1
|
Olymon K, Kumari A, Kinoo N, Teronpi V, Yella VR, Kumar A. Comparative genomic analysis reveals distinct virulence and resistance mechanisms in 21 bacterial fish pathogens. Microb Pathog 2024; 197:107099. [PMID: 39491566 DOI: 10.1016/j.micpath.2024.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/22/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The rising bacterial infections threaten world aquaculture and wild fish populations, making it imperative to increase the understanding of the mechanisms of pathogenic virulence and resistance. This study applies comparative genomic analysis to 21 bacterial fish pathogens, using whole-genome sequences from public genomic resources and sophisticated bioinformatics tools for screening of virulence factors, mobile genetic elements, antibiotic resistance genes, anti-phage defense mechanisms and secretory systems. We have seen that the different pathogens depict a wide range of variability regarding virulence and resistance potential, which may be attributed to species-specific adaptation. Notably, Streptococcus agalactiae and Mycobacterium salmoniphilum were found to possess high offensive and defensive virulence potential, but at different regulative controls. We also found diverse secretion systems and intricate mechanisms for antibiotic resistance, which have provided very important insights into how pathogens adapt to their environments. By categorizing functional genes and finding anti-phage systems, our analysis has revealed new insights into the complex interactions among bacterial virulence, resistance, and host defense mechanisms. These findings not only shed new light on the bacterial pathogenesis process in aquaculture but also provide the bases for focused, therapeutically-based strategies and genomic surveillance programs able to improve disease management and sustainability in aquaculture environments.
Collapse
Affiliation(s)
- Kaushika Olymon
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Ankita Kumari
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Nafeesah Kinoo
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Valentina Teronpi
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Behali, Biswanath, 784184, Assam, India
| | - Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, 520002, Andhra Pradesh, India.
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India.
| |
Collapse
|
2
|
Sasikumar R, Saranya S, Lourdu Lincy L, Thamanna L, Chellapandi P. Genomic insights into fish pathogenic bacteria: A systems biology perspective for sustainable aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109978. [PMID: 39442738 DOI: 10.1016/j.fsi.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Fish diseases significantly challenge global aquaculture, causing substantial financial losses and impacting sustainability, trade, and socioeconomic conditions. Understanding microbial pathogenesis and virulence at the molecular level is crucial for disease prevention in commercial fish. This review provides genomic insights into fish pathogenic bacteria from a systems biology perspective, aiming to promote sustainable aquaculture. It covers the genomic characteristics of various fish pathogens and their industry impact. The review also explores the systems biology of zebrafish, fish bacterial pathogens, and probiotic bacteria, offering insights into fish production, potential vaccines, and therapeutic drugs. Genome-scale metabolic models aid in studying pathogenic bacteria, contributing to disease management and antimicrobial development. Researchers have also investigated probiotic strains to improve aquaculture health. Additionally, the review highlights bioinformatics resources for fish and fish pathogens, which are essential for researchers. Systems biology approaches enhance understanding of bacterial fish pathogens by revealing virulence factors and host interactions. Despite challenges from the adaptability and pathogenicity of bacterial infections, sustainable alternatives are necessary to meet seafood demand. This review underscores the potential of systems biology in understanding fish pathogen biology, improving production, and promoting sustainable aquaculture.
Collapse
Affiliation(s)
- R Sasikumar
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - S Saranya
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Lourdu Lincy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Thamanna
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - P Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
3
|
Elumalai L, Nagarajan S, Anbalmani S, Murthy S, Manikkam R, Ramasamy B. Bioactive compound from marine seagrass Streptomyces argenteolus TMA13: combatting fish pathogens with time-kill kinetics and live-dead cell imaging. Braz J Microbiol 2024; 55:2669-2681. [PMID: 39028533 PMCID: PMC11405562 DOI: 10.1007/s42770-024-01407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024] Open
Abstract
Actinobacteria, pervasive in aquatic and terrestrial environments, exhibit a filamentous morphology, possess DNA with a specific G + C content and production of numerous secondary metabolites. This study, focused on actinobacteria isolated from marine seagrass, investigating their antibacterial activity against fish pathogens. Among 28 isolates, Streptomyces argenteolus TMA13 displayed the maximum zone of inhibition against fish pathogens-Aeromonas hydrophila (10 mm), Aeromonas caviae (22 mm), Edwardsiella tarda (17 mm), Vibrio harveyi (22 mm) and Vibrio anguillarum (12 mm) using the agar plug method. Optimization of this potent strain involved with various factors, including pH, temperature, carbon source and salt condition to enhance both yield production and antibacterial efficacy. In anti-biofilm assay shows the maximum percentage of inhibition while increasing concentration of TMA13 extract. Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) assays with TMA13 crude extract demonstrated potent activity against fish pathogens at remarkably low concentrations. Time-kill kinetics assay showcased growth curve variations over different time intervals for all fish pathogens treated with a 100 µg/ml concentration of crude extract, indicating a decline in cells viability and progression into the death phase. Additionally, fluorescence microscopic visualization of bacterial cells exposed to the extracts emitting green and red fluorescence, enabling live-dead cell differentiation was also studied. Further characterization of the crude extract through GC-MS and FT-IR analyses performed and identified secondary metabolites with functional groups exhibiting significant antibacterial activity. This study elucidates the capacity of Streptomyces argenteolus TMA13 to enhance the production of antibiotic compounds effective against fish pathogens.
Collapse
Affiliation(s)
- Lokesh Elumalai
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, 636011, Tamil Nadu, India
| | - Siddharthan Nagarajan
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, 636011, Tamil Nadu, India
| | - Sivarajan Anbalmani
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, 636011, Tamil Nadu, India
| | - Sangeetha Murthy
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, 636011, Tamil Nadu, India
| | - Radhakrishnan Manikkam
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Balagurunathan Ramasamy
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, 636011, Tamil Nadu, India.
| |
Collapse
|
4
|
Olymon K, Yadav M, Teronpi V, Kumar A. Unravelling the genomic secrets of bacterial fish pathogens: a roadmap to aquaculture sustainability. Mol Biol Rep 2024; 51:364. [PMID: 38407655 DOI: 10.1007/s11033-024-09331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
In the field of aquaculture, bacterial pathogens pose significant challenges to fish health and production. Advancements in genomic technologies have revolutionized our understanding of bacterial fish pathogens and their interactions with their host species. This review explores the application of genomic approaches in the identification, classification, and characterization of bacterial fish pathogens. Through an extensive analysis of the literature, we have compiled valuable data on 79 bacterial fish pathogens spanning 13 different phyla, encompassing their whole genome sequences. By leveraging high-throughput sequencing techniques, researchers have gained valuable insights into the genomic makeup of these pathogens, enabling a deeper understanding of their virulence factors and mechanisms of host interaction. Furthermore, genomic approaches have facilitated the discovery of potential vaccine and drug targets, opening up new avenues for the development of effective interventions against fish pathogens. Additionally, the utilization of genomics in fish disease resistance and control in aquaculture has shown promising results, enabling the identification of genetic markers associated with disease resistance traits. This review highlights the significant contributions of genomics to the field of fish pathogen research and underscores its potential for improving disease management strategies and enhancing the sustainability of aquaculture practices.
Collapse
Affiliation(s)
- Kaushika Olymon
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Mohit Yadav
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Valentina Teronpi
- Department, of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Behali, Biswanath, Assam, 784184, India.
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
5
|
Li Z, Chen F, Wei M, Zhi L, Su Z, Chong Y, Xiao Z, Wang J. Concurrent impacts of polystyrene nanoplastic exposure and Aeromonas hydrophila infection on oxidative stress, immune response and intestinal microbiota of grass carp (Ctenopharyngodon idella). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169225. [PMID: 38101646 DOI: 10.1016/j.scitotenv.2023.169225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Research has demonstrated that polystyrene nanoplastics (PS-NPs) can have adverse effects on the immune responses of fish. NPs have the potential to increase the likelihood of infections in fish by pathogenic bacteria, such as the opportunistic pathogen Aeromonas hydrophila, potentially increasing the virulence of pathogenic bacteria infections in fish. The concurrent effects of PS-NPs and A. hydrophila on grass carp intestinal tissues were assessed by exposing grass carp to different concentrations of PS-NPs (10 μg/L, 100 μg/L, 1000 μg/L) after infection with A. hydrophila. As the concentration of PS-NPs in the exposure and the duration of A. hydrophila infection both escalated, intestinal tissues showed damage in the form of disordered breakage of intestinal villi, thinning of the intestinal wall, and reduced necrosis of the cells in the annulus muscle layer. The AHS-PS100 group and AHS-PS1000 group exhibited a substantial rise in the function of CAT, SOD, GST, and MPO, as well as increased MDA content and elevated ROS levels (p < 0.05). In the AHS-PS1000 group, the expression levels of IL-6, IL-8, IL-10, IL-1β, TNF-α, and IFN-γ2 experienced a significant upsurge (p < 0.05). In addition, exposure to PS-NPs and A. hydrophila infection induced modifications in the microbial composition of the grass carp gut, affecting both phylum and genus taxonomic categories. Moreover, an increase in the abundance of Spirochaetota and Bacteroidota was observed not only in the positive control group but also in the AHS-PS100 and AHS-PS1000 groups following A. hydrophila infection. These experimental results indicate that PS-NPs exposure will aggravate the oxidative stress and inflammatory response of grass carp intestinal tissue in response to A. hydrophila infection, and lead to changes in intestinal microbial diversity and abundance. Overall, this study provides valuable hints on the potential concurrent effects of PS-NPs exposure on grass carp's response to A. hydrophila infection.
Collapse
Affiliation(s)
- Zhen Li
- College of Marine Sciences, College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China; College of Biology and Agricultural, Shaoguan University, Shaoguan 512005, China
| | - Fang Chen
- College of Marine Sciences, College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China
| | - Maochun Wei
- Xiamen Key Laboratory of Intelligent Fishery, Xiamen Ocean Vocational College, Xiamen 361100, China
| | - Linyong Zhi
- College of Marine Sciences, College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zeliang Su
- College of Marine Sciences, College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China
| | - Yunxiao Chong
- College of Marine Sciences, College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China.
| | - Zhengzhong Xiao
- College of Biology and Agricultural, Shaoguan University, Shaoguan 512005, China.
| | - Jun Wang
- College of Marine Sciences, College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; Xiamen Key Laboratory of Intelligent Fishery, Xiamen Ocean Vocational College, Xiamen 361100, China.
| |
Collapse
|
6
|
Razali SA, Shamsir MS, Ishak NF, Low CF, Azemin WA. Riding the wave of innovation: immunoinformatics in fish disease control. PeerJ 2023; 11:e16419. [PMID: 38089909 PMCID: PMC10712311 DOI: 10.7717/peerj.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023] Open
Abstract
The spread of infectious illnesses has been a significant factor restricting aquaculture production. To maximise aquatic animal health, vaccination tactics are very successful and cost-efficient for protecting fish and aquaculture animals against many disease pathogens. However, due to the increasing number of immunological cases and their complexity, it is impossible to manage, analyse, visualise, and interpret such data without the assistance of advanced computational techniques. Hence, the use of immunoinformatics tools is crucial, as they not only facilitate the management of massive amounts of data but also greatly contribute to the creation of fresh hypotheses regarding immune responses. In recent years, advances in biotechnology and immunoinformatics have opened up new research avenues for generating novel vaccines and enhancing existing vaccinations against outbreaks of infectious illnesses, thereby reducing aquaculture losses. This review focuses on understanding in silico epitope-based vaccine design, the creation of multi-epitope vaccines, the molecular interaction of immunogenic vaccines, and the application of immunoinformatics in fish disease based on the frequency of their application and reliable results. It is believed that it can bridge the gap between experimental and computational approaches and reduce the need for experimental research, so that only wet laboratory testing integrated with in silico techniques may yield highly promising results and be useful for the development of vaccines for fish.
Collapse
Affiliation(s)
- Siti Aisyah Razali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Biological Security and Sustainability Research Interest Group (BIOSES), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nur Farahin Ishak
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Chen-Fei Low
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan-Atirah Azemin
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| |
Collapse
|
7
|
Laltlanmawia C, Saha H, Ghosh L, Saha RK, Malla S. Identification and analysis of pathogenic bacteria causing outbreaks in Indian major carp aquaculture of Tripura. JOURNAL OF AQUATIC ANIMAL HEALTH 2023; 35:263-279. [PMID: 37584068 DOI: 10.1002/aah.10198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/20/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
OBJECTIVE The objective of this study was to investigate bacterial disease outbreaks in Indian major carp from aquaculture systems in Tripura, India, and identify the bacterial species associated with those outbreaks. METHODS A 3-year surveillance was conducted in eight districts of Tripura, during which nine bacterial disease outbreaks were recorded. Fourteen bacterial strains isolated from diseased Indian major carp were selected and identified using phenotypic, molecular (16S ribosomal RNA gene), and phylogenetic analyses. In vitro pathogenicity studies were performed to assess the potential pathogenicity of the isolated bacteria. RESULT The selected isolated strains were preliminarily identified under the genera Aeromonas (9 isolates), Acinetobacter (1 isolate), Citrobacter (3 isolates), and Pseudomonas (1 isolate). Molecular and phylogenetic analyses confirmed the species of the isolated bacteria, including Aeromonas jandaei (strains COF_AHE09 and COF_AHE61), Aeromonas veronii (strains COF_AHE13, COF_AHE52, COF_AHE55, COF_AHE56, and COF_AHE62), Aeromonas hydrophila (strains COF_AHE51 and COF_AHE58), Acinetobacter pittii (strain COF_AHE14), Citrobacter freundii (strains COF_AHE20, COF_AHE57, and COF_AHE59), and Pseudomonas aeruginosa (strain COF_AHE54). Behavioral and clinical signs observed in the diseased fish, such as lethargy, skin hemorrhaging, ulcers, fin and tail rot, exophthalmia, distended abdomen, scale loss, and skin discoloration, indicated the presence of bacterial septicemia. The in vitro pathogenicity studies highlighted the potential role of these bacteria in disease development, especially under environmental stress. CONCLUSION This study provides valuable insights into the diversity of bacterial species associated with bacterial disease outbreaks in Indian major carp from aquaculture systems in Tripura. It serves as the first comprehensive investigation of its kind, contributing to our understanding of bacterial infections in Indian major carp.
Collapse
Affiliation(s)
- C Laltlanmawia
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, West Tripura, India
| | - Himadri Saha
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, West Tripura, India
| | - Lija Ghosh
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, West Tripura, India
| | - Ratan Kumar Saha
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, West Tripura, India
| | - Supratim Malla
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, West Tripura, India
| |
Collapse
|
8
|
Naiel MA, El-Kholy AI, Negm SS, Ghazanfar S, Shukry M, Zhang Z, Ahmadifar E, Abdel-Latif HM. A Mini-Review on Plant-Derived Phenolic Compounds with Particular Emphasis on Their Possible Applications and Beneficial Uses in Aquaculture. ANNALS OF ANIMAL SCIENCE 2023; 23:971-977. [DOI: 10.2478/aoas-2023-0007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Abstract
The use of most antibiotics has been restricted and banned in finfish and shrimp farms due to several reasons comprising their long-lasting persistence in aquatic environments, relatively high prices, and their ability to promote the existence of antibiotic-resistant bacteria. Hence, finding economical, natural, and environmentally safe alternatives is of great importance. The use of polyphenols, polyphenol-rich plants, and plant-derived phenolic compounds for promoting aquatic animal health and welfare could be from the effective strategies for developing aquafeed and maintaining the sustainability of the aquaculture industry. Several plants are gorgeous in various bioactive functional ingredients known as phytochemicals and polyphenols. Phenolic compounds could be successfully used as natural immunostimulants in order to raise the immunity of finfish and shrimp species against several bacterial, viral, and parasitic infections and thus may replace the use of antimicrobial agents. Besides their potential roles for improvement of the growth performance, intestinal health, and enhancing the antioxidant capacity of the treated animals. Even though the trend of using plant-derived phenolic compounds is a new and leading era for the improvement of the functionality of aquafeed and the development of the aquaculture industry, there are fundamental needs and necessities to describe a clear understanding of their modes of action and potential roles in the improvement of the production rates, antioxidant activity, immune status, and disease resistance of farmed fish and shrimp.
Collapse
Affiliation(s)
- Mohammed A.E. Naiel
- Department of Animal Production, Faculty of Agriculture , Zagazig University , Zagazig , Egypt
| | - Abdullah I. El-Kholy
- Pharmaceutical Technology Unit, National Institute of Laser Enhanced Sciences , Cairo University , Giza , Egypt
| | - Samar S. Negm
- Fish Biology and Ecology Department , Central Lab for Aquaculture Research, Abbassa, Agriculture Research Center , Giza , Egypt
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced and Biotechnology (NIGAB), National Agricultural Research Centre , Park Road, Islamabad 45500 , Pakistan
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine , Kafrelsheikh University , Kafrelsheikh , Egypt
| | - Zhaowei Zhang
- National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences , Wuhan , PR China
| | - Ehsan Ahmadifar
- Department of Fisheries, Faculty of Natural Resources , University of Zabol , Zabol , Iran
| | - Hany M.R. Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine , Alexandria University , Alexandria , Egypt
| |
Collapse
|
9
|
Bispo dos Santos S, Fernandez Alarcon M, Ballaben AS, Harakava R, Galetti R, Guimarães MC, Natori MM, Takahashi LS, Ildefonso R, Rozas-Serri M. First Report of Aeromonas veronii as an Emerging Bacterial Pathogen of Farmed Nile Tilapia ( Oreochromis niloticus) in Brazil. Pathogens 2023; 12:1020. [PMID: 37623980 PMCID: PMC10459805 DOI: 10.3390/pathogens12081020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Brazil is one of the world's leading producers of Nile tilapia, Oreochromis niloticus. However, the industry faces a major challenge in terms of infectious diseases, as at least five new pathogens have been formally described in the last five years. Aeromonas species are Gram-negative anaerobic bacteria that are often described as fish pathogens causing Motile Aeromonas Septicemia (MAS). In late December 2022, an epidemic outbreak was reported in farmed Nile tilapia in the state of São Paulo, Brazil, characterized by clinical signs and gross pathology suggestive of MAS. The objective of this study was to isolate, identify, and characterize in vitro and in vivo the causative agent of this epidemic outbreak. The bacterial isolates were identified as Aeromonas veronii based on the homology of 16S rRNA (99.9%), gyrB (98.9%), and the rpoB gene (99.1%). A. veronii showed susceptibility only to florfenicol, while it was resistant to the other three antimicrobials tested, oxytetracycline, enrofloxacin, and amoxicillin. The lowest florfenicol concentration capable of inhibiting bacterial growth was ≤0.5 µg/mL. The phenotypic resistance of the A. veronii isolate observed for quinolones and tetracycline was genetically confirmed by the presence of the qnrS2 (colE plasmid) and tetA antibiotic-resistant genes, respectively. A. veronii isolate was highly pathogenic in juvenile Nile tilapia tested in vivo, showing a mortality rate ranging from 3 to 100% in the lowest (1.2 × 104) and highest (1.2 × 108) bacterial dose groups, respectively. To our knowledge, this study would constitute the first report of highly pathogenic and multidrug-resistant A. veronii associated with outbreaks and high mortality rates in tilapia farmed in commercial net cages in Brazil.
Collapse
Affiliation(s)
- Sandie Bispo dos Santos
- Pathovet Labs, Ribeirão Preto 14025-020, Brazil; (S.B.d.S.); (M.F.A.); (R.G.); (M.C.G.); (M.M.N.); (R.I.)
| | - Miguel Fernandez Alarcon
- Pathovet Labs, Ribeirão Preto 14025-020, Brazil; (S.B.d.S.); (M.F.A.); (R.G.); (M.C.G.); (M.M.N.); (R.I.)
| | - Anelise Stella Ballaben
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-020, Brazil;
| | | | - Renata Galetti
- Pathovet Labs, Ribeirão Preto 14025-020, Brazil; (S.B.d.S.); (M.F.A.); (R.G.); (M.C.G.); (M.M.N.); (R.I.)
| | - Mateus Cardoso Guimarães
- Pathovet Labs, Ribeirão Preto 14025-020, Brazil; (S.B.d.S.); (M.F.A.); (R.G.); (M.C.G.); (M.M.N.); (R.I.)
| | - Mariene Miyoko Natori
- Pathovet Labs, Ribeirão Preto 14025-020, Brazil; (S.B.d.S.); (M.F.A.); (R.G.); (M.C.G.); (M.M.N.); (R.I.)
| | - Leonardo Susumu Takahashi
- Departamento de Produção Animal, Faculdade de Ciências Agrárias e Tecnológicas, Universidade Estadual Paulista, Dracena, São Paulo 17900-000, Brazil;
| | - Ricardo Ildefonso
- Pathovet Labs, Ribeirão Preto 14025-020, Brazil; (S.B.d.S.); (M.F.A.); (R.G.); (M.C.G.); (M.M.N.); (R.I.)
- Pathovet Labs, Puerto Montt 5550000, Chile
| | - Marco Rozas-Serri
- Pathovet Labs, Ribeirão Preto 14025-020, Brazil; (S.B.d.S.); (M.F.A.); (R.G.); (M.C.G.); (M.M.N.); (R.I.)
- Pathovet Labs, Puerto Montt 5550000, Chile
| |
Collapse
|
10
|
Riepe TB, Fetherman ER, Neuschwanger B, Davis T, Perkins A, Winkelman DL. Vertical transmission of Renibacterium salmoninarum in cutthroat trout (Oncorhynchus clarkii). JOURNAL OF FISH DISEASES 2023; 46:309-319. [PMID: 36606373 DOI: 10.1111/jfd.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Vertical transmission of Renibacterium salmoninarum has been well-documented in anadromous salmonids but not in hatchery-reared inland trout. We assessed whether the bacterium is vertically transmitted in cutthroat trout (Oncorhynchus clarkii) from a Colorado, USA hatchery, and assessed the rate of transmission from male and female brood fish. Adult brood fish were killed, tested for R. salmoninarum in kidney, liver, spleen, ovarian fluid, blood and mucus samples, then stripped of gametes to create 32 families with four infection treatments (MNFN, MNFP, MPFN, MPFP; M: male, F: female, P: positive, N: negative). Progeny from each treatment was sampled at 6 and 12 months to test for the presence of R. salmoninarum with an enzyme-linked immunosorbent assay and quantitative polymerase chain reaction. Our study indicated that vertical transmission was high and occurred among 60% of families across all infection treatments. However, the average proportion of infected progeny from individual families was low, ranging from 1% (MNFP, MPFN and MPFP treatments) up to 21% (MPFP treatment). Hatcheries rearing inland salmonids would be well suited to limit vertical transmission through practices such as lethal culling because any amount of transmission can perpetuate the infection throughout fish on a hatchery.
Collapse
Affiliation(s)
- Tawni B Riepe
- Colorado Cooperative Fish and Wildlife Research Unit, Colorado Parks and Wildlife, Aquatic Wildlife Research Section, Colorado, Fort Collins, USA
| | - Eric R Fetherman
- Colorado Parks and Wildlife, Aquatic Wildlife Research Section, Fort Collins, Colorado, USA
| | - Brad Neuschwanger
- Colorado Parks and Wildlife, Bellvue Fish Research Hatchery, Bellvue, Colorado, USA
| | - Tracy Davis
- Colorado Parks and Wildlife, Bellvue Fish Research Hatchery, Bellvue, Colorado, USA
| | - Andrew Perkins
- Colorado Parks and Wildlife, Bellvue Fish Research Hatchery, Bellvue, Colorado, USA
| | - Dana L Winkelman
- U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit, Fort Collins, Colorado, USA
| |
Collapse
|
11
|
Cao S, Chang J, Yue X, Li J, Liu X. Potential virulence factors of Nocardia seriolae AHLQ20-01 based on whole-genome analysis and its pathogenicity to largemouth bass (Micropterus salmoides). JOURNAL OF FISH DISEASES 2023; 46:333-345. [PMID: 36579505 DOI: 10.1111/jfd.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Nocardia seriolae is a major causative agent of fish nocardiosis that results in serious economic losses in the aquaculture industry. However, the virulence factors and pathogenic mechanisms of the bacterium are poorly understood. Here, a new N. seriolae strain AHLQ20-01 was isolated from the diseased Micropterus salmoides and identified by phenotypic examination combined with 16S rRNA sequencing. Subsequently, the potential virulence factors of the strain were analysed at genome level by whole-genome sequencing. The results showed that the whole-genome sequence derived from N. seriolae AHLQ20-01 circular chromosome contains 8,129,380 bp DNA with G + C content of 68.14%, and encompasses 7650 protein-coding genes, 114 pseudo-genes, 3 rRNAs, 66 tRNAs and 36 non-coding RNAs. More importantly, a total of 139 genes, which mainly involved in adhesion, invasion, resistance to oxidative and nitrosative stress, phagosome arresting, iron acquisition system, toxin production and bacterial secretion systems, were identified as core virulence-associated genes. Furthermore, the pathogenicity of N. seriolae AHLQ20-01 to M. salmoides was further investigated through experimental infection. It was found that the LD50 value of the strain to M. salmoides was 9.3 × 106 colony forming unit/fish. Histopathological examination demonstrated typical granuloma with varying sizes in the liver, head kidney, spleen and heart of the experimentally infected fish. Terminal deoxynucleotidyl transferase dUTP nick end labelling assay and 4',6-diamidino-2-phenylindole staining showed that there were distinctly more apoptotic cells in all the tested tissues in the infection group, but not in the control group. Together, these findings provide the foundation to further explore the pathogenic mechanism of N. seriolae, which might contribute to the prevention and treatment of fish nocardiosis.
Collapse
Affiliation(s)
- Shoulin Cao
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, P.R. China
| | - Jiaojiao Chang
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, P.R. China
| | - Xiaozhen Yue
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, P.R. China
| | - Jinnian Li
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, P.R. China
| | - Xuelan Liu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, P.R. China
| |
Collapse
|
12
|
Semwal A, Kumar A, Kumar N. A review on pathogenicity of Aeromonas hydrophila and their mitigation through medicinal herbs in aquaculture. Heliyon 2023; 9:e14088. [PMID: 36938468 PMCID: PMC10018484 DOI: 10.1016/j.heliyon.2023.e14088] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Aeromonas hydrophila is a freshwater, facultatively anaerobic, chemo-organoheterotrophic bacterium that distressed fishes with gastroenteritis, septicemia and causes a disease known as Motile Aeromonas Septicemia (MAS), which affects the aquatic environment. Haemolysin, aerolysin, cytosine, gelatinase, enterotoxin and antimicrobial peptides have been identified as virulence factors in A. hydrophila. Medicinal herbs/plants and their uses are the instant, easily available, cost-effective, efficient and eco-friendly approach for socio-economic, sustainable development of modern aquaculture practice. Phytotherapy either through a dip or by incorporation into the diets is an alternative approach to synthetic pharmaceuticals to diminish the pathogenicity of aquatic environmental pathogens. Due to the presence of remarkable phytoconstituents like flavonoids, alkaloids, pigments, terpenoids, steroids and essential oils, the medicinal plant exhibits anti-microbial, appetite-stimulating, anti-stress, growth-promoting and immunostimulatory activities. Aqua-industry preferred phytotherapy-based techniques/compounds to develop resistance against a variety of aquatic pathogens in culturable fishes because they are inexpensive and environment-friendly. As a result, this review elaborates on the diverse applications of phytotherapy as a promising tool for disease management in aquaculture and a major step toward organic aquaculture.
Collapse
Affiliation(s)
- Anurag Semwal
- Department of Aquaculture, College of Fisheries, Govind Ballabh Pant University of Agriculture and Technology (GBPUA&T), Pantnagar, Uttarakhand, 263145, India
| | - Avdhesh Kumar
- Department of Aquaculture, College of Fisheries, Govind Ballabh Pant University of Agriculture and Technology (GBPUA&T), Pantnagar, Uttarakhand, 263145, India
| | - Neelesh Kumar
- Department of Aquaculture, College of Fisheries, Govind Ballabh Pant University of Agriculture and Technology (GBPUA&T), Pantnagar, Uttarakhand, 263145, India
| |
Collapse
|
13
|
Irshath AA, Rajan AP, Vimal S, Prabhakaran VS, Ganesan R. Bacterial Pathogenesis in Various Fish Diseases: Recent Advances and Specific Challenges in Vaccine Development. Vaccines (Basel) 2023; 11:vaccines11020470. [PMID: 36851346 PMCID: PMC9968037 DOI: 10.3390/vaccines11020470] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Aquaculture is a fast-growing food sector but is plagued by a plethora of bacterial pathogens that infect fish. The rearing of fish at high population densities in aquaculture facilities makes them highly susceptible to disease outbreaks, which can cause significant economic loss. Thus, immunity development in fish through vaccination against various pathogens of economically important aquaculture species has been extensively studied and has been largely accepted as a reliable method for preventing infections. Vaccination studies in aquaculture systems are strategically associated with the economically and environmentally sustainable management of aquaculture production worldwide. Historically, most licensed fish vaccines have been developed as inactivated pathogens combined with adjuvants and provided via immersion or injection. In comparison, live vaccines can simulate a whole pathogenic illness and elicit a strong immune response, making them better suited for oral or immersion-based therapy methods to control diseases. Advanced approaches in vaccine development involve targeting specific pathogenic components, including the use of recombinant genes and proteins. Vaccines produced using these techniques, some of which are currently commercially available, appear to elicit and promote higher levels of immunity than conventional fish vaccines. These technological advancements are promising for developing sustainable production processes for commercially important aquatic species. In this review, we explore the multitude of studies on fish bacterial pathogens undertaken in the last decade as well as the recent advances in vaccine development for aquaculture.
Collapse
Affiliation(s)
- Aadil Ahmed Irshath
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
| | - Anand Prem Rajan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
- Correspondence: (A.P.R.); (R.G.)
| | - Sugumar Vimal
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 600 077, Tamilnadu, India
| | - Vasantha-Srinivasan Prabhakaran
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamilnadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
- Correspondence: (A.P.R.); (R.G.)
| |
Collapse
|
14
|
Puri P, Singh R, Sharma J. Micro-/bio-/nano-/syn-encapsulations and co-treatments of bioactive microbial feed supplementation in augmenting finfish health and aquaculture nutrition: a review. Benef Microbes 2023; 14:281-302. [PMID: 37282556 DOI: 10.3920/bm2022.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/08/2022] [Indexed: 06/08/2023]
Abstract
Finfish and fish products are globally the most acknowledged health-promoting foods. The rising incidence of pathogenic and disease outbreaks have had a sizeable impact on aquaculture. Microbial supplementation of food in the form of probiotics, prebiotics, and their controlled release combinations (=co-encapsulations) as 'synbiotics' is noted for its significant biotherapeutic and health benefits. Supplementation of probiotic microbial feed additives in the fish diet claims to improve fish health by modulation of resident intestinal microbiota and by introducing healthy microbiota procured from an exogenous source, capable of combating pathogens, improving nutrient uptake, assimilation, growth as well as survival. Prebiotics are selectively digestible substrates beneficially used by host gut microbes to enhance probiotic effects. Formulating a fish diet with augmented probiotics and prebiotic microbial bio-supplements can ensure a sustainable alternative for establishing fish health in a naturally susceptible aquaculture scenario. Micro-encapsulation, co-encapsulation, and nano-encapsulation are novel strategies of biotechnical interventions in functional feeds for finfish. These aim to improve probiotic persistence, survivability, and efficacy in commercial formulations during probiotic transit through the host-gut environment. This review discusses the importance of co-treatment and encapsulation strategies for improving probiotic and prebiotic potential in aquafeed formulations, reliably improving finfish health and nutritional returns from aquaculture, and, consequently, for consumers.
Collapse
Affiliation(s)
- P Puri
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
- Department of Zoology, Sri Aurobindo College, University of Delhi, Delhi 110017, India
| | - R Singh
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| | - J Sharma
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| |
Collapse
|
15
|
Pan C, Zhu Y, Cao K, Li J, Wang S, Zhu J, Zeng X, Zhang H, Qin Z. Transcriptome, intestinal microbiome and histomorphology profiling of differences in the response of Chinese sea bass ( Lateolabrax maculatus) to Aeromonas hydrophila infection. Front Microbiol 2023; 14:1103412. [PMID: 36910190 PMCID: PMC9998533 DOI: 10.3389/fmicb.2023.1103412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
The Chinese sea bass (Lateolabrax maculatus) is an important aquaculture fish, but diseases caused by Aeromonas hydrophila have led to severe economic losses to the aquaculture industry in recent years. To date, only a few studies have focused on the relationship between the intestinal immune response and changes in intestinal microbes by A. hydrophila infection. Here, we report the transcriptome and intestinal changes in infected sea bass. Histopathological results showed that severe steatosis and vacuolation occurred in the liver and that the intestinal villi and mesentery were seriously affected after infection. By extracting total RNA from intestinal tissue and studying the transcriptome profile, 1,678 genes (1,013 upregulated and 665 downregulated) were identified as significantly differentially expressed genes (DEGs). These genes are involved in many immune-related signalling pathways, such as the NOD-like receptor, C-type lectin receptor, and Toll-like receptor signalling pathways. Moreover, the intestinal microbes of sea bass changed significantly after infection. Interestingly, at the genus level, there was an increase in Serratia, Candida arthromitus and Faecalibacterium as well as a decrease in Akkermansia and Parabacteroides after infection. The results also indicated that some of the DEGs involved in the immune response were related to the genus level of intestinal microbiota. Finally, there was a relationship between gene expression patterns and the bacterial structure in the host intestine. Our study provides a reference for the study of the immune response and particular functions of intestinal microbes of sea bass after pathogen infection.
Collapse
Affiliation(s)
- Chao Pan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,College of Education for the Future, Beijing Normal University, Zhuhai, Guangdong, China
| | - Yanran Zhu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| | - Kaixin Cao
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,College of Education for the Future, Beijing Normal University, Zhuhai, Guangdong, China
| | - Juexian Li
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,College of Education for the Future, Beijing Normal University, Zhuhai, Guangdong, China
| | - Siyu Wang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,Faculty of Art and Science, Beijing Normal University, Zhuhai, Guangdong, China
| | - Jiahua Zhu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,Faculty of Art and Science, Beijing Normal University, Zhuhai, Guangdong, China
| | - Xiaoman Zeng
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,College of Education for the Future, Beijing Normal University, Zhuhai, Guangdong, China
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,College of Education for the Future, Beijing Normal University, Zhuhai, Guangdong, China.,Faculty of Art and Science, Beijing Normal University, Zhuhai, Guangdong, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| |
Collapse
|
16
|
Puri P, Sharma JG, Singh R. Biotherapeutic microbial supplementation for ameliorating fish health: developing trends in probiotics, prebiotics, and synbiotics use in finfish aquaculture. Anim Health Res Rev 2022; 23:113-135. [PMID: 36597760 DOI: 10.1017/s1466252321000165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nutrition demands in aquaculture can be realized through quality aquafeeds as compounded diets that contribute to the growth and health of aquaculture species. Functional additives in feed, notably probiotics, prebiotics, and their admixture synbiotics, have been recently recognized for their biotherapeutic role as immunostimulants capable of conferring disease resistance, stress tolerance, and gastrointestinal health; counteracting the negative effects of anti-nutrients, pathogenic prevalence, and antimicrobials in finfish aquaculture. Formulated diets based on probiotics, prebiotics, and as a supplemental combination for synbiotics can significantly influence fish gut microbiomes, establishing the modalities of microbial dynamics to maximize host-associated benefits. These microbial functional-feed supplements are acclaimed to be biocompatible, biodegradable, and safe for dietary consumption as well as the environment. In fed fish aquaculture, prebiotic appended probiotic diet 'synbiotic' has propounded larger attention for its additional health and nutritional benefits. Synbiotic, prebiotic, and probiotic usage as functional feeds for finfish aquaculture thus provides promising prospects. Developing trends in their intended application are reviewed here forth.
Collapse
Affiliation(s)
- Parul Puri
- Department of Biotechnology, Delhi Technological University, Delhi, India
- Department of Zoology, Sri Aurobindo College, University of Delhi, Delhi, India
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Ram Singh
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
17
|
Jaglan AB, Anand T, Verma R, Vashisth M, Virmani N, Bera BC, Vaid RK, Tripathi BN. Tracking the phage trends: A comprehensive review of applications in therapy and food production. Front Microbiol 2022; 13:993990. [PMID: 36504807 PMCID: PMC9730251 DOI: 10.3389/fmicb.2022.993990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
In the present scenario, the challenge of emerging antimicrobial resistance is affecting human health globally. The increasing incidences of multidrug-resistant infections have become harder to treat, causing high morbidity, and mortality, and are posing extensive financial loss. Limited discovery of new antibiotic molecules has further complicated the situation and has forced researchers to think and explore alternatives to antibiotics. This has led to the resurgence of the bacteriophages as an effective alternative as they have a proven history in the Eastern world where lytic bacteriophages have been used since their first implementation over a century ago. To help researchers and clinicians towards strengthening bacteriophages as a more effective, safe, and economical therapeutic alternative, the present review provides an elaborate narrative about the important aspects of bacteriophages. It abridges the prerequisite essential requirements of phage therapy, the role of phage biobank, and the details of immune responses reported while using bacteriophages in the clinical trials/compassionate grounds by examining the up-to-date case reports and their effects on the human gut microbiome. This review also discusses the potential of bacteriophages as a biocontrol agent against food-borne diseases in the food industry and aquaculture, in addition to clinical therapy. It finishes with a discussion of the major challenges, as well as phage therapy and phage-mediated biocontrols future prospects.
Collapse
Affiliation(s)
- Anu Bala Jaglan
- Department of Zoology and Aquaculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Taruna Anand
- ICAR – National Research Centre on Equines, Hisar, India,*Correspondence: Taruna Anand,
| | - Ravikant Verma
- Department of Zoology and Aquaculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Medhavi Vashisth
- Department of Molecular Biology, Biotechnology, and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Nitin Virmani
- ICAR – National Research Centre on Equines, Hisar, India
| | - B. C. Bera
- ICAR – National Research Centre on Equines, Hisar, India
| | - R. K. Vaid
- ICAR – National Research Centre on Equines, Hisar, India
| | - B. N. Tripathi
- Animal Science Division, Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, India
| |
Collapse
|
18
|
Garvey M. Bacteriophages and Food Production: Biocontrol and Bio-Preservation Options for Food Safety. Antibiotics (Basel) 2022; 11:1324. [PMID: 36289982 PMCID: PMC9598955 DOI: 10.3390/antibiotics11101324] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Food safety and sustainable food production is an important part of the Sustainable Development goals aiming to safeguard the health and wellbeing of humans, animals and the environment. Foodborne illness is a major cause of morbidity and mortality, particularly as the global crisis of antimicrobial resistance proliferates. In order to actively move towards sustainable food production, it is imperative that green biocontrol options are implemented to prevent and mitigate infectious disease in food production. Replacing current chemical pesticides, antimicrobials and disinfectants with green, organic options such as biopesticides is a step towards a sustainable future. Bacteriophages, virus which infect and kill bacteria are an area of great potential as biocontrol agents in agriculture and aquaculture. Lytic bacteriophages offer many advantages over traditional chemical-based solutions to control microbiological contamination in the food industry. The innate specificity for target bacterial species, their natural presence in the environment and biocompatibility with animal and humans means phages are a practical biocontrol candidate at all stages of food production, from farm-to-fork. Phages have demonstrated efficacy as bio-sanitisation and bio-preservation agents against many foodborne pathogens, with activity against biofilm communities also evident. Additionally, phages have long been recognised for their potential as therapeutics, prophylactically and metaphylactically. Further investigation is warranted however, to overcome their limitations such as formulation and stability issues, phage resistance mechanisms and transmission of bacterial virulence factors.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
19
|
Host–Pathogen Interactions of Marine Gram-Positive Bacteria. BIOLOGY 2022; 11:biology11091316. [PMID: 36138795 PMCID: PMC9495620 DOI: 10.3390/biology11091316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Complex interactions between marine Gram-positive pathogens and fish hosts in the marine environment can result in diseases of economically important finfish, which cause economic losses in the aquaculture industry. Understanding how these pathogens interact with the fish host and generate disease will contribute to efficient prophylactic measures and treatments. To our knowledge, there are no systematic reviews on marine Gram-positive pathogens. Therefore, here we reviewed the host–pathogen interactions of marine Gram-positive pathogens from the pathogen-centric and host-centric points of view. Abstract Marine Gram-positive bacterial pathogens, including Renibacterium salmoninarum, Mycobacterium marinum, Nocardia seriolae, Lactococcus garvieae, and Streptococcus spp. cause economic losses in marine fish aquaculture worldwide. Comprehensive information on these pathogens and their dynamic interactions with their respective fish–host systems are critical to developing effective prophylactic measures and treatments. While much is known about bacterial virulence and fish immune response, it is necessary to synthesize the knowledge in terms of host–pathogen interactions as a centerpiece to establish a crucial connection between the intricate details of marine Gram-positive pathogens and their fish hosts. Therefore, this review provides a holistic view and discusses the different stages of the host–pathogen interactions of marine Gram-positive pathogens. Gram-positive pathogens can invade fish tissues, evade the fish defenses, proliferate in the host system, and modulate the fish immune response. Marine Gram-positive pathogens have a unique set of virulence factors that facilitate adhesion (e.g., adhesins, hemagglutination activity, sortase, and capsules), invasion (e.g., toxins, hemolysins/cytolysins, the type VII secretion system, and immune-suppressive proteins), evasion (e.g., free radical quenching, actin-based motility, and the inhibition of phagolysosomal fusion), and proliferation and survival (e.g., heme utilization and siderophore-mediated iron acquisition systems) in the fish host. After infection, the fish host initiates specific innate and adaptive immune responses according to the extracellular or intracellular mechanism of infection. Although efforts have continued to be made in understanding the complex interplay at the host–pathogen interface, integrated omics-based investigations targeting host–pathogen–marine environment interactions hold promise for future research.
Collapse
|
20
|
Rao S, Chen MY, Sudpraseart C, Lin P, Yoshida T, Wang PC, Chen SC. Genotyping and phenotyping of Lactococcus garvieae isolates from fish by pulse-field gel electrophoresis (PFGE) and electron microscopy indicate geographical and capsular variations. JOURNAL OF FISH DISEASES 2022; 45:771-781. [PMID: 35235703 DOI: 10.1111/jfd.13601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Lactococcus garvieae is the etiological agent of Lactococcosis, an evolving disease affecting many fish species and causing significant economic losses worldwide. Assessing pathogen relatedness and bacterial population structure is critical for determining the epidemiology of L. garvieae infections and in establishing effective pathogen management methods. The previously published morphological and genetic studies point to a clonal population structure, as seen in other fish bacteria. In the present study, the pulsed-field gel electrophoresis (PFGE) method was utilized to define a population of 41 Taiwanese isolates from outbreaks with comparisons to four well-characterized non-Taiwanese isolates previously published. Two restriction enzymes (ApaI and SmaI) were utilized individually for PFGE analysis (cut-off value = 90.0%), revealing genetic heterogeneity across L. garvieae isolates, with ApaI and SmaI yielding 12 and seven distinct PFGE band patterns, respectively. The phylogenic analysis using internal transcribed spacer region clustered all L. garvieae isolates in the same clad. Furthermore, the electron microscopic results confirmed the absence of capsular gene cluster (CGC) in previously characterized Taiwanese vaccine strain (S3) from grey mullet. Overall, our findings emphasize the importance of analysing the morphological and genetic diversity in L. garvieae being correlated for proper taxonomic classification in vaccine strain selection and epidemiological studies.
Collapse
Affiliation(s)
- Shreesha Rao
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Mei-Yun Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chiranan Sudpraseart
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Peiry Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Terutoyo Yoshida
- Faculty of Agriculture, Department of Marine Biology and Environmental Sciences, Miyazaki University, Miyazaki, Japan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
21
|
Monzón-Atienza L, Bravo J, Fernández-Montero Á, Charlie-Silva I, Montero D, Ramos-Vivas J, Galindo-Villegas J, Acosta F. Dietary supplementation of Bacillus velezensis improves Vibrio anguillarum clearance in European sea bass by activating essential innate immune mechanisms. FISH & SHELLFISH IMMUNOLOGY 2022; 124:244-253. [PMID: 35421573 DOI: 10.1016/j.fsi.2022.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Bacillus spp. supplementation as probiotics in cultured fish diets has a long history of safe and effective use. Specifically, B. velezensis show great promise in fine-tuning the European sea bass disease resistance against the pathogenicity caused by several members of the Vibrio family. However, the immunomodulatory mechanisms behind this response remain poorly understood. Here, to examine the inherent immune variations in sea bass, two equal groups were fed for 30 days with a steady diet, with one treatment supplemented with B. velezensis. The serum bactericidal capacity against live cells of Vibrio anguillarum strain 507 and the nitric oxide and lysozyme lytic activities were assayed. At the cellular level, the phagocytic response of peripheral blood leukocytes against inactivated Candida albicans was determined. Moreover, head-kidney (HK) total leukocytes were isolated from previously in vivo treated fish with LPS of V. anguillarum strain 507. Mechanistically, the expression of some essential proinflammatory genes (interleukin-1 (il1b), tumor necrosis factor-alpha (tnfa), and cyclooxygenase 2 (cox2) and the sea bass specific antimicrobial peptide (AMP) dicentracin (dic) expressions were assessed. Surprisingly, the probiotic supplementation significantly increased all humoral lytic and cellular activities assayed in the treated sea bass. In addition, time-dependent differences were observed between the control and probiotic treated groups for all the HK genes markers subjected to the sublethal LPS dose. Although the il1b was the fastest responding gene to a significant level at 48 h post-injection (hpi), all the other genes followed 72 h in the probiotic supplemented group. Finally, an in vivo bacteria challenge against live V. anguillarum was conducted. The probiotic fed fish observed a significantly higher survival. Overall, our results provide clear vertical evidence on the beneficial immune effects of B. velezensis and unveil some fundamental immune mechanisms behind its application as a probiotic agent in intensively cultured European sea bass.
Collapse
Affiliation(s)
- Luis Monzón-Atienza
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, Spain
| | - Jimena Bravo
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, Spain
| | - Álvaro Fernández-Montero
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, Spain
| | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, Spain
| | - José Ramos-Vivas
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, Spain
| | | | - Félix Acosta
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, Spain
| |
Collapse
|
22
|
Inflammation: A New Look at an Old Problem. Int J Mol Sci 2022; 23:ijms23094596. [PMID: 35562986 PMCID: PMC9100490 DOI: 10.3390/ijms23094596] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Pro-inflammatory stress is inherent in any cells that are subject to damage or threat of damage. It is defined by a number of universal components, including oxidative stress, cellular response to DNA damage, unfolded protein response to mitochondrial and endoplasmic reticulum stress, changes in autophagy, inflammasome formation, non-coding RNA response, formation of an inducible network of signaling pathways, and epigenetic changes. The presence of an inducible receptor and secretory phenotype in many cells is the cause of tissue pro-inflammatory stress. The key phenomenon determining the occurrence of a classical inflammatory focus is the microvascular inflammatory response (exudation, leukocyte migration to the alteration zone). This same reaction at the systemic level leads to the development of life-critical systemic inflammation. From this standpoint, we can characterize the common mechanisms of pathologies that differ in their clinical appearance. The division of inflammation into alternative variants has deep evolutionary roots. Evolutionary aspects of inflammation are also described in the review. The aim of the review is to provide theoretical arguments for the need for an up-to-date theory of the relationship between key human pathological processes based on the integrative role of the molecular mechanisms of cellular and tissue pro-inflammatory stress.
Collapse
|
23
|
Bacteriophages in the Control of Aeromonas sp. in Aquaculture Systems: An Integrative View. Antibiotics (Basel) 2022; 11:antibiotics11020163. [PMID: 35203766 PMCID: PMC8868336 DOI: 10.3390/antibiotics11020163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Aeromonas species often cause disease in farmed fish and are responsible for causing significant economic losses worldwide. Although vaccination is the ideal method to prevent infectious diseases, there are still very few vaccines commercially available in the aquaculture field. Currently, aquaculture production relies heavily on antibiotics, contributing to the global issue of the emergence of antimicrobial-resistant bacteria and resistance genes. Therefore, it is essential to develop effective alternatives to antibiotics to reduce their use in aquaculture systems. Bacteriophage (or phage) therapy is a promising approach to control pathogenic bacteria in farmed fish that requires a heavy understanding of certain factors such as the selection of phages, the multiplicity of infection that produces the best bacterial inactivation, bacterial resistance, safety, the host’s immune response, administration route, phage stability and influence. This review focuses on the need to advance phage therapy research in aquaculture, its efficiency as an antimicrobial strategy and the critical aspects to successfully apply this therapy to control Aeromonas infection in fish.
Collapse
|
24
|
Mekasha S, Linke D. Secretion Systems in Gram-Negative Bacterial Fish Pathogens. Front Microbiol 2022; 12:782673. [PMID: 34975803 PMCID: PMC8714846 DOI: 10.3389/fmicb.2021.782673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial fish pathogens are one of the key challenges in the aquaculture industry, one of the fast-growing industries worldwide. These pathogens rely on arsenal of virulence factors such as toxins, adhesins, effectors and enzymes to promote colonization and infection. Translocation of virulence factors across the membrane to either the extracellular environment or directly into the host cells is performed by single or multiple dedicated secretion systems. These secretion systems are often key to the infection process. They can range from simple single-protein systems to complex injection needles made from dozens of subunits. Here, we review the different types of secretion systems in Gram-negative bacterial fish pathogens and describe their putative roles in pathogenicity. We find that the available information is fragmented and often descriptive, and hope that our overview will help researchers to more systematically learn from the similarities and differences between the virulence factors and secretion systems of the fish-pathogenic species described here.
Collapse
Affiliation(s)
- Sophanit Mekasha
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Ghosh AK, Panda SK, Luyten W. Anti-vibrio and immune-enhancing activity of medicinal plants in shrimp: A comprehensive review. FISH & SHELLFISH IMMUNOLOGY 2021; 117:192-210. [PMID: 34400334 DOI: 10.1016/j.fsi.2021.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Disease epidemics in shrimp aquaculture increase apace with the development of aquaculture systems throughout the world. The disease caused by Vibrio spp. (vibriosis) is considered the most devastating, which has made it the most feared bacterial disease in the shrimp sector. In aquaculture, several strategies have already been applied to control Vibrio strains, including chemicals, probiotics, antibiotics, natural products from plants, including plant oils; hence, there has been considerable attention for using plants in shrimp aquaculture to provide sustainable, eco-friendly and safe compounds, such as alkaloids, saponins, terpenoids and flavonoids for replacing chemical compounds and antibiotics in current aquaculture. Medicinal plants may also have immunostimulating activity, increase growth and resistance in shrimps. The present paper aims to review the inhibition of Vibrio spp. in shrimp by medicinal plants, using both in vitro or/and in vivo techniques. Several medicinal plants appear capable of inhibiting growth of Vibrio pathogens outside living shrimp or in the body of shrimp, through enhancing growth and immune capacity when shrimps are fed or injected with them. In the current review Gracilaria spp. (Gracilariaceae family) and Sargassum spp. (family Sargassaceae) have been used most for in vitro and in vivo experiments. Among the terrestrial plants, Eucalyptus camaldulensis, Psidium guajava, Rhodomyrtus tomentosa, and Syzygium cumini (Myrtaceae family) had significant activity against Vibrio.
Collapse
Affiliation(s)
- Alokesh Kumar Ghosh
- Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, KU Leuven, Belgium; Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh.
| | - Sujogya Kumar Panda
- Center of Environment Climate Change and Public Health, Utkal University, Odisha, India
| | - Walter Luyten
- Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, KU Leuven, Belgium
| |
Collapse
|
26
|
Assane IM, Prada-Mejia KD, Gallani SU, Weiser NF, Valladão GMR, Pilarski F. Enterogyrus spp. (Monogenea: Ancyrocephalinae) and Aeromonas jandaei co-infection associated with high mortality following transport stress in cultured Nile tilapia. Transbound Emerg Dis 2021; 69:e276-e287. [PMID: 34406699 DOI: 10.1111/tbed.14295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022]
Abstract
Monogenean infection of the internal organs is extremely rare when compared to external infections. This study describes mass mortality of Nile tilapia (Oreochromis niloticus L.) originating from co-infection with Enterogyrus spp. and Aeromonas jandaei following transport stress. The first fish deaths occurred on day 1 post-transport, while cumulative mortality reached approximately 90% by day 10 post-stocking. An atypical amount of pale (whitish) faeces floating on the surface of the water as well as typical clinical signs of motile Aeromonas septicemia, were reported. Adult monogeneans and countless eggs of monogeneans were found in the stomachs and the intestines of both moribund and dead fish, respectively. Two strains of A. jandaei were isolated from the kidneys. Scanning electron microscope microphotographs of the stomach revealed the presence of numerous monogeneans penetrating deep into the gastric tissue, and diffuse lesions filled with bacilliform bacteria. Histopathological examination showed multifocal eosinophilic infiltrate, gastric gland and epithelial necrosis with sloughed necrotic debris in the lumen. This is the first report of co-infection by Enterogyrus spp. and A. jandaei in Nile tilapia and the first report of Enterogyrus coronatus, Enterogyrus foratus, and Enterogyrus malbergi parasitizing tilapia in Brazil. These findings indicate that synergic co-infection by Monogenean stomach parasites (E. coronatus, E. foratus, and E. malbergi) and A. jandaei may induce high mortalities in tilapia following transport stress.
Collapse
Affiliation(s)
- Inácio Mateus Assane
- Post-graduate program in Aquaculture, Laboratory of Microbiology and Parasitology of Aquatic Organisms, São Paulo State University (Unesp), Aquaculture Center of Unesp, Jaboticabal, São Paulo, Brazil.,Faculdade de Ciências Agrárias, Universidade Zambeze (UniZambeze), Ulónguè, Tete, Mozambique
| | - Karen Dayana Prada-Mejia
- Post-graduate program in Aquaculture, Laboratory of Microbiology and Parasitology of Aquatic Organisms, São Paulo State University (Unesp), Aquaculture Center of Unesp, Jaboticabal, São Paulo, Brazil
| | - Sílvia Umeda Gallani
- Postgraduate Program in Aquaculture, Nilton Lins University, Manaus, Amazonas, Brazil
| | - Natasha Fernandes Weiser
- Post-graduate program in Aquaculture, Laboratory of Microbiology and Parasitology of Aquatic Organisms, São Paulo State University (Unesp), Aquaculture Center of Unesp, Jaboticabal, São Paulo, Brazil
| | | | - Fabiana Pilarski
- Post-graduate program in Aquaculture, Laboratory of Microbiology and Parasitology of Aquatic Organisms, São Paulo State University (Unesp), Aquaculture Center of Unesp, Jaboticabal, São Paulo, Brazil.,Graduate Program in Agricultural and Livestock Microbiology, Laboratory of Microbiology and Parasitology of Aquatic Organisms, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
27
|
Verma VK, Kumar KB, Sagar K, Majumdar S, Pal S, Mehta A, Vats A, Rani KV, Sehgal N, Prakash O. Amelioration of immune and digestive system through weed supplemented feed against Aeromonas hydrophila in Clarias gariepinus. FISH & SHELLFISH IMMUNOLOGY 2021; 115:124-133. [PMID: 34077788 DOI: 10.1016/j.fsi.2021.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/08/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Aquaculture is one of the important globally growing industries. It serves as an important food source of protein for human beings. With the expanding demand for the fish and their products it has become extremely important to improve the aquaculture practices. Aquaculture in India has witnessed huge mortalities caused by bacteria, viruses, fungi, nematodes etc. Aquatic weeds plants are harmful for aquaculture in many ways. Present study is aimed to overcome the disease caused by Aeromonas hydrophila (fish pathogenic bacteria) through feed supplementation of two aquatic weed plants (Azolla pinnata and Ceratophyllum demersum). The fish were divided into 6 groups: experimental groups (fish fed on supplementary feed at 5% and 2.5% concentration for individual plant and challenged with bacteria), positive control (fish fed on non-supplemented feed and challenged with bacteria) and negative control (fish fed on non-supplementary feed and not challenged with bacteria). It was observed that supplemented feed enhanced both cell mediated and humoral immunity in fish. Therefore, we advocate that feed formulated with incorporation of Azolla pinnata and Ceratophyllum demersum leaf powder at 5% and 2.5% could be used to prevent disease caused by A. hydrophila or can be used to enhance fish health by boosting its immune system. The results of this study also showed an improved digestibility in fish fed on supplemented feed.
Collapse
Affiliation(s)
- Vipin Kumar Verma
- Department of Zoology, Sri Venkateswara College, University of Delhi, New Delhi, 110021, India
| | - Kh Bronson Kumar
- Department of Zoology, Sri Venkateswara College, University of Delhi, New Delhi, 110021, India
| | - Komal Sagar
- Department of Zoology, Sri Venkateswara College, University of Delhi, New Delhi, 110021, India
| | - Soham Majumdar
- Department of Zoology, Sri Venkateswara College, University of Delhi, New Delhi, 110021, India
| | - Shivani Pal
- Department of Zoology, Sri Venkateswara College, University of Delhi, New Delhi, 110021, India
| | - Arpita Mehta
- Department of Zoology, Sri Venkateswara College, University of Delhi, New Delhi, 110021, India
| | - Ajn Vats
- Department of Zoology, Sri Venkateswara College, University of Delhi, New Delhi, 110021, India
| | - Kumari Vandana Rani
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, 110008, India
| | - Neeta Sehgal
- Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Om Prakash
- Department of Zoology, Sri Venkateswara College, University of Delhi, New Delhi, 110021, India.
| |
Collapse
|
28
|
Sarkar P, Issac PK, Raju SV, Elumalai P, Arshad A, Arockiaraj J. Pathogenic bacterial toxins and virulence influences in cultivable fish. AQUACULTURE RESEARCH 2021; 52:2361-2376. [DOI: 10.1111/are.15089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/07/2020] [Indexed: 10/16/2023]
Affiliation(s)
- Purabi Sarkar
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| | - Praveen Kumar Issac
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| | - Stefi V. Raju
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| | - Preetham Elumalai
- Department of Fish Processing Technology Kerala University of Fisheries and Ocean Studies (KUFOS) Kochi India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Negeri Sembilan Malaysia
- Department of Aquaculture Faculty of Agriculture Universiti Putra Malaysia Selangor Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute SRM Institute of Science and Technology Chennai India
| |
Collapse
|
29
|
Rao S, Pham TH, Poudyal S, Cheng LW, Nazareth SC, Wang PC, Chen SC. First report on genetic characterization, cell-surface properties and pathogenicity of Lactococcus garvieae, emerging pathogen isolated from cage-cultured cobia (Rachycentron canadum). Transbound Emerg Dis 2021; 69:1197-1211. [PMID: 33759359 DOI: 10.1111/tbed.14083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/24/2021] [Accepted: 03/19/2021] [Indexed: 11/29/2022]
Abstract
The diseased cage-cultured cobia (Rachycentron canadum) displayed clinical signs, haemorrhagic eyes, dorsal darkness and gross pathological lesions, enlargement of spleen and liver. Haemorrhages were found in brain, heart and liver with cumulative mortality rates ranging from 20% to 50%. Extensive congestion in the heart, liver, spleen, kidney and brain was observed histopathologically. Epicarditis and meningitis were also revealed in diseased cobia. All isolates recovered from the organs (liver, spleen, head kidney, posterior kidney, brain and muscle) of cobia were found to be gram-positive, non-motile, ovoid cocci, short-chain-forming (diplococci) and α-haemolytic. The API 32 strep system together with the polymerase chain reaction assay for species-specific primers (pLG1 and pLG2) and the internal transcribed spacer (ITS) region (G1 and L1 primers) confirmed all four selected isolates as Lactococcus garvieae. Partial 16S rDNA nucleotide sequence (~1,100 bp) of one representative L. garvieae isolate AOD109191 (GenBank accession number, MW328528.1) shared 99.9% identities with the 16S rDNA nucleotide sequence of L. garvieae (GenBank accession numbers: MT604790.1). Transmission electron microscopy (TEM) evaluation of one representative L. garvieae isolate (AOD109191) and the results of multiplex PCR did not reveal the presence of the capsular gene cluster (CGC), thus categorizing the isolate as the KG+ phenotype. Capsule staining and TEM observations confirmed the presence of a hyaluronic acid-like capsule, a possible virulence factor in KG+ phenotype L. garvieae isolates. The pathogenic potential of the representative isolate (AOD109191) was assessed through intraperitoneal injection challenges in cobia. The gross lesions and histopathological changes found in experimentally infected cobia were similar to those seen in naturally infected fish. This is the first report that confirms L. garvieae-induced 'warm water lactococcsis' can cause outbreaks of diseases in cage-cultured cobia.
Collapse
Affiliation(s)
- Shreesha Rao
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Trung Hieu Pham
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Sayuj Poudyal
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Li-Wu Cheng
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Sandra Celenia Nazareth
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
30
|
Hadi J, Wu S, Brightwell G. Antimicrobial Blue Light versus Pathogenic Bacteria: Mechanism, Application in the Food Industry, Hurdle Technologies and Potential Resistance. Foods 2020; 9:E1895. [PMID: 33353056 PMCID: PMC7767196 DOI: 10.3390/foods9121895] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Blue light primarily exhibits antimicrobial activity through the activation of endogenous photosensitizers, which leads to the formation of reactive oxygen species that attack components of bacterial cells. Current data show that blue light is innocuous on the skin, but may inflict photo-damage to the eyes. Laboratory measurements indicate that antimicrobial blue light has minimal effects on the sensorial and nutritional properties of foods, although future research using human panels is required to ascertain these findings. Food properties also affect the efficacy of antimicrobial blue light, with attenuation or enhancement of the bactericidal activity observed in the presence of absorptive materials (for example, proteins on meats) or photosensitizers (for example, riboflavin in milk), respectively. Blue light can also be coupled with other treatments, such as polyphenols, essential oils and organic acids. While complete resistance to blue light has not been reported, isolated evidence suggests that bacterial tolerance to blue light may occur over time, especially through gene mutations, although at a slower rate than antibiotic resistance. Future studies can aim at characterizing the amount and type of intracellular photosensitizers across bacterial species and at assessing the oxygen-independent mechanism of blue light-for example, the inactivation of spoilage bacteria in vacuum-packed meats.
Collapse
Affiliation(s)
- Joshua Hadi
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Shuyan Wu
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
- New Zealand Food Safety Science and Research Centre, Tennent Drive, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
31
|
Phages as a Cohesive Prophylactic and Therapeutic Approach in Aquaculture Systems. Antibiotics (Basel) 2020; 9:antibiotics9090564. [PMID: 32882880 PMCID: PMC7558664 DOI: 10.3390/antibiotics9090564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/15/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022] Open
Abstract
Facing antibiotic resistance has provoked a continuously growing focus on phage therapy. Although the greatest emphasis has always been placed on phage treatment in humans, behind phage application lies a complex approach that can be usefully adopted by the food industry, from hatcheries and croplands to ready-to-eat products. Such diverse businesses require an efficient method for combating highly pathogenic bacteria since antibiotic resistance concerns every aspect of human life. Despite the vast abundance of phages on Earth, the aquatic environment has been considered their most natural habitat. Water favors multidirectional Brownian motion and increases the possibility of contact between phage particles and their bacterial hosts. As the global production of aquatic organisms has rapidly grown over the past decades, phage treatment of bacterial infections seems to be an obvious and promising solution in this market sector. Pathogenic bacteria, such as Aeromonas and Vibrio, have already proved to be responsible for mass mortalities in aquatic systems, resulting in economic losses. The main objective of this work is to summarize, from a scientific and industry perspective, the recent data regarding phage application in the form of targeted probiotics and therapeutic agents in aquaculture niches.
Collapse
|
32
|
Bruce TJ, Ma J, Knupp C, Loch TP, Faisal M, Cain KD. Cross-protection of a live-attenuated Flavobacterium psychrophilum immersion vaccine against novel Flavobacterium spp. and Chryseobacterium spp. strains. JOURNAL OF FISH DISEASES 2020; 43:915-928. [PMID: 32557714 DOI: 10.1111/jfd.13201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
For salmonid producers, a common threat is Flavobacterium psychrophilum. Recent advancements in bacterial coldwater disease (BCWD) management include the development of a live-attenuated immersion vaccine that cross-protects against an array of F. psychrophilum strains. Emerging family Flavobacteriaceae cases associated with clinical disease have been increasing, including pathogenic isolates of Flavobacterium spp. and Chryseobacterium spp. The cross-protective ability of a live-attenuated F. psychrophilum vaccine was determined against three virulent Flavobacteriaceae isolates. Juvenile rainbow trout were vaccinated, developed high F. psychrophilum-specific antibody titres and were challenged with Chryseobacterium spp. isolates (S25 and T28), a Flavobacterium sp. (S21) isolate, a mixed combination of S21:S25:T28, and a standard virulent F. psychrophilum CSF259-93 strain. Results demonstrated strong protection in the CSF259-93 vaccinated group (relative per cent survival (RPS)=94.44%) when compared to the relevant CSF259-93 controls (p < .001). Protection was also observed for vaccinated fish challenged with the S21:S25:T28 mix (RPS = 85.18%; p < .001). However, protection was not observed with the S21, S25 or T28 isolates alone. Analysis of whole-cell lysates revealed differences in protein banding by SDS-PAGE, but conserved antigenic regions by Western blot in S25 and T28. Results demonstrate that this live-attenuated vaccine provided protection against mixed flavobacterial infection and suggest further benefits against flavobacteriosis.
Collapse
Affiliation(s)
- Timothy J Bruce
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, USA
| | - Jie Ma
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, USA
| | - Christopher Knupp
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
| | - Thomas P Loch
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Mohamed Faisal
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Kenneth D Cain
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, USA
| |
Collapse
|
33
|
Yukgehnaish K, Kumar P, Sivachandran P, Marimuthu K, Arshad A, Paray BA, Arockiaraj J. Gut microbiota metagenomics in aquaculture: factors influencing gut microbiome and its physiological role in fish. REVIEWS IN AQUACULTURE 2020; 12:1903-1927. [DOI: 10.1111/raq.12416] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/03/2020] [Indexed: 10/16/2023]
Abstract
AbstractFish gut microbiome confers various effects to the host fish; this includes overall size, metabolism, feeding behaviour and immune response in the fish. The emergence of antimicrobial‐resistant (AMR) bacteria and hard to cure fish diseases warrant the possible utilization of gut microbes that exhibits a positive effect on the fish and thus lead to the usage of these microbes as probiotics. The widespread and systematic use of antibiotics has led to severe biological and ecological problems, especially the development of antibiotic resistance that affects the gut microbiota of aquatic organisms. Probiotics are proposed as an effective and environmentally friendly alternative to antibiotics, known as beneficial microbes. At the same time, prebiotics are considered beneficial to the host's health and growth by decreasing the prevalence of intestinal pathogens and/or changing the development of bacterial metabolites related to health. Uprise of sequencing technology and the development of intricate bioinformatics tools has provided a way to study these gut microbes through metagenomic analysis. From various metagenomic studies, ample of information was obtained; such information includes the effect of the gut microbiome on the physiology of fish, gut microbe composition of different fish, factors affecting the gut microbial composition of the fish and the immunological effect of gut microbes in fish; such this information related to the fish gut microbiome, their function and their importance in aquaculture is discussed in this review.
Collapse
Affiliation(s)
| | - Praveen Kumar
- SRM Research Institute SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Parimannan Sivachandran
- Faculty of Applied Sciences Centre of Excellence for Omics-Driven Computational Biodiscovery (CO MBio) AIMST University Bedong Malaysia
- Faculty of Science School of Life and Environmental Sciences Engineering and Built Environment Deakin University, Waurn Ponds Campus Geelong Australia
| | - Kasi Marimuthu
- Department of Biotechnology AIMST University Semeling Kedah Darul Aman Malaysia
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS) Universiti Putra Malaysia Serdang Negeri Sembilan Malaysia
- Department of Aquaculture Faculty of Agriculture Universiti Putra Malaysia Serdang Selangor Malaysia
- Laboratory of Marine Biotechnology Institute of Bioscience Universiti Putra Malaysia Serdang Selangor Darul Ehsan Malaysia
| | - Bilal Ahmad Paray
- Department of Zoology College of Science King Saud University Riyadh Saudi Arabia
| | - Jesu Arockiaraj
- SRM Research Institute SRM Institute of Science and Technology Chennai Tamil Nadu India
| |
Collapse
|
34
|
Inguglia L, Chiaramonte M, Di Stefano V, Schillaci D, Cammilleri G, Pantano L, Mauro M, Vazzana M, Ferrantelli V, Nicolosi R, Arizza V. Salmo salar fish waste oil: Fatty acids composition and antibacterial activity. PeerJ 2020; 8:e9299. [PMID: 32596043 PMCID: PMC7307567 DOI: 10.7717/peerj.9299] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Fish by-products are generally used to produce fishmeal or fertilizers, with fish oil as a by-product. Despite their importance, fish wastes are still poorly explored and characterized and more studies are needed to reveal their potentiality. The goal of the present study was to qualitatively characterize and investigate the antimicrobial effects of the fish oil extracted from Salmo salar waste samples and to evaluate the potential use of these compounds for treating pathogen infections. METHODS Salmo salar waste samples were divided in two groups: heads and soft tissues. Fatty acids composition, and in particular the content in saturated (SAFAs), mono-unsaturated (MUFAs) and Polyunsaturated (PUFAs) fatty acids, was characterized through GC/MS Thermo Focus GC-DSQ II equipped with a ZB-5 fused silica capillary tubes column. The antimicrobial activity of the salmon waste oils was evaluated through the Minimum Inhibitory Concentration assay and the antibiotics contamination was determined by Liquid Chromatography with tandem Mass Spectrometry (LC-MS/MS) analysis. All experiments were done at least in triplicate. RESULTS GC/MS analysis has shown the specific fatty acid composition of the salmon waste oils and their enrichment in MUFAs and PUFAs, with special reference to omega-3, -6, -7, -9 fatty acids. Furthermore, our study has highlighted the antimicrobial activity of the fish waste oil samples against two Gram+ and Gram- bacterial strains. CONCLUSIONS These data confirm that the fish waste is still quantitatively and qualitatively an important source of available biological properties that could be extracted and utilized representing an important strategy to counteract infective diseases in the context of the circular economy.
Collapse
Affiliation(s)
| | | | | | | | | | - Licia Pantano
- Istituto Zooprofilattico della Sicilia “A.Mirri”, Palermo, Italy, Italy
| | - Manuela Mauro
- STEBICEF, University of Palermo, Palermo, Italy, Italy
| | | | | | | | | |
Collapse
|
35
|
Su X, Sutarlie L, Loh XJ. Sensors, Biosensors, and Analytical Technologies for Aquaculture Water Quality. RESEARCH (WASHINGTON, D.C.) 2020; 2020:8272705. [PMID: 32149280 PMCID: PMC7048950 DOI: 10.34133/2020/8272705] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
In aquaculture industry, fish, shellfish, and aquatic plants are cultivated in fresh, salt, or brackish waters. The increasing demand of aquatic products has stimulated the rapid growth of aquaculture industries. How to effectively monitor and control water quality is one of the key concerns for aquaculture industry to ensure high productivity and high quality. There are four major categories of water quality concerns that affect aquaculture cultivations, namely, (1) physical parameters, e.g., pH, temperature, dissolved oxygen, and salinity, (2) organic contaminants, (3) biochemical hazards, e.g., cyanotoxins, and (4) biological contaminants, i.e., pathogens. While the physical parameters are affected by climate changes, the latter three are considered as environmental factors. In this review, we provide a comprehensive summary of sensors, biosensors, and analytical technologies available for monitoring aquaculture water quality. They include low-cost commercial sensors and sensor network setups for physical parameters. They also include chromatography, mass spectrometry, biochemistry, and molecular methods (e.g., immunoassays and polymerase chain reaction assays), culture-based method, and biophysical technologies (e.g., biosensors and nanosensors) for environmental contamination factors. According to the different levels of sophistication of various analytical techniques and the information they can provide (either fine fingerprint, highly accurate quantification, semiquantification, qualitative detection, or fast screening), we will comment on how they may be used as complementary tools, as well as their potential and gaps toward current demand of real-time, online, and/or onsite detection.
Collapse
Affiliation(s)
- Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way. Innovis #08-03, Singapore 138634
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive 3, Singapore 117543
| | - Laura Sutarlie
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way. Innovis #08-03, Singapore 138634
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way. Innovis #08-03, Singapore 138634
| |
Collapse
|
36
|
Childhood iron deficiency anemia leads to recurrent respiratory tract infections and gastroenteritis. Sci Rep 2019; 9:12637. [PMID: 31477792 PMCID: PMC6718651 DOI: 10.1038/s41598-019-49122-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/20/2019] [Indexed: 12/03/2022] Open
Abstract
Anemia affects approximately 30% of children all over the world. Acute respiratory tract infections (ARTI), urinary tract infections (UTI) and gastroenteritis (GE) are common infectious entities in children. Here, we assessed the association between anemia and development of recurrent ARTI, UTI, and GE in children. This was a case-control study in hospitalized 2–5 years old children in Professorial Pediatric Unit at Teaching Hospital Anuradhapura, Sri Lanka. An 18-month follow up was done to assess the risk factors for the development of recurrent ARTI, GE, UTI, and control presented without infections. Further, 6-month follow up done after 3-month iron supplementation to assess the occurrence of recurrences. Blood Hb concentration was measured using Drabking’s reagent. Logistic regression was used to find the risk factors for the development of recurrences. In ARTI, 121/165 (73.3%), GE, 88/124 (71%), UTI 46/96 (47.9%) and control 40/100 (40%) were having anemia. Initial ARTI group, recurrent ARTI was 24 (14.5%, p = 0.03); initial GE group: recurrent GE was 14 (11.3%, p = 0.03), recurrent ARTI was 11 (8.9%, p = 0.04); initial UTI group, development of; recurrent UTI was 8 (8.3%, p = 0.04); control, recurrent ARTI was 11 (11%, p = 0.03). Following 3-month iron supplementation reduction of recurrences was significant: initial ARTI recurrent ARTI in 90%, recurrent GE in 77.7%; initial GE recurrent GE in 83.3%, recurrent ARTI in 80%; initial UTI recurrent ARTI in 71.4% and control recurrent ARTI in 88.8%. Iron deficiency is a major type of anemia and anemic children are more prone to develop recurrent ARTI and GE. Once iron deficiency being corrected the rate of recurrent ARTI and GE was reduced. This would be a boost for policy developers to implement strategies at the community level to prevent iron deficiency in children to reduce ARTI and GE recurrences.
Collapse
|
37
|
Ozturk RC, Altinok I, Turgut S, Capkin E. Comparative susceptibilities and immune-related gene expressions of brown trout strains and their hybrids infected with Lactococcus garvieae and Yersinia ruckeri. FISH & SHELLFISH IMMUNOLOGY 2019; 91:264-274. [PMID: 31128294 DOI: 10.1016/j.fsi.2019.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Brown trout are polymorphic salmonid species, and it is of importance to investigate whether hybridization affects disease resistance. In this study, susceptibility of brown trout (Salmo trutta Abant, Anatolian, Black Sea, and Caspius) strains and their hybrids to Lactococcus garvieae and Yersinia ruckeri as well as their immune-related gene expression profiles were studied. Results indicated that reciprocal hybridization did not affect disease resistance in brown trout strains. Purebred Black Sea strain of brown trout was the most resistant group against Y. ruckeri, followed by other Black Sea strain hybrids. On the other hand, purebred Anatolian strain was the most resistant group to L. garvieae, followed by other Anatolian strain hybrids. Expression pattern of target genes differed in families, but the overall gene expression was comparatively high in Y. ruckeri infected families. Upregulations were mainly significant at 7 and 28 d post infection while marginal regulations were observed 8 h after infection. Disease resistance status of strains was supported by high expression of immune-related genes such as major histocompatibility complex class I (MHC-I), immunoglobulin light chain (IgL), and antioxidant- and hemoglobin-related gene expression. Therefore, our findings suggest that Black Sea and Anatolian strains could be used to develop fish stock that are resistant for yersiniosis and lactocaccosis, respectively.
Collapse
Affiliation(s)
- Rafet C Ozturk
- Department of Fisheries Technology Engineering, Surmene Faculty of Marine Sciences, Karadeniz Technical University, 61530, Surmene, Trabzon, Turkey
| | - Ilhan Altinok
- Department of Fisheries Technology Engineering, Surmene Faculty of Marine Sciences, Karadeniz Technical University, 61530, Surmene, Trabzon, Turkey.
| | - Secil Turgut
- Department of Fisheries Technology Engineering, Surmene Faculty of Marine Sciences, Karadeniz Technical University, 61530, Surmene, Trabzon, Turkey
| | - Erol Capkin
- Department of Fisheries Technology Engineering, Surmene Faculty of Marine Sciences, Karadeniz Technical University, 61530, Surmene, Trabzon, Turkey
| |
Collapse
|
38
|
Sundell K, Landor L, Nicolas P, Jørgensen J, Castillo D, Middelboe M, Dalsgaard I, Donati VL, Madsen L, Wiklund T. Phenotypic and Genetic Predictors of Pathogenicity and Virulence in Flavobacterium psychrophilum. Front Microbiol 2019; 10:1711. [PMID: 31396199 PMCID: PMC6668605 DOI: 10.3389/fmicb.2019.01711] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/11/2019] [Indexed: 02/05/2023] Open
Abstract
Flavobacterium psychrophilum causes bacterial cold-water disease (BCWD) in farmed rainbow trout (Oncorhynchus mykiss), with the multilocus sequence typing (MLST) clonal complex (CC) CC-ST10 accounting for the majority of outbreaks globally. The development of alternative strategies to antibiotic treatment of BCWD using bacteriophage-based control of F. psychrophilum, or virulence factors as targets for therapy, requires knowledge of the phage-sensitivity of outbreak strains and of universal traits contributing to their pathogenicity. To examine the association between virulence and both genetic (MLST sequence type (ST) and PCR-serotype) and phenotypic characteristics (adherence, antibiotic resistance, colony spreading motility, hemolytic and proteolytic activity), the median lethal dose (LD50) of 26 geographically disparate F. psychrophilum isolates was determined in rainbow trout. Furthermore, the in vitro sensitivity of the isolates against five bacteriophages was determined by the efficiency of plating (EOP). The tested F. psychrophilum isolates were mainly represented by CC-ST10 genotypes (22 out of 26) and showed up to 3-log differences in LD50 (8.9 × 103 to 3.1 × 106 CFU). No association between MLST ST and virulence was found because of a high variation in LD50 within STs. All identified serotypes (0, 1, and 2) were pathogenic, but ten most virulent isolates belonged to serotype 1 or 2. Isolates of high (LD50 < 105 CFU), moderate (LD50 = 105–106 CFU), and weak (LD50 > 106 CFU) virulence were similar in phenotypic characteristics in vitro. However, the only non-virulent CC-ST10 isolate was deficient in spreading motility and proteolytic activity, indicating that the characteristics are required for pathogenicity in F. psychrophilum. Univariate correlation studies found only non-significant associations between LD50 and the measured phenotypic characteristics, and the multivariable analysis did neither reveal any significant predictors of virulence. The majority of isolates (16 out of 26) were sensitive to at least four bacteriophages, with up to a 6-log variation in the EOP. Most CC-ST10 isolates (16 out of 22) were sensitive to the examined phages, including 5 out of the 7 most virulent isolates represented by prevalent and antibiotic-resistant STs. Our findings suggest that control of BCWD using lytic phages or interventions targeting shared characteristics of pathogenic F. psychrophilum strains should be further explored.
Collapse
Affiliation(s)
- Krister Sundell
- Laboratory of Aquatic Pathobiology, Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | - Lotta Landor
- Laboratory of Aquatic Pathobiology, Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | - Pierre Nicolas
- Unité Mathématiques et Informatique Appliquées du Génome à l'Environnement (MaIAGE), Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jóhanna Jørgensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Daniel Castillo
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Mathias Middelboe
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Inger Dalsgaard
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Valentina Laura Donati
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lone Madsen
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tom Wiklund
- Laboratory of Aquatic Pathobiology, Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| |
Collapse
|
39
|
Ali NGM, Aboyadak IM, El-Sayed HS. Chemotherapeutic control of Gram-positive infection in white sea bream ( Diplodus sargus, Linnaeus 1758) broodstock. Vet World 2019; 12:316-324. [PMID: 31040576 PMCID: PMC6460867 DOI: 10.14202/vetworld.2019.316-324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/22/2019] [Indexed: 11/16/2022] Open
Abstract
Aim: This study aimed to identify the pathogenic bacteria responsible for the septicemic disease affecting white sea bream brooders and determining the sensitivity of the recovered isolates to different antibiotics followed by estimation of long-acting oxytetracycline (OTC) efficacy in controlling this disease, and finally, determining the proper dose regimen. Materials and Methods: Biolog microbial identification system was used for determination of the pathogens which are responsible for this disease. Agar disk diffusion test and minimum inhibitory concentration (MIC) were used to determine the antibiotic susceptibility of recovered isolates. Oxytetracycline (OTC) was used at a dose level of 100 mg/kg body weight for the treatment of diseased fish, and the OTC concentration in the serum samples was determined by high-performance liquid chromatography. Results: Fifteen Staphylococcus epidermidis and 11 Bacillus cereus isolates were recovered from the lesion of muscle, tail, eye, and heart blood. S. epidermidis isolates were sensitive to OTC, ciprofloxacin, enrofloxacin, spiramycin, erythromycin (E), and florfenicol. B. cereus isolates were sensitive to all mentioned antibiotics except E. Based on the MIC test, all B. cereus isolates were sensitive to OTC with MIC ranging between <0.125 and 4 µg/ml and 11 S. epidermidis isolates were sensitive with MIC ranging between <0.125 and 8 µg/ml, while four isolates were resistant. Different degrees of degenerative changes were present in the hepatopancreas, posterior kidney, eye, and skin tissues of diseased fish. Conclusion: Single intraperitoneal injection of long-acting OTC at a dose of 100 mg/kg body weight was effective in termination of S. epidermidis and B. cereus infection in white sea bream (D. sargus) broodstock.
Collapse
Affiliation(s)
- Nadia G M Ali
- Fish Disease Laboratory, National Institute of Oceanography and Fisheries, Egypt
| | - Ibrahim M Aboyadak
- Fish Disease Laboratory, National Institute of Oceanography and Fisheries, Egypt
| | - Heba S El-Sayed
- Fish Reproduction Laboratory (Marine Hatchery), National Institute of Oceanography and Fisheries, Egypt
| |
Collapse
|
40
|
Hardi EH, Nugroho RA, Kusuma IW, Suwinarti W, Sudaryono A, Rostika R. Borneo herbal plant extracts as a natural medication for prophylaxis and treatment of Aeromonas hydrophila and Pseudomonas fluorescens infection in tilapia ( Oreochromis niloticus). F1000Res 2018; 7:1847. [PMID: 30984371 PMCID: PMC6439779 DOI: 10.12688/f1000research.16902.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 11/20/2022] Open
Abstract
Background: The combination of some plant extracts to prevent and treat bacterial infections is gaining momentum, because of effectiveness against certain bacteria. This study aims to describe the antibacterial and immunostimulant abilities of Boesenbergia pandurata (BP), Solanum ferox (SF) and Zingiber Zerumbet (ZZ) plant extracts to treat and prevent Aeromonas hydrophila and Pseudomonas fluorescens infection on Tilapia ( Oreochromis niloticus). Methods: Tilapia (initial weight 15±2 g) were injected intramuscularly (0.1 ml/fish) with a combination of A. hydrophila and P. fluorescens at a density of 1×10 5 CFU ml -1 of each bacteria. Treatment trials were performed at day 7 post-injection with each combined extract, while the prevention trial was performed by including the combined extract into the commercial diet for six and seven days prior to injection. Various extract combinations were 60 mg SF extract/kg feed with 40 mg ZZ/kg feed (SF60/ZZ40), SF50/ZZ50, BP90/SF10, and BP50/SF50. Haemato-immunological parameters were performed for four weeks. Results: In prevention trials, tilapia fed SF50/ZZ50 showed a significant increase of white and red blood cells. Similarly, significantly increased haematocrit was found in tilapia fed SF50/ZZ50 in the treatment trial but not in the prevention trial. In both trials, haemoglobin of tilapia was not affected by any combined extracts but decreased the number of bacteria. Phagocytic index, respiratory burst, lysozyme activity and survival rate of fish fed combined extracts were found significantly higher than controls. The amount of pathogenic bacteria in fish fed combined extracts was lower than the control at week 4 ( P<0.05). In both trials The percentage of survival rate and relative percent survival of tilapia fed SF 50/ZZ 50, showed the optimum results compared to the other combinations. Conclusions: The combined extract in feed, especially SF50/ZZ50 has a positive effect on the tilapia's innate immune system of tilapia to treat and prevent bacterial infections.
Collapse
Affiliation(s)
- Esti Handayani Hardi
- Microbiology Laboratory, Department of Aquaculture, Faculty of Fisheries and Marine Science, Mulawarman University, Samarinda, East Kalimantan, 75123, Indonesia
| | - Rudy Agung Nugroho
- Animal Physiology, Development and Molecular Laboratory, Department of Biology, Faculty of Mathematics and Natural Sciences, Mulawarman University, Samarinda, East Kalimantan, 75123, Indonesia
| | - Irawan Wijaya Kusuma
- Laboratory of Forest Product Chemistry, Faculty of Forestry, Mulawarman University, Samarinda, East Kalimantan, 75123, Indonesia
| | - Wiwin Suwinarti
- Laboratory of Forest Product Chemistry, Faculty of Forestry, Mulawarman University, Samarinda, East Kalimantan, 75123, Indonesia
| | - Agung Sudaryono
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Rita Rostika
- Department of Fisheries, Faculty of Fisheries and Marine Science, Padjajaran University, Bandung, West Java, 40600, Indonesia
| |
Collapse
|
41
|
Hardi EH, Nugroho RA, Kusuma IW, Suwinarti W, Sudaryono A, Rostika R. Borneo herbal plant extracts as a natural medication for prophylaxis and treatment of Aeromonas hydrophila and Pseudomonas fluorescens infection in tilapia ( Oreochromis niloticus). F1000Res 2018; 7:1847. [PMID: 30984371 PMCID: PMC6439779 DOI: 10.12688/f1000research.16902.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2018] [Indexed: 08/15/2023] Open
Abstract
Background: This study aims to describe the antibacterial and immunostimulant abilities of Boesenbergia pandurata (BP), Solanum ferox (SF) and Zingiber Zerumbet (ZZ) plant extracts to treat and prevent Aeromonas hydrophila and Pseudomonas fluorescens infection on Tilapia ( Oreochromis niloticus). Methods: Tilapia (initial weight 15±2 g) were injected intramuscularly (0.1 ml/fish) with a combination of A. hydrophila and P. fluorescens at a density of 1×10 5 CFU ml -1 of each bacteria. Treatment trials were performed at day 7 post-injection with each combined extract, while the prevention trial was performed by including the combined extract into the diet for six and seven days prior to injection. Various combinations of extract-60 ml SF extract/kg feed with 40 ml ZZ/kg feed (SF60/ZZ40), SF50/ZZ50, BP90/SF10, and BP50/SF50-were mixed with a commercial diet and used in both treatment and prevention trials. Haematological and immunological parameters were performed every week for four weeks. Results: In prevention trials, tilapia fed SF50/ZZ50 showed a significant increase of white and red blood cells from weeks 2 to 4. Similarly, significantly increased haematocrit was also found in tilapia fed SF50/ZZ50 in the treatment trial but not in the prevention trial. However, haemoglobin of tilapia in both trials was not affected by any of the various combinations of extract in the diet. Furthermore, phagocytic, respiratory burst, lysozyme activity indexes and survival rate of fish fed with combined extracts were found to be significantly higher than controls. Moreover, the amount of pathogenic bacteria in fish that were fed combined extracts was also lower than the control and was significantly different at week 4. Conclusions: This study indicates that the addition of combined extract into feed has a positive effect on the tilapia's immune system. The SF50/ZZ50 combination appears to improve the innate immune system of tilapia to treat and prevent bacterial infections.
Collapse
Affiliation(s)
- Esti Handayani Hardi
- Microbiology Laboratory, Department of Aquaculture, Faculty of Fisheries and Marine Science, Mulawarman University, Samarinda, East Kalimantan, 75123, Indonesia
| | - Rudy Agung Nugroho
- Animal Physiology, Development and Molecular Laboratory, Department of Biology, Faculty of Mathematics and Natural Sciences, Mulawarman University, Samarinda, East Kalimantan, 75123, Indonesia
| | - Irawan Wijaya Kusuma
- Laboratory of Forest Product Chemistry, Faculty of Forestry, Mulawarman University, Samarinda, East Kalimantan, 75123, Indonesia
| | - Wiwin Suwinarti
- Laboratory of Forest Product Chemistry, Faculty of Forestry, Mulawarman University, Samarinda, East Kalimantan, 75123, Indonesia
| | - Agung Sudaryono
- Department of Aquaculture, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Rita Rostika
- Department of Fisheries, Faculty of Fisheries and Marine Science, Padjajaran University, Bandung, West Java, 40600, Indonesia
| |
Collapse
|
42
|
Chemical Synthesis and Functional Analysis of VarvA Cyclotide. Molecules 2018; 23:molecules23040952. [PMID: 29671790 PMCID: PMC6017059 DOI: 10.3390/molecules23040952] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022] Open
Abstract
Cyclotides are circular peptides found in various plant families. A cyclized backbone, together with multiple disulfide bonds, confers the peptides’ exceptional stability against protease digestion and thermal denaturation. In addition, the features of these antimicrobial molecules make them suitable for use in animal farming, such as aquaculture. Fmoc solid phase peptide synthesis on 2-chlorotrityl chlorine (CTC) resin using the “tea-bag” approach was conducted to generate the VarvA cyclotide identified previously from Viola arvensis. MALDI-TOF mass spectrometry determined the correct peptide amino acid sequence and the cyclization sites-critical in this multicyclic compound. The cyclotide showed antimicrobial activity against various Gram-negative bacteria, including recurrent pathogens present in Chilean aquaculture. The highest antimicrobial activity was found to be against Flavobacterium psychrophilum. In addition, membrane blebbing on the bacterial surface after exposure to the cyclotide was visualized by SEM microscopy and the Sytox Green permeabilization assay showed the ability to disrupt the bacterial membrane. We postulate that this compound can be proposed for the control of fish farming infections.
Collapse
|
43
|
Levipan HA, Quezada J, Avendaño-Herrera R. Stress Tolerance-Related Genetic Traits of Fish Pathogen Flavobacterium psychrophilum in a Mature Biofilm. Front Microbiol 2018; 9:18. [PMID: 29410654 PMCID: PMC5787105 DOI: 10.3389/fmicb.2018.00018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 01/05/2018] [Indexed: 11/25/2022] Open
Abstract
Flavobacterium psychrophilum is the causative agent of bacterial cold-water disease and rainbow trout fry syndrome, and hence this bacterium is placed among the most important salmonid pathogens in the freshwater aquaculture industry. Since bacteria in biofilms differ substantially from free-living counterparts, this study sought to find the main differences in gene expression between sessile and planktonic states of F. psychrophilum LM-02-Fp and NCMB1947T, with focus on stress-related changes in gene expression occurring during biofilm formation. To this end, biofilm and planktonic samples were analyzed by RNA sequencing to detect differentially expressed candidate genes (DECGs) between the two growth states, and decreasing the effects of interstrain variation by considering only genes with log2-fold changes ≤ −2 and ≥ 2 at Padj-values ≤ 0.001 as DECGs. Overall, 349 genes accounting for ~15% of total number of genes expressed in transcriptomes of F. psychrophilum LM-02-Fp and NCMB1947T (n = 2327) were DECGs between biofilm and planktonic states. Approximately 83 and 81% of all up- and down-regulated candidate genes in mature biofilms, respectively, were assigned to at least one gene ontology term; these were primarily associated with the molecular function term “catalytic activity.” We detected a potential stress response in mature biofilms, characterized by a generalized down-regulation of DECGs with roles in the protein synthesis machinery (n = 63, primarily ribosomal proteins) and energy conservation (seven ATP synthase subunit genes), as well as an up-regulation of DECGs involved in DNA repair (ruvC, recO, phrB1, smf, and dnaQ) and oxidative stress response (cytochrome C peroxidase, probable peroxiredoxin, and a probable thioredoxin). These results support the idea of a strategic trade-off between growth-related processes and cell homeostasis to preserve biofilm structure and metabolic functioning. In addition, LDH-based cytotoxicity assays and an intraperitoneal challenge model for rainbow trout fry agreed with the transcriptomic evidence that the ability of F. psychrophilum to form biofilms could contribute to the virulence. Finally, the reported changes in gene expression, as induced by the plankton-to-biofilm transition, represent the first transcriptomic guideline to obtain insights into the F. psychrophilum biofilm lifestyle that could help understand the prevalence of this bacterium in aquaculture settings.
Collapse
Affiliation(s)
- Héctor A Levipan
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Universidad Andres Bello, Viña del Mar, Chile.,Interdisciplinary Center for Aquaculture Research, Concepción, Chile.,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Johan Quezada
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Universidad Andres Bello, Viña del Mar, Chile.,Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Universidad Andres Bello, Viña del Mar, Chile.,Interdisciplinary Center for Aquaculture Research, Concepción, Chile.,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| |
Collapse
|
44
|
Osman KM, Al-Maary KS, Mubarak AS, Dawoud TM, Moussa IMI, Ibrahim MDS, Hessain AM, Orabi A, Fawzy NM. Characterization and susceptibility of streptococci and enterococci isolated from Nile tilapia (Oreochromis niloticus) showing septicaemia in aquaculture and wild sites in Egypt. BMC Vet Res 2017; 13:357. [PMID: 29178882 PMCID: PMC5702248 DOI: 10.1186/s12917-017-1289-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 11/17/2017] [Indexed: 11/10/2022] Open
Abstract
Background The present investigation was an endeavor into the elucidation of the disease-causing pathogen of streptococcosis in Nile tilapia (Oreochromis niloticus) in Egypt affecting adult fish cultured and wild fish in the Nile river. Fish were obtained from commercial fishermen, collected as part of their routine fishing activities. The researchers observed the routine fishing process and selected fish for use in the study, at the point of purchase from the fisherman. Results Diseased fish showed exophthalmia with accumulation of purulent and haemorrhagic fluid around eyes, and ventral petechial haemorrhages. The Post mortem examination revealed, abdominal fat haemorrhage, pericarditis and enlargement of the liver, spleen and kidney. Gram-stained smears revealed the presence of Gram-positive cocci, β-hemolytic, oxidase and catalase negative. Analysis of the 16S rRNA gene confirmed that the 17 tilapia isolates studied were 6/17 Enterococcus faecalis, 2/17 Enterococcus gallinarum, 3/17 Streptococcus pluranimalium, 2/17 Aerococcus viridans, 1/17 isolate of each Streptococcus dysgalactiae, Streptococcus anginosus, Lactococcus garvieae and Granulicetella elegans/Leuconostoc mesenteroides cremoris. It should be noted that there was no mixed infection. Multiple resistance was observed and the most frequent antibiotic combination was penicillin, ampicillin, vancomycin, chloramphenicol, rifampicin, ofloxacin, clindamycin, erythromycin and tetracycline representing eight classes. Conclusions Consequently, we concluded that Streptococcus species are an emerging pathogen for Nile tilapia aquaculture in Egypt and to be considered as a new candidate in the warm water fish diseases in Egypt with special reference to L. garvieae, S. dysgalactiae in addition to L. mesenteroides cremoris which was not reported before from tilapia and taking into consideration their zoonotic implications for public health.
Collapse
Affiliation(s)
- Kamelia M Osman
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Khalid S Al-Maary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Aymen S Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Turki M Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ihab M I Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mai D S Ibrahim
- Department of Public Health, College of Applied Medical Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Ashgan M Hessain
- Department of Health Science, College of Applied Studies and Community Service, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Nehal M Fawzy
- Department of Fish Diseases and Management, Animal Health Research Institute, Dokki, Giza, Egypt
| |
Collapse
|
45
|
Non-invasive in vivo imaging of fluorescence-labeled bacterial distributions in aquatic species. Int J Vet Sci Med 2017; 5:187-195. [PMID: 30255070 PMCID: PMC6137844 DOI: 10.1016/j.ijvsm.2017.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/11/2017] [Accepted: 09/17/2017] [Indexed: 12/20/2022] Open
Abstract
In vivo imaging is becoming an advanced tool for noninvasive distribution of longitudinal small animals. However, the aquatic species have been limited to the optical imaging of noninvasively tracking on pathogen distribution. The purpose of this study was to develop shell-less fish and shrimp models of non-invasive in vivo imaging technique for visualization of pathogens. This experiment was utilized Escherichia coli, Edwardsiella tarda, Vibrio alginolyticus and Vibrio harveyi labeled with fluorescence probes to imaging bacterial distributions by IVIS Lumina LT system. The study was traced the internal distribution of fluorescence probes labeled bacteria in systemic organs by quantified their fluorescence intensities. The ex vivo organ images were showed more obvious fluorescent signal in catfish intestine, liver, heart, kidney and the shrimp showed heart, hepatopancreas, and colon. Hence, the in vivo imaging methods using fluorescent labeled bacterial distribution were suggested to quantify by fluorescence intensity in whole pre-infected subjects. Therefore, it can offer the information about the localization and distribution of pathogens in the preclinical research, after immersion and injections.
Collapse
|
46
|
Moi IM, Roslan NN, Leow ATC, Ali MSM, Rahman RNZRA, Rahimpour A, Sabri S. The biology and the importance of Photobacterium species. Appl Microbiol Biotechnol 2017; 101:4371-4385. [PMID: 28497204 DOI: 10.1007/s00253-017-8300-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Photobacterium species are Gram-negative coccobacilli which are distributed in marine habitats worldwide. Some species are unique because of their capability to produce luminescence. Taxonomically, about 23 species and 2 subspecies are validated to date. Genomes from a few Photobacterium spp. have been sequenced and studied. They are considered a special group of bacteria because some species are capable of producing essential polyunsaturated fatty acids, antibacterial compounds, lipases, esterases and asparaginases. They are also used as biosensors in food and environmental monitoring and detectors of drown victim, as well as an important symbiont.
Collapse
Affiliation(s)
- Ibrahim Musa Moi
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Bauchi State University Gadau, P.M.B. O65, Bauchi, Bauchi State, Nigeria
| | - Noordiyanah Nadhirah Roslan
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Azam Rahimpour
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
47
|
Na-Phatthalung P, Chusri S, Suanyuk N, Voravuthikunchai SP. In vitro and in vivo assessments of Rhodomyrtus tomentosa leaf extract as an alternative anti-streptococcal agent in Nile tilapia (Oreochromis niloticus L.). J Med Microbiol 2017; 66:430-439. [PMID: 28425874 DOI: 10.1099/jmm.0.000453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Rhodomyrtustomentosa is a Thai medicinal plant that has been attracting attention for its remarkable antibacterial properties against Gram-positive pathogenic bacteria. The purpose of this study was to evaluate the antibacterial properties of R. tomentosa leaf extract against Streptococcus agalactiae and Streptococcus iniae isolated from infected tilapia. METHODOLOGY The anti-streptococcal activity of R. tomentosa was determined using broth microdilution assays. RESULTS The extract demonstrated strong antibacterial activity against the fish pathogens, with minimum inhibitory concentrations (MICs) ranging from 7.8‒62.5 µg ml-1. It was found to possess a dose-dependent bacteriostatic effect on this organism. Scanning electron microscopy revealed irregular and long chains of swollen cells, as well as corkscrew shapes andincomplete separation of cell division of S. agalactiae cells following the treatment at sub-MIC. Moreover, S. agalactiae cells pre-treated with the extract became more sensitive to oxidative stress induced by H2O2 than the untreated cells. Based on the mortality of Nile tilapia after intraperitoneal infection of S. agalactiae at median lethal dose (LD50), the pre-treated cells caused a significant (P<0.01) reduction in mortality of S. agalactiae-infected Nile tilapia. CONCLUSION The results suggested that R. tomentosa could be further developed as a simple and effective agent for the treatment of streptococcosis in Nile tilapia.
Collapse
Affiliation(s)
- Pinanong Na-Phatthalung
- Department of Microbiology and Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Sasitorn Chusri
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Naraid Suanyuk
- Department of Aquatic Science, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Department of Microbiology and Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
48
|
Bayliss SC, Verner-Jeffreys DW, Bartie KL, Aanensen DM, Sheppard SK, Adams A, Feil EJ. The Promise of Whole Genome Pathogen Sequencing for the Molecular Epidemiology of Emerging Aquaculture Pathogens. Front Microbiol 2017; 8:121. [PMID: 28217117 PMCID: PMC5290457 DOI: 10.3389/fmicb.2017.00121] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/17/2017] [Indexed: 01/23/2023] Open
Abstract
Aquaculture is the fastest growing food-producing sector, and the sustainability of this industry is critical both for global food security and economic welfare. The management of infectious disease represents a key challenge. Here, we discuss the opportunities afforded by whole genome sequencing of bacterial and viral pathogens of aquaculture to mitigate disease emergence and spread. We outline, by way of comparison, how sequencing technology is transforming the molecular epidemiology of pathogens of public health importance, emphasizing the importance of community-oriented databases and analysis tools.
Collapse
Affiliation(s)
- Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath Bath, UK
| | | | - Kerry L Bartie
- Institute of Aquaculture, University of Stirling Stirling, UK
| | - David M Aanensen
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College LondonLondon, UK; The Centre for Genomic Pathogen Surveillance, Wellcome Genome CampusCambridge, UK
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath Bath, UK
| | - Alexandra Adams
- Institute of Aquaculture, University of Stirling Stirling, UK
| | - Edward J Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath Bath, UK
| |
Collapse
|
49
|
Stabili L, Fraschetti S, Acquaviva MI, Cavallo RA, De Pascali SA, Fanizzi FP, Gerardi C, Narracci M, Rizzo L. The Potential Exploitation of the Mediterranean Invasive Alga Caulerpa cylindracea: Can the Invasion Be Transformed into a Gain? Mar Drugs 2016; 14:E210. [PMID: 27854274 PMCID: PMC5128753 DOI: 10.3390/md14110210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/24/2022] Open
Abstract
Recently, there is a growing interest towards the development of strategies for invasive seaweed control and exploitation as source of secondary metabolites. Here, we investigated the potential of exploitation in biotechnology and recycling options in eradication programs of the lipidic extract of the Mediterranean invasive seaweed Caulerpa cylindracea (Chlorophyta). The chemical characterization was carried out by means of multinuclear and multidimensional NMR spectroscopy. The fatty acid profile of C. cylindracea assessed the presence of several types of molecules known for antioxidant activity such as carotenoids, chlorophylls, pheophytins, and sterols. The NMR spectroscopy showed also the characteristic signals of saturated, unsaturated, and free fatty acids as well as other metabolites including the biopolymer polyhydroxybutyrate. The lipidic extract exerted an antioxidant activity corresponding to 552.14 ± 69.13 mmol Trolox equivalent/g (ORAC) and to 70.3 ± 2.67 mmol Trolox equivalent/g (TEAC). The extract showed an antibacterial activity against several Vibrio species, suggesting its potential use in the control of diseases in mariculture. Our results show that C. cylindracea, representing a critical hazard in coastal areas, could be transformed into a gain supporting specific management actions to reduce the effects of human pressures.
Collapse
Affiliation(s)
- Loredana Stabili
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
- Istituto per l'Ambiente Marino Costiero, Unità Operativa di Supporto di Taranto, CNR, Via Roma 3, 74123 Taranto, Italy.
| | - Simonetta Fraschetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
- CoNISMa-Consorzio Nazionale Interuniversitario per le Scienze del Mare, Piazzale Flaminio 9, 00196 Rome, Italy.
| | - Maria Immacolata Acquaviva
- Istituto per l'Ambiente Marino Costiero, Unità Operativa di Supporto di Taranto, CNR, Via Roma 3, 74123 Taranto, Italy.
| | - Rosa Anna Cavallo
- Istituto per l'Ambiente Marino Costiero, Unità Operativa di Supporto di Taranto, CNR, Via Roma 3, 74123 Taranto, Italy.
| | - Sandra Angelica De Pascali
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
| | - Carmela Gerardi
- Istituto di Scienze delle Produzioni Alimentari, Unità Operativa di Supporto di Lecce, via Prov.le Lecce-Monteroni, 73100 Lecce, Italy.
| | - Marcella Narracci
- Istituto per l'Ambiente Marino Costiero, Unità Operativa di Supporto di Taranto, CNR, Via Roma 3, 74123 Taranto, Italy.
| | - Lucia Rizzo
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy.
- CoNISMa-Consorzio Nazionale Interuniversitario per le Scienze del Mare, Piazzale Flaminio 9, 00196 Rome, Italy.
| |
Collapse
|
50
|
Rama Devi K, Srinivasan R, Kannappan A, Santhakumari S, Bhuvaneswari M, Rajasekar P, Prabhu NM, Veera Ravi A. In vitro and in vivo efficacy of rosmarinic acid on quorum sensing mediated biofilm formation and virulence factor production in Aeromonas hydrophila. BIOFOULING 2016; 32:1171-1183. [PMID: 27739324 DOI: 10.1080/08927014.2016.1237220] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 09/12/2016] [Indexed: 05/21/2023]
Abstract
Rosmarinic acid (RA) was assessed for its quorum sensing inhibitory (QSI) potential against Aeromonas hydrophila strains AH 1, AH 12 and MTCC 1739. The pathogenic strains of A. hydrophila were isolated from infected zebrafish and identified through biochemical analysis and amplification of a species-specific gene (rpsL). The biofilm inhibitory concentration (BIC) of RA against A. hydrophila strains was found to be 750 μg ml-1. At this concentration, RA reduced the QS mediated hemolysin, lipase and elastase production in A. hydrophila. In FT-IR analysis, RA treated A. hydrophila cells showed a reduction in cellular components. Gene expression analysis confirmed the down-regulation of virulence genes such as ahh1, aerA, lip and ahyB. A. hydrophila infected zebrafish upon treatment with RA showed increased survival rates. Thus, the present study demonstrates the use of RA as a plausible phytotherapeutic compound to control QS mediated biofilm formation and virulence factor production in A. hydrophila.
Collapse
Affiliation(s)
- Kannan Rama Devi
- a Department of Biotechnology , Alagappa University , Karaikudi , India
| | | | | | | | | | - Periyannan Rajasekar
- b Department of Animal Health and Management , Alagappa University , Karaikudi , India
| | | | | |
Collapse
|