reduction of peritubular capillary loss. The change of PBMNCs’ population (increase of CD34+ cells, CD133+ cells, and CD206+ cells) and increased endothelial progenitor cell colony-forming potential by QQc culture might be one of the beneficial mechanisms for restoring AKI. In conclusion, an injection of human QQc PBMNCs 24 h after induction of IRI dramatically improved AKI in mice.
Collapse
Affiliation(s)
- Takayasu Ohtake
- 1 Department of Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan.,2 Division of Regenerative Medicine, Department of Center for Clinical and Translational Science, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Shuzo Kobayashi
- 1 Department of Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan.,2 Division of Regenerative Medicine, Department of Center for Clinical and Translational Science, Shonan Kamakura General Hospital, Kamakura, Japan
| | | | - Yasuhiro Mochida
- 1 Department of Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Kunihiro Ishioka
- 1 Department of Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Hidekazu Moriya
- 1 Department of Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Sumi Hidaka
- 1 Department of Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Ryo Matsuura
- 4 Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Maki Sumida
- 4 Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Daisuke Katagiri
- 4 Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Eisei Noiri
- 4 Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Kayoko Okada
- 5 Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Ochanomizu, Japan
| | - Hiroshi Mizuno
- 5 Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Ochanomizu, Japan
| | - Rica Tanaka
- 5 Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Ochanomizu, Japan
| |
Collapse
|
11
|
Sha Y, Yang L, Lv Y. ERK1/2 and Akt phosphorylation were essential for MGF E peptide regulating cell morphology and mobility but not proangiogenic capacity of BMSCs under severe hypoxia. Cell Biochem Funct 2018; 36:155-165. [DOI: 10.1002/cbf.3327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/04/2018] [Accepted: 01/22/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Yongqiang Sha
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College; Chongqing University; Chongqing China
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College; Chongqing University; Chongqing China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College; Chongqing University; Chongqing China
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College; Chongqing University; Chongqing China
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College; Chongqing University; Chongqing China
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College; Chongqing University; Chongqing China
| |
Collapse
|
12
|
Ortega-Hernández J, Springall R, Sánchez-Muñoz F, Arana-Martinez JC, González-Pacheco H, Bojalil R. Acute coronary syndrome and acute kidney injury: role of inflammation in worsening renal function. BMC Cardiovasc Disord 2017; 17:202. [PMID: 28747177 PMCID: PMC5530514 DOI: 10.1186/s12872-017-0640-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022] Open
Abstract
Background Acute Kidney Injury (AKI), a common complication of acute coronary syndromes (ACS), is associated with higher mortality and longer hospital stays. The role of cytokines and other mediators is unknown in AKI induced by an ACS (ACS-AKI), leading to several unanswered questions. The worsening of renal function is usually seen as a dichotomous phenomenon instead of a dynamic change, so evaluating changes of the renal function in time may provide valuable information in the ACS-AKI setting. The aim of this study was to explore inflammatory factors associated to de novo kidney injury induced by de novo cardiac injury secondary to ACS. Methods One hundred four consecutive patients with ACS were initially included on the time of admission to the Coronary Unit of the Instituto Nacional de Cardiología in Mexico City, from February to May 2016, before any invasive procedure, imaging study, diuretic or anti-platelet therapy. White blood count, hemoglobin, NT-ProBNP, troponin I, C-reactive protein, albumin, glucose, Na+, K+, blood urea nitrogen (BUN), total cholesterol, HDL, LDL, triglycerides, creatinine (Cr), endothelin-1 (ET-1), leukotriene-B4, matrix metalloproteinase-2 and -9, tissue inhibitor of metalloproteinases-1, resolvin-D1 (RvD1), lipoxin-A4 (LXA4), interleukin-1β, −6, −8, and −10 were measured. We finally enrolled 78 patients, and subsequently we identified 15 patients with ACS-AKI. Correlations were obtained by a Spearman rank test. Low-rank regression, splines regressions, and also protein–protein/chemical interactions and pathways analyses networks were performed. Results Positive correlations of ΔCr were found with BUN, admission Cr, GRACE score, IL-1β, IL-6, NT-ProBNP and age, and negative correlations with systolic blood pressure, mean-BP, diastolic-BP and LxA4. In the regression analyses IL-10 and RvD1 had positive non-linear associations with ΔCr. ET-1 had also a positive association. Significant non-linear associations were seen with NT-proBNP, admission Cr, BUN, Na+, K+, WBC, age, body mass index, GRACE, SBP, mean-BP and Hb. Conclusion Inflammation and its components play an important role in the worsening of renal function in ACS. IL-10, ET-1, IL-1β, TnI, RvD1 and LxA4 represent mediators that might be associated with ACS-AKI. IL-6, ET-1, NT-ProBNP might represent crossroads for several physiopathological pathways involved in “de novo cardiac injury leading to de novo kidney injury”. Electronic supplementary material The online version of this article (doi:10.1186/s12872-017-0640-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jorge Ortega-Hernández
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, 14080, Mexico City, Mexico.,Faculty of Medicine, Universidad Nacional Autónoma de Mexico, Avenida Universidad 3000, Copilco-Universidad, 04510, Mexico City, Mexico
| | - Rashidi Springall
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Fausto Sánchez-Muñoz
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Julio-C Arana-Martinez
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, 14080, Mexico City, Mexico.,Department of Health Care, Universidad Autónoma Metropolitana Xochimilco, Calzada del Hueso 1100, Villa Quietud, Coyoacán, 04960, Mexico City, Mexico
| | - Héctor González-Pacheco
- Coronary Care Unit, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, 14080, Mexico City, Mexico
| | - Rafael Bojalil
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, 14080, Mexico City, Mexico. .,Department of Health Care, Universidad Autónoma Metropolitana Xochimilco, Calzada del Hueso 1100, Villa Quietud, Coyoacán, 04960, Mexico City, Mexico.
| |
Collapse
|
13
|
Al-Sharabi N, Mustafa M, Ueda M, Xue Y, Mustafa K, Fristad I. Conditioned medium from human bone marrow stromal cells attenuates initial inflammatory reactions in dental pulp tissue. Dent Traumatol 2016; 33:19-26. [PMID: 27145147 DOI: 10.1111/edt.12277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
Abstract
AIM To evaluate the effect of MSC-conditioned medium (CM) on the secretion of pro- and anti-inflammatory cytokines from dental pulp cells (hDPC) in vitro, and on the gene expression in vivo after replantation of rat molars. MATERIALS AND METHODS hDPC were cultured in CM for 24 h, and the concentration of interleukin IL-10, IL-4, IL-6, and IL-8, regulated on activation, normal T Cell expressed and secreted (RANTES), and prostaglandin E2 (PGE2 ) in the media were measured by multiplex assay and ELISA, respectively. Expression of cyclooxygenase-2 (COX-2) was also examined by Western blot analysis after 24 h. Left and right maxillary first rat molars (n = 20) were elevated for 2 min and then replanted with or without application of CM into the tooth sockets. Levels of IL-1β, IL-10, IL-4, IL-6, and IL-8, and tumor necrosis factor-alpha (TNF-α) mRNA were evaluated by real-time qRT-PCR 3 and 14 days following tooth replantation. RESULTS The production of IL-8, IL-10, and IL-6, RANTES and PGE2 by cells cultured in CM was significantly higher than production by cells cultured in standard medium (DMEM). At day 3 following replantation in vivo, the levels of IL-1β and IL-6, and TNF-α mRNA were significantly lower in the CM-treated replanted teeth compared with control teeth. Further, at day 3, the IL-6/IL-10 ratio was significantly lower in the CM-treated replanted teeth compared with control. At day 14 following replantation, no differences in the mRNA ratios were detected between the pulp tissues of replanted and control teeth. CONCLUSIONS These findings indicated that CM promotes secretion of pro- and anti-inflammatory cytokines from hDPCin vitro and attenuates the initial inflammatory response in the rat dental pulp in vivo following tooth replantation.
Collapse
Affiliation(s)
- Niyaz Al-Sharabi
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Manal Mustafa
- Oral Health Centre of Expertise in Western Norway, Bergen, Norway
| | - Minoru Ueda
- Department of Oral and Maxillofacial Surgery, University of Nagoya, Nagoya, Japan
| | - Ying Xue
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Inge Fristad
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| |
Collapse
|
14
|
Zhang G, Wang D, Miao S, Zou X, Liu G, Zhu Y. Extracellular vesicles derived from mesenchymal stromal cells may possess increased therapeutic potential for acute kidney injury compared with conditioned medium in rodent models: A meta-analysis. Exp Ther Med 2016; 11:1519-1525. [PMID: 27073476 DOI: 10.3892/etm.2016.3076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/26/2016] [Indexed: 12/14/2022] Open
Abstract
The potential involvement of the endocrine/paracrine mechanisms in the mesenchymal stromal cells (MSCs) therapy for acute kidney injury (AKI) has been increasingly studied. The aim of the present meta-analysis was to systematically review the therapeutic role of MSC-conditioned medium (CM) or MSCs released by extracellular vesicles (Evs) for the treatment of AKI in rodent models. Studies were identified using PubMed and Scopus databases using a custom search strategy and eligibility criteria. Data regarding serum creatinine (SCr) concentration, CM or Evs, measurement time point, AKI model (toxic or non-toxic) and other parameters, including delivery route, animal type and animal numbers, were extracted. Pooled analysis and subgroup analysis as well as multivariable meta-regression were performed. Heterogeneity and publication bias were also investigated. A total of 13 studies were included and analyzed. Pooled analysis showed reduced SCr (0.93 [0.67, 1.20], mg/dl) in rodent models of AKI after CM/Evs therapy. The results of the subgroup analysis suggested that Evs induced an increased therapeutic effect, in the form of SCr reduction, as compared with CM (P=0.05). There were also other significant influential factors for SCr reduction including measurement time point (P=0.0004) and therapeutic time point (P<0.0001) after surgery. By contrast, parameters such as delivery route, injury type and cell type were not significant influential factors. Multivariable meta-regression analysis showed that measurement time point (P=0.041), therapeutic time point (P=0.03), Evs or CM (P=0.0003) and cell type (P<0.0001) were influential factors in the reduction of SCr. The present meta-analysis indicates that CM or Evs derived from MSCs are able to improve the impaired renal function in rodents modelling AKI. Compared with CM, Evs may produce a more marked therapeutic effect in recovery from renal failure. In addition, CM or Evs administration in early stages of AKI may result in more evident effects.
Collapse
Affiliation(s)
- Guangyuan Zhang
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Dandan Wang
- Department of Nephrology, The Second People's Hospital of Shenzhen, Guangzhou Medical University, Shenzhen, Guangzhou, Guangdong 510182, P.R. China
| | - Shuai Miao
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Xiangyu Zou
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Guohua Liu
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yingjian Zhu
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| |
Collapse
|
15
|
Burks SR, Nguyen BA, Tebebi PA, Kim SJ, Bresler MN, Ziadloo A, Street JM, Yuen PST, Star RA, Frank JA. Pulsed focused ultrasound pretreatment improves mesenchymal stromal cell efficacy in preventing and rescuing established acute kidney injury in mice. Stem Cells 2016; 33:1241-53. [PMID: 25640064 DOI: 10.1002/stem.1965] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/28/2014] [Accepted: 11/08/2014] [Indexed: 12/13/2022]
Abstract
Animal studies have shown that mesenchymal stromal cell (MSC) infusions improve acute kidney injury (AKI) outcomes when administered early after ischemic/reperfusion injury or within 24 hours after cisplatin administration. These findings have spurred several human clinical trials to prevent AKI. However, no specific therapy effectively treats clinically obvious AKI or rescues renal function once advanced injury is established. We investigated if noninvasive image-guided pulsed focused ultrasound (pFUS) could alter the kidney microenvironment to enhance homing of subsequently infused MSC. To examine the efficacy of pFUS-enhanced cell homing in disease, we targeted pFUS to kidneys to enhance MSC homing after cisplatin-induced AKI. We found that pFUS enhanced MSC homing at 1 day post-cisplatin, prior to renal functional deficits, and that enhanced homing improved outcomes of renal function, tubular cell death, and regeneration at 5 days post-cisplatin compared to MSC alone. We then investigated whether pFUS+MSC therapy could rescue established AKI. MSC alone at 3 days post-cisplatin, after renal functional deficits were obvious, significantly improved 7-day survival of animals. Survival was further improved by pFUS and MSC. pFUS prior to MSC injections increased IL-10 production by MSC that homed to kidneys and generated an anti-inflammatory immune cell profile in treated kidneys. This study shows pFUS is a neoadjuvant approach to improve MSC homing to diseased organs. pFUS with MSC better prevents AKI than MSC alone and allows rescue therapy in established AKI, which currently has no meaningful therapeutic options.
Collapse
Affiliation(s)
- Scott R Burks
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA; Imaging Sciences Training Program, Clinical Center and National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Francipane MG, Lagasse E. Pluripotent Stem Cells to Rebuild a Kidney: The Lymph Node as a Possible Developmental Niche. Cell Transplant 2015; 25:1007-23. [PMID: 26160801 DOI: 10.3727/096368915x688632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Kidney disease poses a global challenge. Stem cell therapy may offer an alternative therapeutic approach to kidney transplantation, which is often hampered by the limited supply of donor organs. While specific surface antigen markers have yet to be identified for the analysis and purification of kidney stem/progenitor cells for research or clinical use, the reprogramming of somatic cells to pluripotent cells and their differentiation into the various kidney lineages might represent a valuable strategy to create a renewable cell source for regenerative purposes. In this review, we first provide an overview of kidney development and explore current knowledge about the role of extra- and intrarenal cells in kidney repair and organogenesis. We then discuss recent advances in the 1) differentiation of rodent and human embryonic stem cells (ESCs) into renal lineages; 2) generation of induced pluripotent stem cells (iPSCs) from renal or nonrenal (kidney patient-derived) adult cells; 3) differentiation of iPSCs into renal lineages; and 4) direct transcriptional reprogramming of adult renal cells into kidney progenitor cells. Finally, we describe the lymph node as a potential three-dimensional (3D) in vivo environment for kidney organogenesis from pluripotent stem cells.
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
17
|
Liu P, Feng Y, Wang Y, Zhou Y. Therapeutic action of bone marrow-derived stem cells against acute kidney injury. Life Sci 2014; 115:1-7. [PMID: 25219881 DOI: 10.1016/j.lfs.2014.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 09/02/2014] [Accepted: 08/20/2014] [Indexed: 12/20/2022]
Abstract
Acute kidney injury (AKI) is a frequent clinical disease with a high morbidity rate and mortality rate, while the treatment options for this intractable disease are limited currently. In recent years, bone marrow-derived mesenchymal stem cells (BMSCs) have been demonstrated to hold an effect therapeutic action against AKI by scientists gradually, and the cells are capable to localize to renal compartments and contribute to kidney regeneration though differentiation or paracrine action. Especially, the advantages of BMSCs, such as low toxicity and side effect as well as autologous transplantation, endue the cell with a promising potential in clinical therapy against AKI. In this review, we mainly provide a concise overview of the application of BMSCs in the treatment of AKI, and summarize a series of published data regarding the mechanisms and optimizations of the BMSC-based therapy in renal repair after AKI. Even though some critical points about the BMSC-based therapy model still need clarification, we hope to develop more reliable pharmacological or biotechnical strategies utilizing the stem cell for the eventual treatment of humans with AKI, based on these studies and the understanding of mechanism of renal protection by BMSCs.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Yetong Feng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yi Wang
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China.
| | - Yulai Zhou
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China.
| |
Collapse
|
18
|
Peng Y, Zhang Y, Huang B, Luo Y, Zhang M, Li K, Li W, Wen W, Tang S. Survival and migration of pre-induced adult human peripheral blood mononuclear cells in retinal degeneration slow (rds) mice three months after subretinal transplantation. Curr Stem Cell Res Ther 2014; 9:124-33. [PMID: 24350910 PMCID: PMC4101734 DOI: 10.2174/1574888x09666131219115125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/07/2013] [Accepted: 12/10/2013] [Indexed: 12/18/2022]
Abstract
Introduction: Retinitis pigmentosa (RP), an inherited disease characterized by progressive loss of photoreceptors and retinal pigment epithelium, is a leading genetic cause of blindness. Cell transplantation to replace lost photoreceptors is a potential therapeutic strategy, but technical limitations have prevented clinical application. Adult human peripheral blood mononuclear cells (hPBMCs) may be an ideal cell source for such therapies. This study examined the survival and migration of pre-induced hPBMCs three months after subretinal transplantation in the retinal degeneration slow (rds) mouse model of RP. Materials and Methods: Freshly isolated adult hPBMCs were pre-induced by co-culture with neonatal Sprague-Dawley (SD) rat retinal tissue for 4 days in neural stem cell medium. Pre-induced cells were labeled with CM-DiI for tracing and injected into the right subretinal space of rds mice by the trans-scleral approach. After two and three months, right eyes were harvested and transplanted cell survival and migration examined in frozen sections and whole mountretinas. Immunofluorescence in whole-mount retinas was used to detect the expression of human neuronal and photorece ptorsprotein markers by transplanted cells. Results: Pre-induced adult hPBMCs could survive in vivo and migrate to various parts of the retina. After two and three months, transplanted cells were observed in the ciliary body, retinal outer nuclear layer, inner nuclear layer, ganglion cell layer, optic papilla, and within the optic nerve. The neuronal and photoreceptor markers CD90/Thy1, MAP-2, nestin, and rhodopsin were expressed by subpopulations of CM-DiI-positive cells three months after subretinal transplantation. Conclusion: Pre-induced adult hPBMCs survived for at least three months after subretinal transplantation, migrated throughout the retina, and expressed human protein markers. These results suggest that hPBMCs could be used for cell replacement therapy to treat retinal degenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shibo Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, GuangZhou 510060, China.
| |
Collapse
|
19
|
Using stem and progenitor cells to recapitulate kidney development and restore renal function. Curr Opin Organ Transplant 2014; 19:140-4. [PMID: 24480967 DOI: 10.1097/mot.0000000000000052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW There is considerable interest in the idea of generating stem and precursor cells that can differentiate into kidney cells and be used to treat kidney diseases. Within this field, we highlight recent research articles focussing on mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and kidney-derived stem/progenitor cells (KSPCs). RECENT FINDINGS In preclinical studies, MSCs ameliorate varied acute and chronic kidney diseases. Their efficacy depends on immunomodulatory and paracrine properties but MSCs do not differentiate into functional kidney epithelia. iPSCs can be derived from healthy individuals and from kidney patients by forced expression of precursor genes. Like ESCs, iPSCs are pluripotent and so theoretically they have the potential to form functional kidney epithelia when used therapeutically. KSPCs, existing as cell subsets within adult and developing kidneys, constitute attractive future therapeutic agents. SUMMARY Results from preclinical studies are encouraging but caution is required regarding potential human therapeutic applications because molecular, morphological and functional characterization of 'kidney cells' generated from ECSs, iPSCs, KSPCs have not been exhaustive. The long-term safety of renal stem and precursor cells needs more study, including potential negative effects on renal growth and their potential for tumor formation.
Collapse
|
20
|
Masoumy M, Yu J, Liu JY, Yanasak N, Middleton C, Lamoke F, Mozaffari MS, Baban B. The role of indoleamine 2,3 dioxygenase in beneficial effects of stem cells in hind limb ischemia reperfusion injury. PLoS One 2014; 9:e95720. [PMID: 24752324 PMCID: PMC3994103 DOI: 10.1371/journal.pone.0095720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 03/31/2014] [Indexed: 01/14/2023] Open
Abstract
Ischemia-Reperfusion (IR) injury of limb remains a significant clinical problem causing secondary complications and restricting clinical recovery, despite rapid restoration of blood flow and successful surgery. In an attempt to further improve post ischemic tissue repair, we investigated the effect of a local administration of bone marrow derived stem cells (BMDSCs) in the presence or absence of immune-regulatory enzyme, IDO, in a murine model. A whole limb warm ischemia-reperfusion model was developed using IDO sufficient (WT) and deficient (KO) mice with C57/BL6 background. Twenty-four hours after injury, 5×105 cells (5×105 cells/200 µL of PBS solution) BMDSCs (Sca1 + cells) were injected intramuscularly while the control group received just the vehicle buffer (PBS). Forty-eight to seventy-two hours after limb BMDSC injection, recovery status including the ratio of intrinsic paw function between affected and normal paws, general mobility, and inflammatory responses were measured using video micrometery, flow cytometry, and immunohistochemistry techniques. Additionally, MRI/MRA studies were performed to further study the inflammatory response between groups and to confirm reconstitution of blood flow after ischemia. For the first time, our data, showed that IDO may potentially represent a partial role in triggering the beneficial effects of BMDSCs in faster recovery and protection against structural changes and cellular damage in a hind limb IR injury setting (P = 0.00058).
Collapse
Affiliation(s)
- Mohamad Masoumy
- Department of Surgery, Georgia Regents University, Augusta, Georgia, United States of America
| | - Jack Yu
- Department of Surgery, Georgia Regents University, Augusta, Georgia, United States of America
| | - Jun Yao Liu
- Department of Oral Biology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Nathan Yanasak
- Department of Radiology and Imaging, Georgia Regents University, Augusta, Georgia, United States of America
| | - Christopher Middleton
- Cancer Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Folami Lamoke
- Department of Ophthalmology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Mahmood S. Mozaffari
- Department of Oral Biology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Babak Baban
- Department of Surgery, Georgia Regents University, Augusta, Georgia, United States of America
- Department of Oral Biology, Georgia Regents University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
21
|
Zou X, Zhang G, Cheng Z, Yin D, Du T, Ju G, Miao S, Liu G, Lu M, Zhu Y. Microvesicles derived from human Wharton's Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1. Stem Cell Res Ther 2014; 5:40. [PMID: 24646750 PMCID: PMC4055103 DOI: 10.1186/scrt428] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/12/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction Studies have demonstrated that mesenchymal stromal cells (MSCs) could reverse acute and chronic kidney injury by a paracrine or endocrine mechanism, and microvesicles (MVs) have been regarded as a crucial means of intercellular communication. In the current study, we focused on the therapeutic effects of human Wharton-Jelly MSCs derived microvesicles (hWJMSC-MVs) in renal ischemia/reperfusion injury and its potential mechanisms. Methods MVs isolated from conditioned medium were injected intravenously in rats immediately after ischemia of the left kidney for 60 minutes. The animals were sacrificed at 24 hours, 48 hours and 2 weeks after reperfusion. The infiltration of inflammatory cells was identified by the immunostaining of CD68+ cells. ELISA was employed to determine the inflammatory factors in the kidney and serum von Willebrand Factor (VWF). Tubular cell proliferation and apoptosis were identified by immunostaining. Renal fibrosis was assessed by Masson’s tri-chrome straining and alpha-smooth muscle actin (α-SMA) staining. The CX3CL1 expression in the kidney was measured by immunostaining and Western blot, respectively. In vitro, human umbilical vein endothelial cells were treated with or without MVs for 24 or 48 hours under hypoxia injury to test the CX3CL1 by immunostaining and Western blot. Results After administration of hWJMSC-MVs in acute kidney injury (AKI) rats, renal cell apoptosis was mitigated and proliferation was enhanced, inflammation was also alleviated in the first 48 hours. MVs also could suppress the expression of CX3CL1 and decrease the number of CD68+ macrophages in the kidney. In the late period, improvement of renal function and abrogation of renal fibrosis were observed. In vitro, MVs could down-regulate the expression of CX3CL1 in human umbilical vein endothelial cells under hypoxia injury at 24 or 48 hours. Conclusions A single administration of MVs immediately after ischemic AKI could ameliorate renal injury in both the acute and chronic stage, and the anti-inflammatory property of MVs through suppression of CX3CL1 may be a potential mechanism. This establishes a substantial foundation for future research and treatment.
Collapse
|
22
|
Zhang G, Zou X, Miao S, Chen J, Du T, Zhong L, Ju G, Liu G, Zhu Y. The anti-oxidative role of micro-vesicles derived from human Wharton-Jelly mesenchymal stromal cells through NOX2/gp91(phox) suppression in alleviating renal ischemia-reperfusion injury in rats. PLoS One 2014; 9:e92129. [PMID: 24637475 PMCID: PMC3956873 DOI: 10.1371/journal.pone.0092129] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/17/2014] [Indexed: 01/03/2023] Open
Abstract
Oxidative stress is known as one of the main contributors in renal ischemia/reperfusion injury (IRI). Here we hypothesized that Micro-vesicles (MVs) derived from human Wharton Jelly mesenchymal stromal cells (hWJMSCs) could protect kidney against IRI through mitigating oxidative stress. MVs isolated from hWJMSCs conditioned medium were injected intravenously in rats immediately after unilateral kidney ischemia for 60 min. The animals were sacrificed at 24h, 48h and 2 weeks respectively after reperfusion. Our results show that the expression of NOX2 and reactive oxygen species (ROS) in injured kidney tissues was declined and the oxidative stress was alleviated in MVs group at 24h and 48h in parallel with the reduced apoptosis and enhanced proliferation of cells. IRI-initiated fibrosis was abrogated by MVs coincident with renal function amelioration at 2 weeks. NOX2 was also found down-regulated by MVs both in human umbilical vein endothelial cells (HUVEC) and NRK-52E cell line under hypoxia injury model in vitro. In conclusion, a single administration of hWJMSC-MVs might protect the kidney by alleviation of the oxidative stress in the early stage of kidney IRI through suppressing NOX2 expression. Moreover, it could reduce the fibrosis and improved renal function.
Collapse
Affiliation(s)
- Guangyuan Zhang
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyu Zou
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuai Miao
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinjun Chen
- Shanghai Key Laboratory of Tissue Engineering, Tissue Engineering Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Du
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Urology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Liang Zhong
- Department of Urology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guanqun Ju
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guohua Liu
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (YZ); (GL)
| | - Yingjian Zhu
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (YZ); (GL)
| |
Collapse
|
23
|
Lei YC, Liang Q, Luo P, Li W. Mesenchymal stem cell-derived molecules attenuate mouse acute live failure by up-regulating IL-10. Shijie Huaren Xiaohua Zazhi 2013; 21:3783-3789. [DOI: 10.11569/wcjd.v21.i34.3783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the role of interleukin-10 (IL-10) in mediating the therapeutic effects of bone marrow mesenchymal stem cell-derived molecules (MSC-DM) on acute live failure (ALF).
METHODS: D-galactosamine (D-GaIN) and lipopolysaccharide (LPS) were used to induce ALF in male BALB/c mice. Bone marrow MSCs were cultured and purified by the adherent method and medium containing MSC-CM was harvested. Healthy BALB/c mice were randomly assigned to three groups (n = 18 for each): ALF group, MSC-CM treatment group and MSC-CM plus IL-10 antibody group. Kaplan-Meier method was used for survival analysis. Serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels were detected at different time points, liver tissue pathological changes were examined after 24 h, and high mobility group box 1 (HMGB1), IL-1β, tumor necrosis factor α (TNF-α) and IL-10 were detected by ELISA.
RESULTS: The survival rate was significantly higher in the MSC-CM treatment group than in the ALF group (88.9% vs 39%, P < 0.01). MSC-CM treatment decreased ALT/AST levels at12, 24 and 48 h more significantly compared with the ALF group (all P < 0.01). Serum HMGB1 at 6, 12, and 24 h, and TNF-α and IL-1β at 24 h were also decreased significantly in the MSC-CM treatment group (all P < 0.01), however, IL-10 level was increased significantly in the MSC-CM treatment group (P < 0.01). The inflammation and necrosis in liver tissues were mitigated more significantly in the MSC-CM treatment group than in the ALF group (P < 0.01). In MSC-CM treated mice, administration of IL-10 antibody neutralized the therapeutic effects of MSC-CM: survival rate was decreased, and ALT level, serum HMGB1, TNF-α, IL-1β and inflammation or necrosis in liver tissues at 24 h were increased.
CONCLUSION: IL-10 plays an important role in mediating the therapeutic effects of MSC-CM on ALF.
Collapse
|