1
|
Wang X, Liu H, Xie G, Wang W, Yang Y. Identification and expression analyses of the olfactory-related genes in different tissues' transcriptome of a predacious soldier beetle, Podabrus annulatus (Coleoptera, Cantharidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21997. [PMID: 36656761 DOI: 10.1002/arch.21997] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
We sequenced and analyzed the transcriptomes from different tissues of the soldier beetle, Podabrus annulatus (Coleoptera: Cantharidae), and obtained 75.74 Gb clean reads which were assembled into 95,274 unigenes. Among these transcripts, 25,484 unigenes of highly quality were annotated. Based on annotation and tBLASTn results, we identified a total of 101 candidate olfactory-related genes for the first time, including 11 putative odorant-binding proteins (OBPs), 6 chemosensory proteins (CSP), 50 olfactory receptors (ORs), 25 gustatory receptors (GRs), 6 ionotropic receptors (IRs), and 3 sensory neuron membrane proteins (SNMPs). BLASTX best-hit results indicated that these chemosensory genes were most identical to their respective orthologs from Photinus pyralis. Phylogenetic analyses also revealed that the ORs, GRs, and IRs of Podabrus annulatus are closely related to those of Photinus pyralis. The fragment per kilobase per million mapped fragments (FPKM) values showed that the PannOBP2, PannOBP3, and PannOBP10 were predominantly expressed in the antennae, PannOBP1 in the abdomen-thorax, while others were not identified to be tissue-specific. These olfactory-related differentially expressed genes (DEGs) demonstrated different roles in the olfactory system of Podabrus annulatus. This study establishes the groundwork for future research into the molecular mechanism of olfactory recognition in Podabrus annulatus.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Haoyu Liu
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Guanglin Xie
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Wenkai Wang
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Yuxia Yang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
2
|
Joga MR, Mogilicherla K, Smagghe G, Roy A. RNA Interference-Based Forest Protection Products (FPPs) Against Wood-Boring Coleopterans: Hope or Hype? FRONTIERS IN PLANT SCIENCE 2021; 12:733608. [PMID: 34567044 PMCID: PMC8461336 DOI: 10.3389/fpls.2021.733608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 06/01/2023]
Abstract
Forest insects are emerging in large extension in response to ongoing climatic changes, penetrating geographic barriers, utilizing novel hosts, and influencing many hectares of conifer forests worldwide. Current management strategies have been unable to keep pace with forest insect population outbreaks, and therefore novel and aggressive management strategies are urgently required to manage forest insects. RNA interference (RNAi), a Noble Prize-winning discovery, is an emerging approach that can be used for forest protection. The RNAi pathway is triggered by dsRNA molecules, which, in turn, silences genes and disrupts protein function, ultimately causing the death of the targeted insect. RNAi is very effective against pest insects; however, its proficiency varies significantly among insect species, tissues, and genes. The coleopteran forest insects are susceptible to RNAi and can be the initial target, but we lack practical means of delivery, particularly in systems with long-lived, endophagous insects such as the Emerald ash borer, Asian longhorn beetles, and bark beetles. The widespread use of RNAi in forest pest management has major challenges, including its efficiency, target gene selection, dsRNA design, lack of reliable dsRNA delivery methods, non-target and off-target effects, and potential resistance development in wood-boring pest populations. This review focuses on recent innovations in RNAi delivery that can be deployed against forest pests, such as cationic liposome-assisted (lipids), nanoparticle-enabled (polymers or peptides), symbiont-mediated (fungi, bacteria, and viruses), and plant-mediated deliveries (trunk injection, root absorption). Our findings guide future risk analysis of dsRNA-based forest protection products (FPPs) and risk assessment frameworks incorporating sequence complementarity-based analysis for off-target predictions. This review also points out barriers to further developing RNAi for forest pest management and suggests future directions of research that will build the future use of RNAi against wood-boring coleopterans.
Collapse
Affiliation(s)
- Mallikarjuna Reddy Joga
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Kanakachari Mogilicherla
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Amit Roy
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
3
|
Xu JW, Zhu XY, Chao QJ, Zhang YJ, Yang YX, Wang RR, Zhang Y, Xie MZ, Ge YT, Wu XL, Zhang F, Zhang YN, Ji L, Xu L. Chemosensory Gene Families in the Oligophagous Pear Pest Cacopsylla chinensis (Hemiptera: Psyllidae). INSECTS 2019; 10:insects10060175. [PMID: 31212973 PMCID: PMC6628306 DOI: 10.3390/insects10060175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 01/28/2023]
Abstract
Chemosensory systems play an important role in insect behavior, and some key associated genes have potential as novel targets for pest control. Cacopsylla chinensis is an oligophagous pest and has become one of the main pests of pear trees, but little is known about the molecular-level means by which it locates its hosts. In this study, we assembled the head transcriptome of C. chinensis using Illumina sequencing, and 63,052 Unigenes were identified. A total of 36 candidate chemosensory genes were identified, including five different families: 12 odorant binding proteins (OBPs), 11 chemosensory proteins (CSPs), 7 odorant receptors (ORs), 4 ionotropic receptors (IRs), and 2 gustatory receptors (GRs). The number of chemosensory gene families is consistent with that found in other Hemipteran species, indicating that our approach successfully obtained the chemosensory genes of C. chinensis. The tissue expression of all genes using quantitative real-time PCR (qRT-PCR) found that some genes displayed male head, female head, or nymph-biased specific/expression. Our results enrich the gene inventory of C. chinensis and provide valuable resources for the analysis of the functions of some key genes. This will help in developing molecular targets for disrupting feeding behavior in C. chinensis.
Collapse
Affiliation(s)
- Ji-Wei Xu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Qiu-Jie Chao
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Yong-Jie Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Yu-Xia Yang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Ran-Ran Wang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Yu Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Meng-Zhen Xie
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Ya-Ting Ge
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Xin-Lai Wu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Fan Zhang
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan 250000, China.
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Lei Ji
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Lu Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
4
|
González-González A, Rubio-Meléndez ME, Ballesteros GI, Ramírez CC, Palma-Millanao R. Sex- and tissue-specific expression of odorant-binding proteins and chemosensory proteins in adults of the scarab beetle Hylamorpha elegans (Burmeister) (Coleoptera: Scarabaeidae). PeerJ 2019; 7:e7054. [PMID: 31223529 PMCID: PMC6571001 DOI: 10.7717/peerj.7054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/02/2019] [Indexed: 12/04/2022] Open
Abstract
In this study, we addressed the sex- and tissue-specific expression patterns of odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) in Hylamorpha elegans (Burmeister), an important native scarab beetle pest species from Chile. Similar to other members of its family, this scarab beetle exhibit habits that make difficult to control the pest by conventional methods. Hence, alternative ways to manage the pest populations based on chemical communication and signaling (such as disrupting mating or host finding process) are highly desirable. However, developing pest-control methods based on chemical communication requires to understand the molecular basis for pheromone recognition/chemical perception in this species. Thus, with the aim of discovering olfaction-related genes, we obtained the first reference transcriptome assembly of H. elegans. We used different tissues of adult beetles from males and females: antennae and maxillary palps, which are well known for embedded sensory organs. Then, the expression of predicted odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) was analyzed by qRT-PCR. In total, 165 transcripts related to chemoperception were predicted. Of these, 16 OBPs, including one pheromone-binding protein (PBP), and four CSPs were successfully amplified by qRT-PCR. All of these genes were differentially expressed in the sensory tissues with respect to the tibial tissue that was used as a control. The single predicted PBP found was highly expressed in the antennal tissues, particularly in males, while several OBPs and one CSP showed male-biased expression patterns, suggesting that these proteins may participate in sexual recognition process. In addition, a single CSP was expressed at higher levels in female palps than in any other studied condition, suggesting that this CSP would participate in oviposition process. Finally, all four CSPs exhibited palp-biased expression while mixed results were obtained for the expression of the OBPs, which were more abundant in the palps than in the antennae. These results suggest that these chemoperception proteins would be interesting novel targets for control of H. elegans, thus providing a theoretical basis for further studies involving new pest control methods.
Collapse
Affiliation(s)
- Angélica González-González
- Centre in Molecular and Functional Ecology, Universidad de Talca, Talca, Chile.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - María E Rubio-Meléndez
- Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Maule, Chile
| | - Gabriel I Ballesteros
- Centre in Molecular and Functional Ecology, Universidad de Talca, Talca, Chile.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Claudio C Ramírez
- Centre in Molecular and Functional Ecology, Universidad de Talca, Talca, Chile.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Rubén Palma-Millanao
- Centre in Molecular and Functional Ecology, Universidad de Talca, Talca, Chile.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
5
|
Identification and characterization of chemosensory gene families in the bark beetle, Tomicus yunnanensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 25:73-85. [DOI: 10.1016/j.cbd.2017.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/23/2022]
|
6
|
Yang H, Cai Y, Zhuo Z, Yang W, Yang C, Zhang J, Yang Y, Wang B, Guan F. Transcriptome analysis in different developmental stages of Batocera horsfieldi (Coleoptera: Cerambycidae) and comparison of candidate olfactory genes. PLoS One 2018; 13:e0192730. [PMID: 29474419 PMCID: PMC5825065 DOI: 10.1371/journal.pone.0192730] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/29/2018] [Indexed: 11/29/2022] Open
Abstract
The white-striped longhorn beetle Batocera horsfieldi (Coleoptera: Cerambycidae) is a polyphagous wood-boring pest that causes substantial damage to the lumber industry. Moreover olfactory proteins are crucial components to function in related processes, but the B. horsfieldi genome is not readily available for olfactory proteins analysis. In the present study, developmental transcriptomes of larvae from the first instar to the prepupal stage, pupae, and adults (females and males) from emergence to mating were built by RNA sequencing to establish a genetic background that may help understand olfactory genes. Approximately 199 million clean reads were obtained and assembled into 171,664 transcripts, which were classified into 23,380, 26,511, 22,393, 30,270, and 87, 732 unigenes for larvae, pupae, females, males, and combined datasets, respectively. The unigenes were annotated against NCBI’s non-redundant nucleotide and protein sequences, Swiss-Prot, Gene Ontology (GO), Pfam, Clusters of Eukaryotic Orthologous Groups (KOG), and KEGG Orthology (KO) databases. A total of 43,197 unigenes were annotated into 55 sub-categories under the three main GO categories; 25,237 unigenes were classified into 26 functional KOG categories, and 25,814 unigenes were classified into five functional KEGG Pathway categories. RSEM software identified 2,983, 3,097, 870, 2,437, 5,161, and 2,882 genes that were differentially expressed between larvae and males, larvae and pupae, larvae and females, males and females, males and pupae, and females and pupae, respectively. Among them, genes encoding seven candidate odorant binding proteins (OBPs) and three chemosensory proteins (CSPs) were identified. RT-PCR and RT-qPCR analyses showed that BhorOBP3, BhorCSP2, and BhorOBPC1/C3/C4 were highly expressed in the antenna of males, indicating these genes may may play key roles in foraging and host-orientation in B. horsfieldi. Our results provide valuable molecular information about the olfactory system in B. horsfieldi and will help guide future functional studies on olfactory genes.
Collapse
Affiliation(s)
- Hua Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Cai
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhihang Zhuo
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
- * E-mail:
| | - Chunping Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jin Zhang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yang Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Baoxin Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, China
| | - Fengrong Guan
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Bin SY, Qu MQ, Li KM, Peng ZQ, Wu ZZ, Lin JT. Antennal and abdominal transcriptomes reveal chemosensory gene families in the coconut hispine beetle, Brontispa longissima. Sci Rep 2017; 7:2809. [PMID: 28584273 PMCID: PMC5459851 DOI: 10.1038/s41598-017-03263-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/25/2017] [Indexed: 11/09/2022] Open
Abstract
Antennal and abdominal transcriptomes of males and females of the coconut hispine beetle Brontispa longissima were sequenced to identify and compare the expression patterns of genes involved in odorant reception and detection. Representative proteins from the chemosensory gene families likely essential for insect olfaction were identified. These include 48 odorant receptors (ORs), 19 ionotropic receptors (IRs), 4 sensory neuron membrane proteins (SNMPs), 34 odorant binding proteins (OBPs) and 16 chemosensory proteins (CSPs). Phylogenetic analysis revealed the evolutionary relationship of these proteins with homologs from Coleopterans or other insects, and led to the identification of putative aggregation pheromone receptors in B. longissima. Comparative expression analysis performed by calculating FPKM values were also validated using quantitative real time-PCR (qPCR). The results revealed that all ORs and antennal IRs, two IR co-receptors (BlonIR8a and BlonIR25a) and one SNMP (BlonSNMP1a) were predominantly expressed in antennae when compared to abdomens, and approximately half of the OBPs (19) and CSPs (7) were enriched in antennae. These findings for the first time reveal the identification of key molecular components in B. longissima olfaction and provide a valuable resource for future functional analyses of olfaction, and identification of potential targets to control this quarantine pest.
Collapse
Affiliation(s)
- Shu-Ying Bin
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Meng-Qiu Qu
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Ke-Ming Li
- Institute of Banana and Plantain, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, PR China.,Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570101, PR China
| | - Zheng-Qiang Peng
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570101, PR China
| | - Zhong-Zhen Wu
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China.
| | - Jin-Tian Lin
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China.
| |
Collapse
|
8
|
Yan W, Liu L, Qin W, Luo Y, Ma X, Haider N, Inayeh M. Identification and tissue expression profiling of odorant binding protein genes in the red palm weevil, Rhynchophorus ferrugineus. SPRINGERPLUS 2016; 5:1542. [PMID: 27652115 PMCID: PMC5020018 DOI: 10.1186/s40064-016-3198-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/01/2016] [Indexed: 11/16/2022]
Abstract
Background The red palm weevil, Rhynchophorus ferrugineus, is a lethal pest of the palms. The identification of odorant binding protein (OBP) genes will be helpful for clarifing the mechanism of odorant detection of this pest. By sequencing the full length cDNA library of its antenne, 11 OBP genes (RferOBP1-11) were identified. Findings The result showed RferOBP1-7 and RferOBP8-11 belonged to the minus-C and classic family, respectively qPCR revealed that RferOBP1-10 highly transcribed in the antennae, of which RferOBP1, RferOBP4, RferOBP8 and RferOBP10 were obviously male-biased expression. RferOBP7 and RferOBP11 exhibited highly expression in female head and male thorax. RferOBP2, RferOBP5 and RferOBP6 were highly expressed in the female thorax, leg and abdomen respectively. Conclusions The results paved the way towards a future understanding of the olfaction in this species.
Collapse
Affiliation(s)
- Wei Yan
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083 China ; Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571339 China
| | - Li Liu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571339 China
| | - Weiquan Qin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571339 China
| | - Youqing Luo
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083 China
| | - Xuezhong Ma
- China-Arab Date Palm Research Center, Ningxia, 750001 China
| | - Nabil Haider
- China-Arab Date Palm Research Center, Ningxia, 750001 China
| | - Muhanad Inayeh
- China-Arab Date Palm Research Center, Ningxia, 750001 China
| |
Collapse
|
9
|
Wu Z, Bin S, He H, Wang Z, Li M, Lin J. Differential Expression Analysis of Chemoreception Genes in the Striped Flea Beetle Phyllotreta striolata Using a Transcriptomic Approach. PLoS One 2016; 11:e0153067. [PMID: 27064483 PMCID: PMC4827873 DOI: 10.1371/journal.pone.0153067] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/23/2016] [Indexed: 11/20/2022] Open
Abstract
Olfactory transduction is a process by which olfactory sensory neurons (OSNs) transform odor information into neuronal electrical signals. This process begins with the binding of odor molecules to receptor proteins on olfactory receptor neuron (ORN) dendrites. The major molecular components involved in olfaction include odorant-binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), gustatory receptors (GRs), ionotropic receptors (IRs), sensory neuron membrane proteins (SNMPs) and odorant-degrading enzymes (ODEs). More importantly, as potential molecular targets, chemosensory proteins are used to identify novel attractants or repellants for environmental-friendly pest management. In this study we analyzed the transcriptome of the flea beetle, Phyllotreta striolata (Coleoptera, Chrysomelidae), a serious pest of Brassicaceae crops, to better understand the molecular mechanisms of olfactory recognition in this pest. The analysis of transcriptomes from the antennae and terminal abdomens of specimens of both sexes identified transcripts from several key molecular components of chemoreception including 73 ORs, 36 GRs, 49 IRs, 2 SNMPs, 32 OBPs, 8 CSPs, and four candidate odorant degrading enzymes (ODEs): 143 cytochrome P450s (CYPs), 68 esterases (ESTs), 27 glutathione S-transferases (GSTs) and 8 UDP-glycosyltransferases (UGTs). Bioinformatic analyses indicated that a large number of chemosensory genes were up-regulated in the antennae. This was consistent with a potential role in olfaction. To validate the differential abundance analyses, the expression of 19 genes encoding various ORs, CSPs, and OBPs was assessed via qRT-PCR between non-chemosensory tissue and antennae. Consistent with the bioinformatic analyses, transcripts for all of the genes in the qRT-PCR subset were elevated in antennae. These findings provide the first insights into the molecular basis of chemoreception in the striped flea beetle.
Collapse
Affiliation(s)
- Zhongzhen Wu
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Shuying Bin
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Hualiang He
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Zhengbing Wang
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Mei Li
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Jintian Lin
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
- * E-mail:
| |
Collapse
|
10
|
Chemosensory gene families in adult antennae of Anomala corpulenta Motschulsky (Coleoptera: Scarabaeidae: Rutelinae). PLoS One 2015; 10:e0121504. [PMID: 25856077 PMCID: PMC4391716 DOI: 10.1371/journal.pone.0121504] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 01/20/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The metallic green beetle, Anomala corpulenta (Coleoptera: Scarabaeidae: Rutelinae), is a destructive pest in agriculture and horticulture throughout Asia, including China. Olfaction plays a crucial role in the survival and reproduction of A. corpulenta. As a non-model species, A. corpulenta is poorly understood, and information regarding the molecular mechanisms underlying olfaction in A. corpulenta and other scarab species is scant. METHODOLOGY/PRINCIPLE FINDINGS We assembled separate antennal transcriptome for male and female A. corpulenta using Illumina sequencing technology. The relative abundance of transcripts with gene ontology annotations, including those related to olfaction in males and females was highly similar. Transcripts encoding 15 putative odorant binding proteins, five chemosensory proteins, one sensory neuron membrane protein, 43 odorant receptors, eight gustatory receptors, and five ionotropic receptors were identified. The sequences of all of these chemosensory-related transcripts were confirmed using reverse transcription polymerase chain reaction (RT-PCR), and direct DNA sequencing. The expression patterns of 54 putative chemosensory genes were analyzed using quantitative real time RT-PCR (qRT-PCR). Antenna-specific expression was detected for many of these genes, suggesting that they may have important functions in semiochemical detection. CONCLUSIONS The identification of a large number of chemosensory proteins provides a major resource for the study of the molecular mechanism of odorant detection in A. corpulenta and its chemical ecology. The genes identified, especially those that were expressed at high levels in the antennae may represent novel molecular targets for the development of population control strategies based on the manipulation of chemoreception-driven behaviors.
Collapse
|
11
|
Zhang S, Pang B, Zhang L. Novel odorant-binding proteins and their expression patterns in grasshopper, Oedaleus asiaticus. Biochem Biophys Res Commun 2015; 460:274-80. [PMID: 25778868 DOI: 10.1016/j.bbrc.2015.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/05/2015] [Indexed: 12/11/2022]
Abstract
Insects use olfaction to detect exogenous odors and adapt to environments. In their olfaction systems, odorant-binding proteins (OBPs) are believed to be a key component. The unique OBP system of each species reflects the evolution of chemosensation of insects with habits. Here, we for the first time identified 15 OBPs, OasiOBP1-15, of a grasshopper, Oedaleus asiaticus, that lives in the grasslands of Northern China and is closely related to the locust, Locusta migratoria. OasiOBP9 and OasiOBP10 are specifically expressed in the antennae. Other OBPs are expressed in the antennae as well as other chemosensory organs, such as the mouthparts and wings. Significantly more OasiOBP7 was detected in male than female antennae, but there are 9 OBPs that were more expressed in female than male antennae by quantitative real-time PCR. Phylogenetic analysis indicated that most of the O. asiaticus OBPs are similar to those of L. migratoria, but some are substantially different. This indicates that the OBPs originally evolved in a common ancestor, but their unique chemosensory systems are adapted to different ecosystems.
Collapse
Affiliation(s)
- Shuo Zhang
- Research Center for Grassland Entomology, Inner Mongolia Agriculture University, Hohhot, Inner Mongolia 010019, China
| | - Baoping Pang
- Research Center for Grassland Entomology, Inner Mongolia Agriculture University, Hohhot, Inner Mongolia 010019, China.
| | - Long Zhang
- Key Lab for Biological Control of The Ministry of Agriculture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Ju Q, Li X, Jiang XJ, Qu MJ, Guo XQ, Han ZJ, Li F. Transcriptome and tissue-specific expression analysis of Obp and Csp genes in the dark black chafer. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 87:177-200. [PMID: 25099623 DOI: 10.1002/arch.21188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The dark black chafer, Holotrichia parallela, is an economically important pest in China and worldwide. Traps based on chemical communication are being developed as an alternative control measure to pesticides for this pest, and studies to reveal chemical communication mechanisms in this pest are highly desirable. To systematically analyze genes potentially involved in chemical communication in this pest, we generated a comprehensive transcriptome with combined samples derived from multiple tissues and developmental stages. A total of 43,967 nonredundant sequences (unigenes) with average length of 806 bp were obtained. These unigenes were annotated into different pathways using gene ontology analysis and cluster analysis of orthologous groups of proteins, and kyoto encyclopedia of genes and genomes. In total, 25 transcripts encoding odorant-binding proteins (OBPs) and 16 transcripts encoding chemosensory proteins (CSPs) were identified based on homology searches. Tissue-specific expression profile indicates that OBP17 and CSP7 are likely responsible for male sex pheromone recognition, whereas OBP1-4, OBP9, OBP13-14, OBP17-18, OBP20, OBP22, OBP25, CSP1-7, CSP11, and CSP12-15 are likely responsible for chemical communication between the beetle and environments. Our data shall provide a foundation for further research on the molecular aspects of chemical communication of this insect, and for comparative genomic studies with other species.
Collapse
Affiliation(s)
- Qian Ju
- Shandong Peanut Research Institute, Qingdao City, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Liu GX, Xuan N, Chu D, Xie HY, Fan ZX, Bi YP, Picimbon JF, Qin YC, Zhong ST, Li YF, Gao ZL, Pan WL, Wang GY, Rajashekar B. Biotype expression and insecticide response of Bemisia tabaci chemosensory protein-1. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 85:137-151. [PMID: 24478049 DOI: 10.1002/arch.21148] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Chemosensory proteins (CSPs) are a group of small soluble proteins found so far exclusively in arthropod species. These proteins act in chemical communication and perception. In this study, a gene encoding the Type 1 CSP (BtabCSP1) from the agricultural pest Bemisia tabaci (whitefly) was analyzed to understand sequence variation and expression specificity in different biotypes. Sequence analysis of BtabCSP1 showed significant differences between the two genetically characterized biotypes, B and Q. The B-biotype had a larger number of BtabCSP1 mutations than the Q-biotype. Similar to most other CSPs, BtabCSP1 was more expressed in the head than in the rest of the body. One-step RT-PCR and qPCR analysis on total messenger RNA showed that biotype-Q had higher BtabCSP1 expression levels than biotype-B. Females from a mixed field-population had high levels of BtabCSP1 expression. The interaction of BtabCSP1 with the insecticide thiamethoxam was investigated by analyzing the BtabCSP1 expression levels following exposure to the neonicotinoid, thiamethoxam, in a time/dose-response study. Insecticide exposure increased BtabCSP1 expression (up to tenfold) at 4 and 24 h following 50 or 100 g/ml treatments.
Collapse
Affiliation(s)
- Guo Xia Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory for Genetic Improvement Cultivation and Physiology of Crops, Jinan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vogel H, Badapanda C, Knorr E, Vilcinskas A. RNA-sequencing analysis reveals abundant developmental stage-specific and immunity-related genes in the pollen beetle Meligethes aeneus. INSECT MOLECULAR BIOLOGY 2014; 23:98-112. [PMID: 24252113 DOI: 10.1111/imb.12067] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The pollen beetle (Meligethes aeneus) is a major pest of oilseed rape (Brassica napus) and other cruciferous crops in Europe. Pesticide-resistant pollen beetle populations are emerging, increasing the economic impact of this species. We isolated total RNA from the larval and adult stages, the latter either naïve or immunized by injection with bacteria and yeast. High-throughput RNA sequencing (RNA-Seq) was carried out to establish a comprehensive transcriptome catalogue and to screen for developmental stage-specific and immunity-related transcripts. We assembled the transcriptome de novo by combining sequence tags from all developmental stages and treatments. Gene expression data based on normalized read counts revealed several functional gene categories that were differentially expressed between larvae and adults, particularly genes associated with digestion and detoxification that were induced in larvae, and genes associated with reproduction and environmental signalling that were induced in adults. We also identified many genes associated with microbe recognition, immunity-related signalling and defence effectors, such as antimicrobial peptides (AMPs) and lysozymes. Digital gene expression analysis revealed significant differences in the profile of AMPs expressed in larvae, naïve adults and immune-challenged adults, providing insight into the steady-state differences between developmental stages and the complex transcriptional remodelling that occurs following the induction of immunity. Our data provide insight into the adaptive mechanisms used by phytophagous insects and could lead to the development of more effective control strategies for insect pests.
Collapse
Affiliation(s)
- H Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | | | |
Collapse
|
15
|
Keeling CI, Henderson H, Li M, Dullat HK, Ohnishi T, Bohlmann J. CYP345E2, an antenna-specific cytochrome P450 from the mountain pine beetle, Dendroctonus ponderosae Hopkins, catalyses the oxidation of pine host monoterpene volatiles. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:1142-1151. [PMID: 24139909 DOI: 10.1016/j.ibmb.2013.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/27/2013] [Accepted: 10/02/2013] [Indexed: 06/02/2023]
Abstract
The mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins) is a significant pest of western North American pine forests. This beetle responds to pheromones and host volatiles in order to mass attack and thus overcome the terpenoid chemical defences of its host. The ability of MPB antennae to rapidly process odorants is necessary to avoid odorant receptor saturation and thus the enzymes responsible for odorant clearance are an important aspect of host colonization. An antenna-specific cytochrome P450, DponCYP345E2, is the most highly expressed transcript in adult MPB antenna. In in vitro assays with recombinant enzyme, DponCYP345E2 used several pine host monoterpenes as substrates, including (+)-(3)-carene, (+)-β-pinene, (-)-β-pinene, (+)-limonene, (-)-limonene, (-)-camphene, (+)-α-pinene, (-)-α-pinene, and terpinolene. The substrates were epoxidized or hydroxylated, depending upon the substrate. To complement DponCYP345E2, we also functionally characterized the NADPH-dependent cytochrome P450 reductase and the cytochrome b5 from MPB. DponCYP345E2 is the first cytochrome P450 to be functionally characterized in insect olfaction and in MPB.
Collapse
Affiliation(s)
- Christopher I Keeling
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1A4.
| | | | | | | | | | | |
Collapse
|
16
|
Zhu JY, Zhang LF, Ze SZ, Wang DW, Yang B. Identification and tissue distribution of odorant binding protein genes in the beet armyworm, Spodoptera exigua. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:722-728. [PMID: 23499610 DOI: 10.1016/j.jinsphys.2013.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/24/2013] [Accepted: 02/26/2013] [Indexed: 06/01/2023]
Abstract
Odorant binding proteins (OBPs) contribute to the remarkable sensitivity of the insect's olfactory system and play an important role in insect chemical communication. In this study, we identified 11 putative cDNAs encoding OBPs (namely SexiOBP1-11) from the antennal full length cDNA library of the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) and examined their expression profiles in different adult body tissues (antennae, heads, thoraxes, abdomens, legs and wings) by real-time quantitative PCR (qPCR). All SexiOBPs had the characteristic typical features of the OBP family, with the exception of SexiOBP11, which lacked the predicted signal peptide sequence at the N-terminus. qPCR revealed that all of these genes were highly transcribed in the antennae. SexiOBP1-4 and SexiOBP10 were dominantly restricted to antennae. Within antennae, SexiOBP2-4 and SexiOBP10 exhibited female-biased expression patterns, while the expression of SexiOBP7 was male-biased, indicating that they might be involved in interacting with sex pheromones. In general, these OBPs were mainly expressed in chemosensory-specific tissues, although some displayed non-chemosensory or ubiquitous tissue expression. The data is helpful for further determining the potential physiological functions of S. exigua OBPs, and paves the way towards a better understanding of the chemosensory perception of this pest, which may help to uncover new targets for behavioral interference used as a control strategy.
Collapse
Affiliation(s)
- Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | | | | | | | | |
Collapse
|
17
|
Mamidala P, Wijeratne AJ, Wijeratne S, Poland T, Qazi SS, Doucet D, Cusson M, Beliveau C, Mittapalli O. Identification of odor-processing genes in the emerald ash borer, Agrilus planipennis. PLoS One 2013; 8:e56555. [PMID: 23424668 PMCID: PMC3570424 DOI: 10.1371/journal.pone.0056555] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 01/15/2013] [Indexed: 01/13/2023] Open
Abstract
Background Insects rely on olfaction to locate food, mates, and suitable oviposition sites for successful completion of their life cycle. Agrilus planipennis Fairmaire (emerald ash borer) is a serious invasive insect pest that has killed tens of millions of North American ash (Fraxinus spp) trees and threatens the very existence of the genus Fraxinus. Adult A. planipennis are attracted to host volatiles and conspecifics; however, to date no molecular knowledge exists on olfaction in A. planipennis. Hence, we undertook an antennae-specific transcriptomic study to identify the repertoire of odor processing genes involved in A. planipennis olfaction. Methodology and Principal Findings We acquired 139,085 Roche/454 GS FLX transcriptomic reads that were assembled into 30,615 high quality expressed sequence tags (ESTs), including 3,249 isotigs and 27,366 non-isotigs (contigs and singletons). Intriguingly, the majority of the A. planipennis antennal transcripts (59.72%) did not show similarity with sequences deposited in the non-redundant database of GenBank, potentially representing novel genes. Functional annotation and KEGG analysis revealed pathways associated with signaling and detoxification. Several odor processing genes (9 odorant binding proteins, 2 odorant receptors, 1 sensory neuron membrane protein and 134 odorant/xenobiotic degradation enzymes, including cytochrome P450s, glutathione-S-transferases; esterases, etc.) putatively involved in olfaction processes were identified. Quantitative PCR of candidate genes in male and female A. planipennis in different developmental stages revealed developmental- and sex-biased expression patterns. Conclusions and Significance The antennal ESTs derived from A. planipennis constitute a rich molecular resource for the identification of genes potentially involved in the olfaction process of A. planipennis. These findings should help in understanding the processing of antennally-active compounds (e.g. 7-epi-sesquithujene) previously identified in this serious invasive pest.
Collapse
Affiliation(s)
- Praveen Mamidala
- Department of Entomology, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, Ohio, United States of America
| | - Asela J. Wijeratne
- Department of Molecular and Cellular Imaging Center, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, Ohio, United States of America
| | - Saranga Wijeratne
- Department of Molecular and Cellular Imaging Center, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, Ohio, United States of America
| | - Therese Poland
- USDA Forest Service, Northern Research Station, Michigan State University, East Lansing, Michigan, United States of America
| | - Sohail S. Qazi
- Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
| | - Daniel Doucet
- Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
| | | | | | - Omprakash Mittapalli
- Department of Entomology, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, Ohio, United States of America
- * E-mail:
| |
Collapse
|
18
|
Zhu JY, Yang P, Zhang Z, Wu GX, Yang B. Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani. PLoS One 2013; 8:e54411. [PMID: 23342153 PMCID: PMC3544796 DOI: 10.1371/journal.pone.0054411] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/13/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE) analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. METHODOLOGY/PRINCIPAL FINDINGS In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26%) showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. CONCLUSIONS/SIGNIFICANCE obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular understanding of the host-parasitoid interaction.
Collapse
Affiliation(s)
- Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China.
| | | | | | | | | |
Collapse
|