1
|
Miao Z, De Buck J. Discriminating bovine mastitis pathogens by combining loop-mediated isothermal amplification and amplicon-binding split trehalase assay. Front Vet Sci 2024; 11:1389184. [PMID: 38887539 PMCID: PMC11180830 DOI: 10.3389/fvets.2024.1389184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Bovine mastitis is predominantly caused by intramammary infections with various Gram-positive and Gram-negative bacteria, requiring accurate pathogen identification for effective treatment and antimicrobial resistance prevention. Here, a novel diagnostic method was developed to detect mastitis pathogens in milk samples by combining loop-mediated isothermal amplification with a split enzyme biosensor whereby trehalase fragments were fused with a DNA-binding protein, SpoIIID. Three primer sets, LAMPstaph, LAMPstrep, and LAMPneg, harboring SpoIIID recognition sequences targeted Staphylococcus, Streptococcus, and Gram-negative pathogens, respectively. Limits of detection were determined for DNA extracted from bacterial culture and bacteria-spiked milk. The combined method detected as low as 2, 24, and 10 copies of genomic DNA of staphylococci, streptococci and Escherichia coli and 11 CFU/ml for milk spiked with Escherichia coli. Higher detection limits were observed for Gram-positive bacteria in spiked milk. When testing genomic DNA of 10 mastitis isolates at concentrations of 106 and 103 copies per reaction, no cross-reactivity was detected for LAMPstaph nor LAMPstrep, whereas the LAMPneg assay cross-reacted only with Corynebacterium sp. at the highest concentration. This combined method demonstrated the potential to distinguish mastitis pathogenic Gram types for a rapid decision of antimicrobial treatment without culturing.
Collapse
Affiliation(s)
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Algharib SA, Dawood AS, Huang L, Guo A, Zhao G, Zhou K, Li C, Liu J, Gao X, Luo W, Xie S. Basic concepts, recent advances, and future perspectives in the diagnosis of bovine mastitis. J Vet Sci 2024; 25:e18. [PMID: 38311330 PMCID: PMC10839174 DOI: 10.4142/jvs.23147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 02/07/2024] Open
Abstract
Mastitis is one of the most widespread infectious diseases that adversely affects the profitability of the dairy industry worldwide. Accurate diagnosis and identification of pathogens early to cull infected animals and minimize the spread of infection in herds is critical for improving treatment effects and dairy farm welfare. The major pathogens causing mastitis and pathogenesis are assessed first. The most recent and advanced strategies for detecting mastitis, including genomics and proteomics approaches, are then evaluated . Finally, the advantages and disadvantages of each technique, potential research directions, and future perspectives are reported. This review provides a theoretical basis to help veterinarians select the most sensitive, specific, and cost-effective approach for detecting bovine mastitis early.
Collapse
Affiliation(s)
- Samah Attia Algharib
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
- Key Laboratory of Tarim Animal Husbandry & Science Technology of Xinjiang Production & Construction Corps., Alar, Xinjiang 843300, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt
| | - Ali Sobhy Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, Hubei 430070, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Lingli Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, Hubei 430070, China
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Chao Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Jinhuan Liu
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Xin Gao
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Lu Zhou, Sichuan 646000, China
| | - Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
- Key Laboratory of Tarim Animal Husbandry & Science Technology of Xinjiang Production & Construction Corps., Alar, Xinjiang 843300, China.
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, Hubei 430070, China.
| |
Collapse
|
3
|
Wang YL, Zhang X, Wang Q, Liu PX, Tang W, Guo R, Zhang HY, Chen ZG, Han XG, Jiang W. Rapid and visual detection of Staphylococcus aureus in milk using a recombinase polymerase amplification-lateral flow assay combined with immunomagnetic separation. J Appl Microbiol 2022; 133:3741-3754. [PMID: 36073301 DOI: 10.1111/jam.15811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/27/2022]
Abstract
AIMS The aim of this study was to develop a novel approach using lateral flow recombinase polymerase amplification (RPA-LF) combined with immunomagnetic separation (IMS) for the rapid detection of Staphylococcus aureus in milk. METHODS AND RESULTS Under optimum conditions, the average capture efficiency values (CEs) for S. aureus strains (104 CFU ml-1 ) was above 95.0% in PBST and ~80% in milk within 45 min with 0.7 mg immunomagnetic beads. The RPA-LF assay, which comprised DNA amplification via RPA at 39°C for 10 min and visualization of the amplicons through LF strips for 5 min, detected S. aureus within 15 min. The method only detected S. aureus and did not show cross-reaction with other bacteria, exhibiting a high level of specificity. Sensitivity experiments confirmed a detection limit of RPA-LF assay as low as 600 fg reaction-1 for the S. aureus genome (corresponding to approximately 36 CFU of S. aureus), which was about 16.7-fold more sensitive than that of the conventional PCR method. When RPA-LF was used in combination with IMS to detect S. aureus inoculated into artificially contaminated milk, it exhibited a detection limit of approximately 40 CFU reaction-1 . CONCLUSIONS The newly developed IMS-RPA-LF method enabled detection of S. aureus at levels as low as 40 CFU reaction-1 in milk samples without culture enrichment for an overall testing time of only 70 min. SIGNIFICANCE AND IMPACT OF THE STUDY The newly developed IMS-RPA-LF assay effectively combines sample preparation, amplification, and detection into a single platform. Because of its high sensitivity, specificity, and speed, the IMS-RPA-LF assay will have important implications for the rapid detection of S. aureus in contaminated food.
Collapse
Affiliation(s)
- Ya-Lei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xin Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Quan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Peng-Xuan Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wei Tang
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hai-Yang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhao-Guo Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xian-Gan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wei Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
4
|
Hassan M, Vittal R, Raj JM, Chakraborty G. Loop-mediated isothermal amplification (LAMP): a sensitive molecular tool for detection of Staphylococcus aureus in meat and dairy product. Braz J Microbiol 2022; 53:341-347. [PMID: 35091898 PMCID: PMC8882521 DOI: 10.1007/s42770-021-00659-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/12/2021] [Indexed: 01/31/2023] Open
Abstract
Staphylococcus aureus-mediated food poisoning is a primary concern worldwide. The presence of the organism in food is an indicative of poor sanitation during production, and it is essential to have efficient methods for detecting this pathogen. A novel molecular diagnostic technique called loop-mediated isothermal amplification (LAMP) serves as a rapid and sensitive detection method, which amplifies nucleic acids at isothermal conditions. In this study, a LAMP-based diagnostic assay was developed to detect Staphylococcus aureus (S. aureus) using two target genes femA and arcC. The optimum reaction temperature was found to be 65 °C and at 60 °C for femA and arcC genes, respectively. The developed assay specifically amplified DNA from S. aureus, not from other related bacterial species and compared to PCR, and a 100-fold higher sensitivity was observed. Furthermore, the LAMP assay could detect the pathogen from food samples mainly meat and dairy samples when analyzed in both intact and enriched conditions. Thirteen samples were found positive for S. aureus with LAMP showing a greater number of positive samples in comparison to PCR. This study established a highly sensitive and a rapid diagnostic procedure for the detection and surveillance of this major foodborne pathogen.
Collapse
Affiliation(s)
- Manal Hassan
- grid.412206.30000 0001 0032 8661Nitte University Centre for Science Education and Research, Nitte (Deemed To Be University), Mangalore, India
| | - Rajeshwari Vittal
- grid.412206.30000 0001 0032 8661Nitte University Centre for Science Education and Research, Nitte (Deemed To Be University), Mangalore, India
| | - Juliet Mohan Raj
- grid.412206.30000 0001 0032 8661Nitte University Centre for Science Education and Research, Nitte (Deemed To Be University), Mangalore, India
| | - Gunimala Chakraborty
- grid.412206.30000 0001 0032 8661Nitte University Centre for Science Education and Research, Nitte (Deemed To Be University), Mangalore, India ,grid.412206.30000 0001 0032 8661Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research Paneer Campus, Nitte (Deemed To Be University), Karnataka 575 018 Mangalore, India
| |
Collapse
|
5
|
Lai MY, Ooi CH, Lau YL. Validation of SYBR green I based closed-tube loop-mediated isothermal amplification (LAMP) assay for diagnosis of knowlesi malaria. Malar J 2021; 20:166. [PMID: 33766038 PMCID: PMC7995794 DOI: 10.1186/s12936-021-03707-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/17/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND As an alternative to PCR methods, LAMP is increasingly being used in the field of molecular diagnostics. Under isothermal conditions at 65 °C, the entire procedure takes approximately 30 min to complete. In this study, we establish a sensitive and visualized LAMP method in a closed-tube system for the detection of Plasmodium knowlesi. METHODS A total of 71 malaria microscopy positive blood samples collected in blood spots were obtained from the Sarawak State Health Department. Using 18s rRNA as the target gene, nested PCR and SYBR green I LAMP assay were performed following the DNA extraction. The colour changes of LAMP end products were observed by naked eyes. RESULTS LAMP assay demonstrated a detection limit of 10 copies/µL in comparison with 100 copies/µL nested PCR. Of 71 P. knowlesi blood samples collected, LAMP detected 69 microscopy-positive samples. LAMP exhibited higher sensitivity than nested PCR assay. The SYBR green I LAMP assay was 97.1% sensitive (95% CI 90.2-99.7%) and 100% specific (95% CI 83.2-100%). Without opening the cap, incorporation of SYBR green I into the inner cap of the tube enabled the direct visualization of results upon completion of amplification. The positives instantaneously turned green while the negatives remained orange. CONCLUSIONS These results indicate that SYBR green I LAMP assay is a convenient diagnosis tool for the detection of P. knowlesi in remote settings.
Collapse
Affiliation(s)
- Meng Yee Lai
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Choo Huck Ooi
- Sarawak State Health Department, Jalan Diplomatik, Off Jalan Bako, Kuching, Sarawak, 93050, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
6
|
Matuozzo M, Spagnuolo MS, Hussein HA, Gomaa AM, Scaloni A, D’Ambrosio C. Novel Biomarkers of Mastitis in Goat Milk Revealed by MALDI-TOF-MS-Based Peptide Profiling. BIOLOGY 2020; 9:E193. [PMID: 32731427 PMCID: PMC7464427 DOI: 10.3390/biology9080193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022]
Abstract
Mastitis is the most common infection of dairy goats impairing milk production and quality, which is usually recognized by mammary gland visual inspection and palpation. Subclinical forms of the disease are also widely represented, which lack the typical signs of the clinical ones but are still associated with reduced production and safety for human consumption of milk, generally presenting a high bacterial count. In order to obtain novel analytical tools for rapid and non-invasive diagnosis of mastitis in goats, we analyzed milk samples from healthy, subclinical and clinical mastitic animals with a MALDI-TOF-MS-based peptidomic platform, generating disease group-specific spectral profiles whose signal intensity and mass values were analyzed by statistics. Peculiar spectral signatures of mastitis with respect to the control were identified, while no significant spectral differences were observed between clinical and subclinical milk samples. Discriminant signals were assigned to specific peptides through nanoLC-ESI-Q-Orbitrap-MS/MS experiments. Some of these molecules were predicted to have an antimicrobial activity based on their strong similarity with homolog bioactive compounds from other mammals. Through the definition of a panel of peptide biomarkers, this study provides a very rapid and low-cost method to routinely detect mastitic milk samples even though no evident clinical signs in the mammary gland are observed.
Collapse
Affiliation(s)
- Monica Matuozzo
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council (CNR), 80147 Naples, Italy; (M.M.); (M.S.S.); (A.S.)
| | - Maria Stefania Spagnuolo
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council (CNR), 80147 Naples, Italy; (M.M.); (M.S.S.); (A.S.)
| | - Hany A. Hussein
- Department of Animal Reproduction and Artificial Insemination, National Research Centre, Giza 12622, Egypt;
- Department of Veterinary Research, Guangdong Haid Institute of Animal Husbandry and Veterinary (GHIAHV), Guangzhou 511400, China
| | - A. M. Gomaa
- Animal Reproduction Research Institute (ARRI), Agriculture Research Center, Ministry of Agriculture, Giza 12556, Egypt;
| | - Andrea Scaloni
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council (CNR), 80147 Naples, Italy; (M.M.); (M.S.S.); (A.S.)
| | - Chiara D’Ambrosio
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council (CNR), 80147 Naples, Italy; (M.M.); (M.S.S.); (A.S.)
| |
Collapse
|
7
|
Diagnostic Values of Multiplex Loop-Mediated Isothermal Amplification and Multiplex Polymerase Chain Reaction for Detection of Methicillin-Resistant Staphylococcus aureus. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.96682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a significant pathogen in community and hospital environments and is associated with high mortality and morbidity. Both polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) methods are sensitive and acceptable molecular methods for the diagnosis of infectious diseases. Objectives: This study aimed to develop detection assays for Staphylococcal mecA and spa using multiplex PCR and LAMP. Methods: Both methods were standardized, and detection limits were determined using serial dilutions of S. aureus DNA samples. Fifty-three clinical isolates of S. aureus were confirmed to the species level using biochemical tests and multiplex PCR and multiplex LAMP for the spa gene, while disk diffusion, minimum inhibitory concentration, and detection of mecA genes were used for the assessment of methicillin resistance. Results: The PCR could detect the mecA and spa genes at 1 fg/mL and 10 fg/mL of bacterial DNA, which were equal to 35 and 350 gene copy numbers, respectively. Similarly, multiplex LAMP detected the spa and mecA genes at 0.1 fg/mL and 1 fg/mL of bacterial DNA, which were equal to 3.5 and 35 genome copy numbers, respectively. According to MIC and disk diffusion methods, four (7.54%) cases were oxacillin-sensitive methicillin-resistant S. aureus, 16 isolates were methicillin-sensitive, and 37 isolates were methicillin-resistant. According to multiplex PCR, 47.75% of the isolates were mecA-positive while in multiplex LAMP, 41 (35.77%) isolates were mecA-positive. Conclusions: The sensitivity and specificity of the multiplex LAMP were higher than those of multiplex PCR and biochemical methods. Thus, we can apply the LAMP for the routine detection of MRSA.
Collapse
|
8
|
Griffioen K, Cornelissen J, Heuvelink A, Adusei D, Mevius D, Jan van der Wal F. Development and evaluation of 4 loop-mediated isothermal amplification assays to detect mastitis-causing bacteria in bovine milk samples. J Dairy Sci 2020; 103:8407-8420. [PMID: 32564949 DOI: 10.3168/jds.2019-18035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
Abstract
Farmers prefer fast, sensitive, and on-site tests for treatment decisions on mastitis. Due to the time to results of the currently available diagnostic tools, these are rarely used for that purpose. Genotypic tests that do not require a growth step may be suitable for on-site testing, for example loop-mediated isothermal amplification (LAMP), which has been described as a sensitive test that can be used on-site. Therefore, this study aimed to develop and evaluate LAMP assays for the detection of a subset of mastitis-causing pathogens, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus spp., in milk from cows with clinical mastitis. Furthermore, a generic nucleic acid lateral flow immunoassay (NALFIA) was evaluated as a potential on-site readout of the LAMP assays. For each assay of LAMP and NALFIA, the limit of detection and analytical specificity were determined using isolates, and the diagnostic specificity was determined using selected samples with known etiology. In addition, the diagnostic specificity of LAMP was determined using field samples with unknown etiology at testing. Bacteriological culture with identification by mass spectrometry was used as a reference method. The 4 assays had a kappa ≥0.73 with the reference method when testing the selected samples, but ≥0.47 when testing field samples. After correcting for prevalence, kappa was ≥0.80 for the E. coli, K. pneumoniae, and Staph. aureus assays. The Streptococcus spp. assay had a kappa of 0.47 (0.48 after correction) with the reference method, probably caused by the assay broadly targeting a genus instead of a particular species. The NALFIA readout was found to have kappa ≥0.81 for the E. coli, Staph. aureus, and Streptococcus spp. assays at a generic runtime, but for the K. pneumoniae assay a shorter runtime could be used. In conclusion, LAMP is a promising method for fast on-site tests for mastitis-causing pathogens if the current elaborate method for sample preparation is replaced by a simplified protocol. The NALFIA is an easy and reliable readout for on-site use, with the observation that for the current assay designs a generic runtime is not yet possible for the chosen set of pathogens. If associated with a simple and fast sample preparation protocol, the combination of LAMP and NALFIA has the potential to enable fast and reliable on-site testing of clinical mastitis milk samples.
Collapse
Affiliation(s)
- Karien Griffioen
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, PO Box 80151, 3508 TD Utrecht, the Netherlands.
| | - Jan Cornelissen
- Wageningen Bioveterinary Research, Department of Infection Biology, Wageningen UR, PO Box 65, 8200 AB Lelystad, the Netherlands
| | | | - Daniela Adusei
- Wageningen Bioveterinary Research, Department of Infection Biology, Wageningen UR, PO Box 65, 8200 AB Lelystad, the Netherlands
| | - Dik Mevius
- Wageningen Bioveterinary Research, Department of Infection Biology, Wageningen UR, PO Box 65, 8200 AB Lelystad, the Netherlands; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, PO Box 80165, 3508 TD Utrecht, the Netherlands
| | - Fimme Jan van der Wal
- Wageningen Bioveterinary Research, Department of Infection Biology, Wageningen UR, PO Box 65, 8200 AB Lelystad, the Netherlands
| | | |
Collapse
|
9
|
Chakraborty S, Dhama K, Tiwari R, Iqbal Yatoo M, Khurana SK, Khandia R, Munjal A, Munuswamy P, Kumar MA, Singh M, Singh R, Gupta VK, Chaicumpa W. Technological interventions and advances in the diagnosis of intramammary infections in animals with emphasis on bovine population-a review. Vet Q 2020; 39:76-94. [PMID: 31288621 PMCID: PMC6830988 DOI: 10.1080/01652176.2019.1642546] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mastitis, an inflammation of the udder, is a challenging problem in dairy animals accounting for high economic losses. Disease complexity, degree of economic losses and increasing importance of the dairy industries along with public health concerns envisages devising appropriate diagnostics of mastitis, which can offer rapid, accurate and confirmatory diagnosis. The various diagnostic tests of mastitis have been divided into general or phenotypic and specific or genotypic tests. General or phenotypic tests are those that identify general alterations, which are not specific to any pathogen. Genotypic tests are specific, hence confirmatory for diagnosis of mastitis and include specific culture, polymerase chain reaction (PCR) and its various versions (e.g. qRT-PCR), loop-mediated isothermal amplification, lateral flow assays, nucleotide sequencing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and other molecular diagnostic methods. However, for highly specific and confirmatory diagnosis, pure cultures still provide raw materials for more sophisticated diagnostic technological interventions like PCR and nucleotide sequencing. Diagnostic ability of like infra-red thermography (IRT) has been shown to be similar to California mastitis test and also differentiates clinical mastitis from subclinical mastitis cases. As such, IRT can become a convenient and portable diagnostic tool. Of note, magnetic nanoparticles-based colorimetric biosensor assay was developed by using for instance proteolytic activity of plasmin or anti-S. aureus antibody. Last but not least, microRNAs have been suggested to be potential biomarkers for diagnosing bovine mastitis. This review summarizes the various diagnostic tests available for detection of mastitis including diagnosis through general and specific technological interventions and advances.
Collapse
Affiliation(s)
- Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry , West Tripura , India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir , Srinagar , India
| | | | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University , Bhopal , India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University , Bhopal , India
| | - Palanivelu Munuswamy
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - M Asok Kumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Mithilesh Singh
- Immunology Section, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Vivek Kumar Gupta
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok , Thailand
| |
Collapse
|
10
|
Martins SAM, Martins VC, Cardoso FA, Germano J, Rodrigues M, Duarte C, Bexiga R, Cardoso S, Freitas PP. Biosensors for On-Farm Diagnosis of Mastitis. Front Bioeng Biotechnol 2019; 7:186. [PMID: 31417901 PMCID: PMC6684749 DOI: 10.3389/fbioe.2019.00186] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022] Open
Abstract
Bovine mastitis is an inflammation of the mammary gland caused by a multitude of pathogens with devastating consequences for the dairy industry. Global annual losses are estimated to be around €30 bn and are caused by significant milk losses, poor milk quality, culling of chronically infected animals, and occasional deaths. Moreover, mastitis management routinely implies the administration of antibiotics to treat and prevent the disease which poses serious risks regarding the emergence of antibiotic resistance. Conventional diagnostic methods based on somatic cell counts (SCC) and plate-culture techniques are accurate in identifying the disease, the respective infectious agents and antibiotic resistant phenotypes. However, pressure exists to develop less lengthy approaches, capable of providing on-site information concerning the infection, and in this way, guide, and hasten the most adequate treatment. Biosensors are analytical tools that convert the presence of biological compounds into an electric signal. Benefitting from high signal-to-noise ratios and fast response times, when properly tuned, they can detect the presence of specific cells and cell markers with high sensitivity. In combination with microfluidics, they provide the means for development of automated and portable diagnostic devices. Still, while biosensors are growing at a fast pace in human diagnostics, applications for the veterinary market, and specifically, for the diagnosis of mastitis remain limited. This review highlights current approaches for mastitis diagnosis and describes the latest outcomes in biosensors and lab-on-chip devices with the potential to become real alternatives to standard practices. Focus is given to those technologies that, in a near future, will enable for an on-farm diagnosis of mastitis.
Collapse
Affiliation(s)
- Sofia A. M. Martins
- Magnomics S.A., Parque Tecnológico de Cantanhede, Cantanhede, Portugal
- INESC Microsistemas e Nanotecnologias Rua Alves Redol, Lisbon, Portugal
| | - Verónica C. Martins
- Magnomics S.A., Parque Tecnológico de Cantanhede, Cantanhede, Portugal
- INESC Microsistemas e Nanotecnologias Rua Alves Redol, Lisbon, Portugal
| | - Filipe A. Cardoso
- Magnomics S.A., Parque Tecnológico de Cantanhede, Cantanhede, Portugal
| | - José Germano
- Magnomics S.A., Parque Tecnológico de Cantanhede, Cantanhede, Portugal
| | - Mónica Rodrigues
- Magnomics S.A., Parque Tecnológico de Cantanhede, Cantanhede, Portugal
- Faculdade de Ciências, CE3C - Centre for Ecology, Evolution and Environmental Changes, Universidade de Lisboa, Lisbon, Portugal
| | - Carla Duarte
- INESC Microsistemas e Nanotecnologias Rua Alves Redol, Lisbon, Portugal
- Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Lisbon, Portugal
| | - Ricardo Bexiga
- Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Lisbon, Portugal
| | - Susana Cardoso
- INESC Microsistemas e Nanotecnologias Rua Alves Redol, Lisbon, Portugal
| | - Paulo P. Freitas
- INESC Microsistemas e Nanotecnologias Rua Alves Redol, Lisbon, Portugal
- INL- International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
11
|
Tubalinal GAS, Balbin MM, Villanueva MA, Domingo CYJ, Mingala CN. Evaluation of LAMP for detection and/or screening of Leptospira spp. infection among domestic animals in the Philippines. J Adv Vet Anim Res 2018; 5:459-465. [PMID: 31453158 PMCID: PMC6702914 DOI: 10.5455/javar.2018.e299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/10/2018] [Accepted: 11/07/2018] [Indexed: 01/01/2023] Open
Abstract
Objective: This study assessed the applicability of loop-mediated isothermal amplification (LAMP) for the detection of leptospirosis among domesticated animals and sewage rats. Specifically, it evaluated the ability of LAMP to amplify Leptospira spp. targeting the 16s rRNA gene in boiled urine samples. Materials and methods: A total of 140 samples from different domestic animals were tested for the presence of the antigen. A nested-polymerase chain reaction (nPCR) protocol was used to compare and determine the sensitivity of LAMP in detecting Leptospira spp. The LAMP was also evaluated by comparing its amplification result using agarose gel electrophoresis and color change using dye. Results: Positivity rate of Leptospira spp. antigen was 29.0% (40/140) for LAMP and 9.3% (13/140) for nPCR. Also, LAMP results for gel electrophoresis and dye color change varied in some samples that may be due to the interpretation of the result in dye color change. Conclusion: Overall, LAMP is a rapid, sensitive, and cost-effective diagnostic method compared with nPCR. Also, LAMP has a potential application as pen-side screening, surveillance, and clinical diagnostic kits of infectious diseases without requiring advance equipment and skilled personnel.
Collapse
Affiliation(s)
- Gabriel Alexis Sp Tubalinal
- College of Veterinary Science and Medicine, Central Luzon State University, Nueva Ecija, Philippines.,Biosafety and Environment Section, Philippine Carabao Center National Headquarters and Gene Pool, Nueva Ecija, Philippines.,Both authors contributed equally to this work
| | - Michelle M Balbin
- Biosafety and Environment Section, Philippine Carabao Center National Headquarters and Gene Pool, Nueva Ecija, Philippines
| | - Marvin A Villanueva
- Biosafety and Environment Section, Philippine Carabao Center National Headquarters and Gene Pool, Nueva Ecija, Philippines
| | - Clarissa Yvonne J Domingo
- College of Veterinary Science and Medicine, Central Luzon State University, Nueva Ecija, Philippines
| | - Claro N Mingala
- Biosafety and Environment Section, Philippine Carabao Center National Headquarters and Gene Pool, Nueva Ecija, Philippines.,Department of Animal Science, College of Agriculture, Central Luzon State University, Nueva Ecija, Philippines.,Both authors contributed equally to this work
| |
Collapse
|
12
|
Ashraf A, Imran M. Diagnosis of bovine mastitis: from laboratory to farm. Trop Anim Health Prod 2018; 50:1193-1202. [PMID: 29948774 DOI: 10.1007/s11250-018-1629-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022]
Abstract
Accurate diagnosis of disease is the major step between the cause and cure of disease. An economical, reliable, and rapid diagnostic tool is fundamental for the management of udder health. The earlier the disease is identified, the less will be the damage; keeping this in mind, many efforts are being made to develop reliable diagnostic tools for use on farm. However, traditional gold standard methods including somatic cell count and microbial culturing are still in use. They are partially being replaced with polymerase chain reaction and sequencing-based tests. Nanotechnology and protein-based tests have also gained lot of attention and some of them are potential candidate of future diagnostic tests for bovine mastitis. Research laboratories are struggling to develop simple, economical, and user-friendly biosensor-based methods that can be performed on farm for rapid diagnosis. The combination of both genomic and proteomic approaches, together with further involvement of nanotheranostic technologies and other sensors, will assist in the quest of better mastitis diagnostic tools.
Collapse
Affiliation(s)
- Aqeela Ashraf
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| |
Collapse
|
13
|
Hoekstra J, Rutten V, Sommeling L, van Werven T, Spaninks M, Duim B, Benedictus L, Koop G. High Production of LukMF' in Staphylococcus aureus Field Strains Is Associated with Clinical Bovine Mastitis. Toxins (Basel) 2018; 10:toxins10050200. [PMID: 29762488 PMCID: PMC5983256 DOI: 10.3390/toxins10050200] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/27/2018] [Accepted: 05/06/2018] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus, a major cause of bovine mastitis, produces a wide range of immune-evasion molecules. The bi-component leukocidin LukMF’ is a potent killer of bovine neutrophils in vitro. Since the role of LukMF’ in development of bovine mastitis has not been studied in natural infections, we aimed to clarify whether presence of the lukM-lukF’ genes and production levels of LukMF’ are associated with clinical severity of the disease. Staphylococcus aureus was isolated from mastitis milk samples (38 clinical and 17 subclinical cases) from 33 different farms. The lukM-lukF’ genes were present in 96% of the isolates. Remarkably, 22% of the lukM-lukF’-positive S. aureus isolates displayed a 10-fold higher in vitro LukMF’ production than the average of the lower-producing ones. These high producing isolates were cultured significantly more frequently from clinical than subclinical mastitis cases. Also, the detection of LukM protein in milk samples was significantly associated with clinical mastitis and high production in vitro. The high producing LukMF’ strains all belonged to the same genetic lineage, spa-type t543. Analysis of their global toxin gene regulators revealed a point mutation in the Repressor of toxins (rot) gene which results in a non-functional start codon, preventing translation of rot. This mutation was only identified in high LukMF’ producing isolates and not in low LukMF’ producing isolates. Since rot suppresses the expression of various toxins including leukocidins, this mutation is a possible explanation for increased LukMF’ production. Identification of high LukMF’ producing strains is of clinical relevance and can potentially be used as a prognostic marker for severity of mastitis.
Collapse
Affiliation(s)
- Jurriaan Hoekstra
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands.
| | - Victor Rutten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
| | - Laura Sommeling
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | - Tine van Werven
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands.
- University Farm Animal Practice, 3481 LZ Harmelen, The Netherlands.
| | - Mirlin Spaninks
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands.
| | - Birgitta Duim
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | - Lindert Benedictus
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | - Gerrit Koop
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands.
| |
Collapse
|
14
|
Ashraf A, Imran M, Yaqub T, Tayyab M, Shehzad W, Mingala CN, Chang YF. Development and validation of a loop-mediated isothermal amplification assay for the detection of Mycoplasma bovis in mastitic milk. Folia Microbiol (Praha) 2017; 63:373-380. [PMID: 29243178 DOI: 10.1007/s12223-017-0576-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/01/2017] [Indexed: 11/28/2022]
Abstract
Mycoplasma mastitis is often difficult to control due to a lack of rapid and accurate diagnostic tools. The aim of the current study was to develop a loop-mediated isothermal amplification (LAMP) assay for the detection of Mycoplasma bovis (M. bovis) in mastitic milk. The assay was developed using primers designed for three different target genes: uvrC, 16S rRNA, and gyrB, and validated using mastitic milk samples previously found positive for the target pathogen. Specificity of the developed assay was determined by testing cross-reactivity of LAMP primers against closely related bovine mastitis bacterial pathogens. The sensitivity was found to be higher compared to conventional polymerase chain reaction (PCR). The LAMP assay was also capable of detecting M. bovis in PCR-negative milk samples of cows with clinical mastitis. The uvrC primers were found to be more sensitive, while gyrB primers were more specific; however, 16S rRNA primers were less specific and sensitive compared to either uvrC or gyrB primers. Cohen's kappa values for uvrC, gyrB, and 16S rRNA primers used in the LAMP assays were 0.940, 0.970, and 0.807, respectively. There was a high level of agreement between the test results and the true-disease status as indicated by the receiver operating characteristic (ROC) curve. Our findings suggest that the newly developed LAMP assays targeting the uvrC and gyrB genes could be a useful tool for rapid and accurate diagnosis of mastitis caused by M. bovis.
Collapse
Affiliation(s)
- Aqeela Ashraf
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.,Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Imran
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Tahir Yaqub
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Tayyab
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Wasim Shehzad
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Claro N Mingala
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.,Philippine Carabao Center National Headquarters and Gene Pool, Science City of Munoz, Nueva Ecija, Philippines
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
15
|
Anklam K, Kulow M, Yamazaki W, Döpfer D. Development of real-time PCR and loop-mediated isothermal amplification (LAMP) assays for the differential detection of digital dermatitis associated treponemes. PLoS One 2017; 12:e0178349. [PMID: 28542573 PMCID: PMC5444799 DOI: 10.1371/journal.pone.0178349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/11/2017] [Indexed: 12/23/2022] Open
Abstract
Bovine digital dermatitis (DD) is a severe infectious cause of lameness in cattle worldwide, with important economic and welfare consequences. There are three treponeme phylogroups (T. pedis, T. phagedenis, and T. medium) that are implicated in playing an important causative role in DD. This study was conducted to develop real-time PCR and loop-mediated isothermal amplification (LAMP) assays for the detection and differentiation of the three treponeme phylogroups associated with DD. The real-time PCR treponeme phylogroup assays targeted the 16S-23S rDNA intergenic space (ITS) for T. pedis and T. phagedenis, and the flagellin gene (flaB2) for T. medium. The 3 treponeme phylogroup LAMP assays targeted the flagellin gene (flaB2) and the 16S rRNA was targeted for the Treponeme ssp. LAMP assay. The real-time PCR and LAMP assays correctly detected the target sequence of all control strains examined, and no cross-reactions were observed, representing 100% specificity. The limit of detection for each of the three treponeme phylogroup real-time PCR and LAMP assays was ≤ 70 fg/μl. The detection limit for the Treponema spp. LAMP assay ranged from 7-690 fg/μl depending on phylogroup. Treponemes were isolated from 40 DD lesion biopsies using an immunomagnetic separation culture method. The treponeme isolation samples were then subjected to the real-time PCR and LAMP assays for analysis. The treponeme phylogroup real-time PCR and LAMP assay results had 100% agreement, matching on all isolation samples. These results indicate that the developed assays are a sensitive and specific test for the detection and differentiation of the three main treponeme phylogroups implicated in DD.
Collapse
Affiliation(s)
- Kelly Anklam
- Department of Medical Science, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Megan Kulow
- Department of Medical Science, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Wataru Yamazaki
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Dörte Döpfer
- Department of Medical Science, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
16
|
From market to food plate: Current trusted technology and innovations in halal food analysis. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.10.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Cornelissen J, De Greeff A, Heuvelink A, Swarts M, Smith H, Van der Wal F. Rapid detection of Streptococcus uberis in raw milk by loop-mediated isothermal amplification. J Dairy Sci 2016; 99:4270-4281. [DOI: 10.3168/jds.2015-10683] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022]
|