1
|
Kweon DY, Song HJ, Kim JE, Jin YJ, Roh YJ, Seol A, Park JM, Lee ES, Choi WS, Hwang DY. Therapeutic Effects of Aloe saponaria against Ulcerative Colitis Induced by Dextran Sulfate Sodium. Curr Issues Mol Biol 2023; 45:1483-1499. [PMID: 36826041 PMCID: PMC9955819 DOI: 10.3390/cimb45020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/14/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Aloe vera (A. vera) has been studied as a treatment option for ulcerative colitis (UC), but there is a lack of scientific evidence showing whether treatment with Aloe saponaria (A. saponaria) can also be beneficial. To investigate the therapeutic potential of A. saponaria as a treatment for UC, clinical symptoms, histopathological characteristics of the colon, inflammatory response, and toxicity were analyzed in dextran sulfate sodium (DSS)-induced UC mice after administration of aqueous extracts of A. saponaria (AAS) for 7 days. The total polyphenol and tannin content of AAS was 272 µg/g and 163 µg/g, respectively. AAS exhibited significant antioxidant activity. Several clinical symptoms, including body weight, colon length, and hematochezia, remarkably improved in the DSS+AAS treated group compared to the DSS+Vehicle-treated group. In addition, similar improvements were detected in the histopathological characteristics and mucin-secreting ability in the colon of DSS-induced UC mice after the administration of AAS. The levels of infiltrated inflammatory cells and cytokine expression were significantly decreased in a dose-dependent manner in the colon of the DSS+AAS-treated group. These alterations in inflammatory response were accompanied by a significant recovery of the protein kinase C/extracellular signal-regulated kinase (PKC/ERK) and phosphatidylinositol-3-kinase/serine-threonine protein kinase (PI3K/Akt) signaling pathways. However, the levels of key markers for hepatotoxicity and nephrotoxicity consistently remained between those of the DSS+AAS-treated and the No groups. Therefore, the results of the present study provide novel evidence that AAS may improve the clinical symptoms and attenuate the inflammatory response in DSS-induced UC mice and does not have any significant hepatotoxicity or nephrotoxicity.
Collapse
Affiliation(s)
- Do Yeong Kweon
- Department of Bio-Industrial Machinery Engineering/Life, Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hee Jin Song
- Department of Biomaterials Science (BK21 FOUR Program)/Life, Industry Convergence Research Institute, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life, Industry Convergence Research Institute, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - You Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program)/Life, Industry Convergence Research Institute, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yu Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program)/Life, Industry Convergence Research Institute, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program)/Life, Industry Convergence Research Institute, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ju Min Park
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan 46241, Republic of Korea
| | - Eun Suk Lee
- Department of Bio-Industrial Machinery Engineering/Life, Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Won Sik Choi
- Department of Bio-Industrial Machinery Engineering/Life, Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program)/Life, Industry Convergence Research Institute, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Correspondence:
| |
Collapse
|
2
|
Li W, LibinWeng. Examination on Risk Factors of Infertility Caused by EMT and Their Correlation with VEGF, TNF- α, IL-6, IL-10, and IL-17. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4421418. [PMID: 36159171 PMCID: PMC9489410 DOI: 10.1155/2022/4421418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 12/01/2022]
Abstract
In order to explore the risk factors of infertility caused by endometriosis (EMT) and their correlation with vascular endothelial growth factor (VEGF), TNF-α, IL-6, IL-10, and IL-17, endometriosis sufferers admitted to our hospital from January 2021 to May 2022 are selected to conduct the examination. According to the pregnancy of patients, patients were included in the simple EMT set and EMT combined infertility set, with 50 cases in each group. The degree of dysmenorrhea is evaluated by the VAS score, and Luminex liquid protein is used to analyze the standards of the tumor necrosis factor (TNF-A), interleukin (IL)-10, IL-6, IL-17, and VEGF. Logistic multifactor regression decomposition is applied to analyze the risk factors of infertility in EMT sufferers. Besides, the standards of VEGF, TNF-α, IL-6, IL-10, and IL-17 in sufferers with different periods/agony degrees are evaluated, and the correlation of different periods/agony degrees with VEGF, TNF-α, IL-6, IL-10, and IL-17 is analyzed. The results show that the different R-AFS periods are notoriously positively correlated with VEGF, TNF-α, IL-6, IL-10, and IL-17 (all P < 0.05), and the VAS score is notoriously positively correlated with the abovementioned factors.
Collapse
Affiliation(s)
- Wei Li
- Affiliated People's Hospital of Ningbo University, Ningbo 315040, China
| | - LibinWeng
- Ningbo Haishu District Third Hospital, Ningbo 315171, China
| |
Collapse
|
3
|
O'Donnell MM, Hegarty JW, Healy B, Schulz S, Walsh CJ, Hill C, Ross RP, Rea MC, Farquhar R, Chesnel L. Identification of ADS024, a newly characterized strain of Bacillus velezensis with direct Clostridiodes difficile killing and toxin degradation bio-activities. Sci Rep 2022; 12:9283. [PMID: 35662257 PMCID: PMC9166764 DOI: 10.1038/s41598-022-13248-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/23/2022] [Indexed: 12/30/2022] Open
Abstract
Clostridioides difficile infection (CDI) remains a significant health threat worldwide. C. difficile is an opportunistic, toxigenic pathogen that takes advantage of a disrupted gut microbiome to grow and produce signs and symptoms ranging from diarrhea to pseudomembranous colitis. Antibiotics used to treat C. difficile infection are usually broad spectrum and can further disrupt the commensal gut microbiota, leaving patients susceptible to recurrent C. difficile infection. There is a growing need for therapeutic options that can continue to inhibit the outgrowth of C. difficile after antibiotic treatment is completed. Treatments that degrade C. difficile toxins while having minimal collateral impact on gut bacteria are also needed to prevent recurrence. Therapeutic bacteria capable of producing a range of antimicrobial compounds, proteases, and other bioactive metabolites represent a potentially powerful tool for preventing CDI recurrence following resolution of symptoms. Here, we describe the identification and initial characterization of ADS024 (formerly ART24), a novel therapeutic bacterium that can kill C. difficile in vitro with limited impact on other commensal bacteria. In addition to directly killing C. difficile, ADS024 also produces proteases capable of degrading C. difficile toxins, the drivers of symptoms associated with most cases of CDI. ADS024 is in clinical development for the prevention of CDI recurrence as a single-strain live biotherapeutic product, and this initial data set supports further studies aimed at evaluating ADS024 in future human clinical trials.
Collapse
Affiliation(s)
| | - James W Hegarty
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Brian Healy
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sarah Schulz
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Calum J Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | |
Collapse
|
4
|
Sun Y, Koyama Y, Shimada S. Measurement of intraluminal pH changes in the gastrointestinal tract of mice with gastrointestinal diseases. Biochem Biophys Res Commun 2022; 620:129-134. [DOI: 10.1016/j.bbrc.2022.06.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
|
5
|
Mahalhal A, Burkitt MD, Duckworth CA, Hold GL, Campbell BJ, Pritchard DM, Probert CS. Long-Term Iron Deficiency and Dietary Iron Excess Exacerbate Acute Dextran Sodium Sulphate-Induced Colitis and Are Associated with Significant Dysbiosis. Int J Mol Sci 2021; 22:3646. [PMID: 33807459 PMCID: PMC8037348 DOI: 10.3390/ijms22073646] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Oral iron supplementation causes gastrointestinal side effects. Short-term alterations in dietary iron exacerbate inflammation and alter the gut microbiota, in murine models of colitis. Patients typically take supplements for months. We investigated the impact of long-term changes in dietary iron on colitis and the microbiome in mice. METHODS We fed mice chow containing differing levels of iron, reflecting deficient (100 ppm), normal (200 ppm), and supplemented (400 ppm) intake for up to 9 weeks, both in absence and presence of dextran sodium sulphate (DSS)-induced chronic colitis. We also induced acute colitis in mice taking these diets for 8 weeks. Impact was assessed (i) clinically and histologically, and (ii) by sequencing the V4 region of 16S rRNA. RESULTS In mice with long-term changes, the iron-deficient diet was associated with greater weight loss and histological inflammation in the acute colitis model. Chronic colitis was not influenced by altering dietary iron however there was a change in the microbiome in DSS-treated mice consuming 100 ppm and 400 ppm iron diets, and control mice consuming the 400 ppm iron diet. Proteobacteria levels increased significantly, and Bacteroidetes levels decreased, in the 400 ppm iron DSS group at day-63 compared to baseline. CONCLUSIONS Long-term dietary iron alterations affect gut microbiota signatures but do not exacerbate chronic colitis, however acute colitis is exacerbated by such dietary changes. More work is needed to understand the impact of iron supplementation on IBD. The change in the microbiome, in patients with colitis, may arise from the increased luminal iron and not simply from colitis.
Collapse
Affiliation(s)
- Awad Mahalhal
- Department of Molecular and Cellular Cancer Medicine, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Liverpool L69 3GE, UK; (A.M.); (D.M.P.)
- Department of Anatomy and Histology, Faculty of Medicine, Benghazi University, Benghazi, Libya
| | - Michael D. Burkitt
- Division of Diabetes Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Carrie A. Duckworth
- Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK;
| | - Georgina L. Hold
- Microbiome Research Centre, St George & Sutherland Clinical School, Clinical Sciences (Pitney) Building, University of New South Wales Sydney, Kogarah, NSW 2217, Australia;
| | - Barry J. Campbell
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GE, UK;
| | - David Mark Pritchard
- Department of Molecular and Cellular Cancer Medicine, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Liverpool L69 3GE, UK; (A.M.); (D.M.P.)
| | - Chris S. Probert
- Department of Molecular and Cellular Cancer Medicine, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Liverpool L69 3GE, UK; (A.M.); (D.M.P.)
| |
Collapse
|
6
|
Nutrition, Health, and Disease: Role of Selected Marine and Vegetal Nutraceuticals. Nutrients 2020; 12:nu12030747. [PMID: 32168971 PMCID: PMC7146393 DOI: 10.3390/nu12030747] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
The investigation of new alternatives for disease prevention through the application of findings from dietary and food biotechnology is an ongoing challenge for the scientific community. New nutritional trends and the need to meet social and health demands have inspired the concept of functional foods and nutraceuticals which, in addition to their overall nutritional value, present certain properties for the maintenance of health. However, these effects are not universal. Nutrigenetics describes how the genetic profile has an impact on the response of the body to bioactive food components by influencing their absorption, metabolism, and site of action. The EbioSea Program, for biomarine prospection, and the Blue Butterfly Program, for the screening of vegetable-derived bioproducts, have identified a new series of nutraceuticals, devoid of side effects at conventional doses, with genotype-dependent preventive and therapeutic activity. Nutrigenomics and nutrigenetics provide the opportunity to explore the inter-individual differences in the metabolism of and response to nutrients, achieving optimal results. This fact leads to the concept of personalized nutrition as opposed to public health nutrition. Consequently, the development and prescription of nutraceuticals according to the individual genetic profile is essential to improve their effectiveness in the prevention and natural treatment of prevalent diseases.
Collapse
|
7
|
Chen W, Fan H, Liang R, Zhang R, Zhang J, Zhu J. Taraxacum officinale extract ameliorates dextran sodium sulphate-induced colitis by regulating fatty acid degradation and microbial dysbiosis. J Cell Mol Med 2019; 23:8161-8172. [PMID: 31565850 PMCID: PMC6850927 DOI: 10.1111/jcmm.14686] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
Numerous data show that taraxacum officinale extract (TOE) exerts protective effects on inflammatory diseases. However, the underlying mechanisms by which TOE affects dextran sulphate sodium (DSS)-induced colitis remain unclear. After DSS-induced colitis were treated with different concentrations of TOE for 8 days, the bodyweight, disease activity index (DAI), colon lengths and pathological scoring were assessed, and histopathological examination was confirmed by HE staining. Furthermore, a transcriptome sequencing was performed by using the colon tissues between TOE and DSS groups, and the differentially expressed genes were conducted for the Kyoto Encyclopaedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA) and were validated by qRT-PCR and immunohistochemistry analysis. In addition, a 16S rDNA sequencing was carried out to distinguish the differential gut microbiota by using the mouse faecal samples between TOE and DSS groups. We found that TOE attenuated the clinical symptoms, lowered the inflammatory scoring and inhibited the secretion of proinflammatory factors TNF-α, IL-1β and IL-6 in DSS-induced colitis. KEGG and GSEA analysis demonstrated that fatty acid degradation and cytokine-receptor signalling were predominantly enriched in TOE-treated colitis as compared with the DSS group. Further investigations revealed that TOE increased the expression levels of Adh5, Aldh3a2 and Acox3, but decreased those of CCL20, CCR6 and CXCL1/5 in DSS-induced colitis, where TOE also induced the enrichment of S24-7 and adlercreutzia, but decreased the amount of anaerostipes, enterococcus, enterobacteriaceae and peptostreptococcaceae. In conclusion, TOE ameliorated DSS-induced colitis by regulating fatty acid degradation and microbial dysbiosis.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Huining Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Liang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinshui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
8
|
Network pharmacology-based identification of the protective mechanisms of taraxasterol in experimental colitis. Int Immunopharmacol 2019; 71:259-266. [DOI: 10.1016/j.intimp.2019.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/09/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022]
|
9
|
Role of bioactive lipofishins in prevention of inflammation and colon cancer. Semin Cancer Biol 2019; 56:175-184. [DOI: 10.1016/j.semcancer.2017.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023]
|
10
|
Li YH, Adam R, Colombel JF, Bian ZX. A characterization of pro-inflammatory cytokines in dextran sulfate sodium-induced chronic relapsing colitis mice model. Int Immunopharmacol 2018; 60:194-201. [DOI: 10.1016/j.intimp.2018.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022]
|
11
|
Yu XT, Xu YF, Huang YF, Qu C, Xu LQ, Su ZR, Zeng HF, Zheng L, Yi TG, Li HL, Chen JP, Zhang XJ. Berberrubine attenuates mucosal lesions and inflammation in dextran sodium sulfate-induced colitis in mice. PLoS One 2018; 13:e0194069. [PMID: 29538417 PMCID: PMC5851626 DOI: 10.1371/journal.pone.0194069] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 02/25/2018] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing disease without satisfactory treatments, in which intestinal inflammation and disrupted intestinal epithelial barrier are two main pathogeneses triggering UC. Berberrubine (BB) is deemed as one of the major active metabolite of berberine (BBR), a naturally-occurring isoquinoline alkaloid with appreciable anti-UC effect. This study aimed to comparatively investigate the therapeutic effects of BB and BBR on dextran sodium sulfate (DSS)-induced mouse colitis model, and explore the potential underlying mechanism. Results revealed that BB (20 mg/kg) produced a comparable therapeutic effect as BBR (50 mg/kg) and positive control sulfasalazine (200 mg/kg) by significantly reducing the disease activity index (DAI) with prolonged colon length and increased bodyweight as compared with the DSS group. BB treatment was shown to significantly ameliorate the DSS-induced colonic pathological alternations and decreased histological scores. In addition, BB markedly attenuated colonic inflammation by alleviating inflammatory cell infiltration and inhibiting myeloperoxidase (MPO) and cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-4 and IL-10) productions in DSS mice. Furthermore, BB treatment substantially upregulated the expression of tight junction (TJ) proteins (zonula occludens-1, zonula occludens-2, claudin-1, occludin) and mRNA expression of mucins (mucin-1 and mucin-2), and decreased the Bax/Bcl-2 ratio. In summary, BB exerted similar effect to its analogue BBR and positive control in attenuating DSS-induced UC with much lower dosage and similar mechanism. The protective effect observed may be intimately associated with maintaining the integrity of the intestinal mucosal barrier and mitigating intestinal inflammation, which were mediated at least partially, via favorable modulation of TJ proteins and mucins and inhibition of inflammatory mediators productions in the colonic tissue. This is the first report to demonstrate that BB possesses pronounced anti-UC effect similar to BBR and sulfasalazine with much smaller dosage. BB might have the potential to be further developed into a promising therapeutic option in the treatment of UC.
Collapse
Affiliation(s)
- Xiu-Ting Yu
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yi-Fei Xu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yan-Feng Huang
- Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Chang Qu
- Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Lie-Qiang Xu
- Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Zi-Ren Su
- Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, Guangdong, PR China
| | - Hui-Fang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Tie-Gang Yi
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Hui-Lin Li
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jian-Ping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Xiao-Jun Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| |
Collapse
|
12
|
Zhou J, Tan L, Xie J, Lai Z, Huang Y, Qu C, Luo D, Lin Z, Huang P, Su Z, Xie Y. Characterization of brusatol self-microemulsifying drug delivery system and its therapeutic effect against dextran sodium sulfate-induced ulcerative colitis in mice. Drug Deliv 2018; 24:1667-1679. [PMID: 29078713 PMCID: PMC8253134 DOI: 10.1080/10717544.2017.1384521] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Brusatol (BR) is one of the main bioactive components derived from Brucea javanica, a medicinal herb historically used in the treatment of dysenteric disorders (also known as ulcerative colitis(UC)). Due to its poor aqueous solubility, a novel brusatol self-microemulsifying drug delivery system (BR-SMEDDS) nanoformulation with smaller size, higher negative zeta potential and drug content, and excellent stability was developed. The appearance of BR-SMEDDS remained clear and transparent, and transmission electron microscopy showed microemulsion droplets to be spherical with homogeneous distribution. Pharmacokinetic parameters indicated that oral bioavailability was greatly improved by BR-SMEDDS as compared with aqueous suspension. Meanwhile, the anti-colitis activity of BR-SMEDDS was evaluated on dextran sodium sulfate (DSS)-induced colitis mice model. The result illustrated that the nano-formation significantly reduced the body weight loss, recovered colon length, decreased disease activity index and microscopic score, regulated immune-inflammatory cytokines, diminished oxidative stress and repressed the colonic expression of myeloid differentiation factor 88 (MyD88), toll-like receptor 4 (TLR4) and nuclear factor kappa B p65 (NF-κB p65) proteins. Our findings demonstrated for the first time that BR could effectively attenuate colonic inflammation in mice, at least partially, via favorable regulation of anti-oxidative and anti-inflammatory status and inhibition of the TLR4-linked NF-κB signaling pathway. The BR nano-formulation was superior to BR suspension and sulphasalazine, in treating experimental UC, and exhibited similar effect with azathioprine, with much smaller dosage. The enhanced anti-UC effect of BR might be intimately associated with the improved pharmacokinetic property by SMEDDS. The developed nano-delivery system might thus be a promising candidate for colitis treatment.
Collapse
Affiliation(s)
- Jiangtao Zhou
- a School of Pharmaceutical Sciences , Guangzhou University of Chinese Medicine , Guangzhou , PR China.,b Mathematical Engineering Academy of Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou , PR China
| | - Lihua Tan
- b Mathematical Engineering Academy of Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou , PR China
| | - Jianhui Xie
- c Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome , The Second Affiliated Hospital, Guangzhou University of Chinese Medicine , Guangzhou , PR China
| | - Zhengquan Lai
- d School of Chinese Medicine, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong , PR China
| | - Yanfeng Huang
- b Mathematical Engineering Academy of Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou , PR China
| | - Chang Qu
- b Mathematical Engineering Academy of Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou , PR China
| | - Dandan Luo
- b Mathematical Engineering Academy of Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou , PR China
| | - Zhixiu Lin
- d School of Chinese Medicine, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong , PR China
| | - Ping Huang
- a School of Pharmaceutical Sciences , Guangzhou University of Chinese Medicine , Guangzhou , PR China
| | - Ziren Su
- b Mathematical Engineering Academy of Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou , PR China
| | - Youliang Xie
- b Mathematical Engineering Academy of Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou , PR China
| |
Collapse
|
13
|
Lombardi VRM, Carrera I, Cacabelos R. In vitro and in vivo cytotoxic effect of AntiGan against tumor cells. Exp Ther Med 2017; 15:2547-2556. [PMID: 29467852 PMCID: PMC5792761 DOI: 10.3892/etm.2017.5681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/23/2017] [Indexed: 12/14/2022] Open
Abstract
Novel effective chemopreventive agents against cancer are required to improve current therapeutic rates. The aim of the present study was to investigate the anti-carcinogenesis effect of AntiGan, an extract obtained from the European conger eel, Conger conger, in vitro (human tumor cell lines) and in vivo (murine model of colitis) models. The potential apoptogenic activity after 24 h of incubation with 10, 25 and 50 µl/ml AntiGan was reported using growth inhibition and apoptosis activity assays. In vivo studies were performed in mice by inducing colitis with oral administration of 2% dextran sulphate sodium (DSS) for 5 weeks. Apoptosis was observed in HL-60, Hs 313.T, SW-480, Caco-2 and HT-29 cell lines. The highest level of growth inhibition was observed in Caco-2 (66, 75.8 and 88.1%), HT-29 (56, 73 and 87.6%) and SW-480 (38.5, 61.6, 78.6%) for AntiGan doses of 10, 25 and 50 µl/ml, respectively, compared to untreated cells, while the results of the expression of genes associated with apoptosis indicated a downregulation of B-cell lymphoma 2 (Bcl-2) in all cell lines studied. In vivo, morphopathological alterations in the colon were analyzed by immunohistochemical and staining methods. Tumoral markers, including β-catenin, cyclooxygenase 2 and Bcl-2 were expressed in cryptal cells of the dysplastic colonic mucosa, whereas the levels of interferon-γ expression were also increased when no treatment was applied. In the experimental murine model, the optimal concentration of AntiGan for an effective dose-response was 10% in diet. These results suggested that AntiGan displays a powerful anti-inflammatory effect in DSS-induced colitis, acting as a chemopreventive agent against colon carcinogenesis, most likely due to its apoptogenic peptides that contribute to the induction of apoptosis.
Collapse
Affiliation(s)
- Valter R M Lombardi
- Department of Health Biotechnology, EuroEspes Biotechnology, 15165 Corunna, Spain
| | - Iván Carrera
- Department of Health Biotechnology, EuroEspes Biotechnology, 15165 Corunna, Spain
| | - Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, 15165 Corunna, Spain
| |
Collapse
|
14
|
Yu W, Li Z, Long F, Chen W, Geng Y, Xie Z, Yao M, Han B, Liu T. A Systems Pharmacology Approach to Determine Active Compounds and Action Mechanisms of Xipayi KuiJie'an enema for Treatment of Ulcerative colitis. Sci Rep 2017; 7:1189. [PMID: 28446747 PMCID: PMC5430631 DOI: 10.1038/s41598-017-01335-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/29/2017] [Indexed: 01/15/2023] Open
Abstract
Xipayi Kui Jie’an (KJA), a type of traditional Uygur medicine (TUM), has shown promising therapeutic effects in Ulcerative colitis (UC). Owing to the complexity of TUM, the pharmacological mechanism of KJA remains vague. Therefore, the identification of complex molecular mechanisms is a major challenge and a new method is urgently needed to address this problem. In this study, we established a feasible pharmacological model based on systems pharmacology to identify potential compounds and targets. We also applied compound-target and target-diseases network analysis to evaluate the action mechanisms. According to the predicted results, 12 active compounds were selected and these compounds were also identified by HPLC-ESI-MS/MS analysis. The main components were tannins, this result is consistent with the prediction. The active compounds interacted with 22 targets. Two targets including PTGS2 and PPARG were demonstrated to be the main targets associated with UC. Systematic analysis of the constructed networks revealed that these targets were mainly involved in NF-κB signaling pathway. Furthermore, KJA could also regulate the CD4 + CD25 + Foxp3 + Treg cells. In conclusion, this systems pharmacology-based approach not only explained that KJA could alleviate the UC by regulating its candidate targets, but also gave new insights into the potential novel therapeutic strategies for UC.
Collapse
Affiliation(s)
- Wei Yu
- School of Pharmacy, Xinjiang Shihezi University, Xinjiang, 832002, China
| | - Zhihong Li
- Key Laboratory of Chinese Internal Medicine of Education, DongZhiMen Hospital, Beijing, 100070, China
| | - Fei Long
- School of Pharmacy, Xinjiang Shihezi University, Xinjiang, 832002, China
| | - Wen Chen
- School of Pharmacy, Xinjiang Shihezi University, Xinjiang, 832002, China
| | - Yurong Geng
- School of Pharmacy, Xinjiang Shihezi University, Xinjiang, 832002, China
| | - Zhiyong Xie
- The first affiliated hospital, School of medicine, Shihezi university, Xinjiang, 832002, China
| | - Meicun Yao
- College of pharmacy, Sun yat-sen university, Guangzhou, 510006, China
| | - Bo Han
- School of Pharmacy, Xinjiang Shihezi University, Xinjiang, 832002, China.
| | - Teigang Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
15
|
Yan H, Wang H, Zhang X, Li X, Yu J. Ascorbic acid ameliorates oxidative stress and inflammation in dextran sulfate sodium-induced ulcerative colitis in mice. Int J Clin Exp Med 2015; 8:20245-20253. [PMID: 26884937 PMCID: PMC4723782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Ascorbic acid (AA) has been shown to exert beneficial effects, including mitigating oxidative stress and inhibiting inflammation. However, the preventative effect of vitamin C in chronic inflammatory diseases such as inflammatory bowel disease (IBD) remains unclear. In our study, we investigated the anti-inflammatory effects of AA and possible mechanism involved in inhibiting dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Male C57BL/6 mice were randomly divided to three groups: control group, DSS group, and DSS plus ascorbic acid treated group. Several clinical and inflammatory parameters as well as oxidative stress were evaluated. The results demonstrated that ascorbic acid significantly reduced clinical signs, inflammatory cytokines, myeloperoxidase (MPO) and malonaldehyde (MDA) activities, whereas the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were increased in DSS-induced mice. In addition, ascorbic acid was capable of inhibiting NF-κB, COX-2 and iNOS expression in the colonic. Taken together, these findings suggest that ascorbic acid contributes to the reduction of oxidative stress and inflammatory response in DSS-induced colitis and exerts the potential to prevent and clinical treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Haiyan Yan
- Department of Gastroenterology, Zhengzhou Children’s HospitalZhengzhou 450053, Henan Province, China
| | - Hongjuan Wang
- School of Pharmacy, Zhengzhou UniversityZhengzhou 450001, Henan Province, China
| | - Xiaoli Zhang
- Department of Emergency, Zhengzhou Children’s HospitalZhengzhou 450053, Henan Province, China
| | - Xiaoqin Li
- Department of Gastroenterology, Zhengzhou Children’s HospitalZhengzhou 450053, Henan Province, China
| | - Jing Yu
- Department of Gastroenterology, Zhengzhou Children’s HospitalZhengzhou 450053, Henan Province, China
| |
Collapse
|
16
|
Jiminez JA, Uwiera TC, Douglas Inglis G, Uwiera RRE. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog 2015; 7:29. [PMID: 26561503 PMCID: PMC4641401 DOI: 10.1186/s13099-015-0076-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023] Open
Abstract
Acute and chronic inflammatory diseases of the intestine impart a significant and negative impact on the health and well-being of human and non-human mammalian animals. Understanding the underlying mechanisms of inflammatory disease is mandatory to develop effective treatment and prevention strategies. As inflammatory disease etiologies are multifactorial, the use of appropriate animal models and associated metrics of disease are essential. In this regard, animal models used alone or in combination to study acute and chronic inflammatory disease of the mammalian intestine paired with commonly used inflammation-inducing agents are reviewed. This includes both chemical and biological incitants of inflammation, and both non-mammalian (i.e. nematodes, insects, and fish) and mammalian (i.e. rodents, rabbits, pigs, ruminants, dogs, and non-human primates) models of intestinal inflammation including germ-free, gnotobiotic, as well as surgical, and genetically modified animals. Importantly, chemical and biological incitants induce inflammation via a multitude of mechanisms, and intestinal inflammation and injury can vary greatly according to the incitant and animal model used, allowing studies to ascertain both long-term and short-term effects of inflammation. Thus, researchers and clinicians should be aware of the relative strengths and limitations of the various animal models used to study acute and chronic inflammatory diseases of the mammalian intestine, and the scope and relevance of outcomes achievable based on this knowledge. The ability to induce inflammation to mimic common human diseases is an important factor of a successful animal model, however other mechanisms of disease such as the amount of infective agent to induce disease, invasion mechanisms, and the effect various physiologic changes can have on inducing damage are also important features. In many cases, the use of multiple animal models in combination with both chemical and biological incitants is necessary to answer the specific question being addressed regarding intestinal disease. Some incitants can induce acute responses in certain animal models while others can be used to induce chronic responses; this review aims to illustrate the strengths and weaknesses in each animal model and to guide the choice of an appropriate acute or chronic incitant to facilitate intestinal disease.
Collapse
Affiliation(s)
- Janelle A. Jiminez
- />Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB Canada
- />Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Trina C. Uwiera
- />Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - G. Douglas Inglis
- />Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB Canada
| | - Richard R. E. Uwiera
- />Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
17
|
Chen G, Yang Y, Liu M, Teng Z, Ye J, Xu Y, Cai X, Cheng X, Yang J, Hu C, Wang M, Cao P. Banxia xiexin decoction protects against dextran sulfate sodium-induced chronic ulcerative colitis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2015; 166:149-156. [PMID: 25794808 DOI: 10.1016/j.jep.2015.03.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/28/2014] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin decoction (BXD), one of a traditional Chinese medicine chronicled in Shang Han Lun, is commonly used to treat gastroenteritis, ulcerative colitis and diarrhea. In our study, we used current biomedical approaches to investigate the therapeutic efficacy of BXD and possible protective mechanism involved in inhibiting dextran sulfate sodium (DSS)-induced chronic ulcerative colitis model. MATERIALS AND METHODS Chronic DSS colitis was induced in C57BL/6 male mice by three cycles of 5 days of 2% DSS in drinking water, alternating with 5 days of normal water, totaling 30 days. In BXD group, the mice were administered at a dose of 8.7g/kg BXD for 5 days before and during DSS treatment via oral gavage per day. Mice in vehicle group and DSS group were given orally the same volume of drinking water, instead. Body weight, stool characters and hematochezia were observed everyday. The colorectal tissues were used to detect levels of TNF-α, IL-4, IL-10, IL-1β, IL-17, IL-23 and MPO by ELISA or qRT-PCR. The expression of COX-2, 8-Oxoguanine and Nrf2 were examined by IHC, and p-p65 was examined by western blotting. ThOD and the content of MDA were measured according to kits respectively. RESULTS BXD significantly protected against DSS-induced chronic ulcerative colitis by amelioration of body weight loss, DAI and histology score. The level of TNF-α, IL-1β, IL-17, IL-23, COX-2 and p-p65 were decreased significantly, while the level of IL-10 improved with the treatment of BXD. MDA, MPO and 8-Oxoguanine were decreased, meanwhile SOD activity and Nrf2 expression were elevated significantly by BXD. CONCLUSIONS BXD possesses the potential of anti-inflammation and anti-oxidation to treat colitis. The protective mechanism of BXD may involve in inhibition of NF-κBp65 activation and increasement of Nrf2 expression in colorectums of mice.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Yang Yang
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Moli Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Zhiying Teng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Juan Ye
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Yuehua Xu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Xueting Cai
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Xiaolan Cheng
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Jie Yang
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Chunping Hu
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Min Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China.
| | - Peng Cao
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China.
| |
Collapse
|
18
|
Sampath H. Oxidative DNA damage in disease--insights gained from base excision repair glycosylase-deficient mouse models. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:689-703. [PMID: 25044514 DOI: 10.1002/em.21886] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/24/2014] [Indexed: 05/10/2023]
Abstract
Cellular components, including nucleic acids, are subject to oxidative damage. If left unrepaired, this damage can lead to multiple adverse cellular outcomes, including increased mutagenesis and cell death. The major pathway for repair of oxidative base lesions is the base excision repair pathway, catalyzed by DNA glycosylases with overlapping but distinct substrate specificities. To understand the role of these glycosylases in the initiation and progression of disease, several transgenic mouse models have been generated to carry a targeted deletion or overexpression of one or more glycosylases. This review summarizes some of the major findings from transgenic animal models of altered DNA glycosylase expression, especially as they relate to pathologies ranging from metabolic disease and cancer to inflammation and neuronal health.
Collapse
Affiliation(s)
- Harini Sampath
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
19
|
Fazio LD, Cavazza E, Spisni E, Strillacci A, Centanni M, Candela M, Praticò C, Campieri M, Ricci C, Valerii MC. Longitudinal analysis of inflammation and microbiota dynamics in a model of mild chronic dextran sulfate sodium-induced colitis in mice. World J Gastroenterol 2014; 20:2051-2061. [PMID: 24587679 PMCID: PMC3934475 DOI: 10.3748/wjg.v20.i8.2051] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/05/2013] [Accepted: 11/13/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To characterize longitudinally the inflammation and the gut microbiota dynamics in a mouse model of dextran sulfate sodium (DSS)-induced colitis.
METHODS: In animal models, the most common method used to trigger colitis is based on the oral administration of the sulfated polysaccharides DSS. The murine DSS colitis model has been widely adopted to induce severe acute, chronic or semi-chronic colitis, and has been validated as an important model for the translation of mice data to human inflammatory bowel disease (IBD). However, it is now clear that models characterized by mild intestinal damage are more accurate for studying the effects of therapeutic agents. For this reason, we have developed a murine model of mild colitis to study longitudinally the inflammation and microbiota dynamics during the intestinal repair processes, and to obtain data suitable to support the recovery of gut microbiota-host homeostasis.
RESULTS: All plasma cytokines evaluated, except IL-17, began to increase (P < 0.05), after 7 d of DSS administration. IL-17 only began to increase 4 d after DSS withdrawal. IL-1β and IL-17 continue to increase during the recovery phase, even when clinical signs of colitis had disappeared. IL-6, IL-10 and IFN-γ reached their maxima 4 d after DSS withdrawal and decreased during the late recovery phase. TNFα reached a peak (a three- fold increase, P < 0.05), after which it slightly decreased, only to increase again close to the end of the recovery phase. DSS administration induced profound and rapid changes in the mice gut microbiota. After 3 d of DSS administration, we observed a major reduction in Bacteroidetes/Prevotella and a corresponding increase in Bacillaceae, with respect to control mice. In particular, Bacteroidetes/Prevotella decreased from a relative abundance of 59.42%-33.05%, while Bacillaceae showed a concomitant increase from 2.77% to 10.52%. Gut microbiota rapidly shifted toward a healthy profile during the recovery phase and returned normal 4 d after DSS withdrawal. Cyclooxygenase 2 expression started to increase 4 d after DSS withdrawal (P < 0.05), when dysbiosis had recovered, and continued to increase during the recovery phase. Taken together, these data indicated that a chronic phase of intestinal inflammation, characterized by the absence of dysbiosis, could be obtained in mice using a single DSS cycle.
CONCLUSION: Dysbiosis contributes to the local and systemic inflammation that occurs in the DSS model of colitis; however, chronic bowel inflammation is maintained even after recovery from dysbiosis.
Collapse
|