1
|
Cruz Camacho A, Kiper E, Oren S, Zaharoni N, Nir N, Soffer N, Noy Y, Ben David B, Rivkin A, Rotkopf R, Michael D, Carvalho TG, Regev-Rudzki N. High-throughput analysis of the transcriptional patterns of sexual genes in malaria. Parasit Vectors 2023; 16:14. [PMID: 36639683 PMCID: PMC9838061 DOI: 10.1186/s13071-022-05624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/17/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Plasmodium falciparum (Pf) is the leading protozoan causing malaria, the most devastating parasitic disease. To ensure transmission, a small subset of Pf parasites differentiate into the sexual forms (gametocytes). Since the abundance of these essential parasitic forms is extremely low within the human host, little is currently known about the molecular regulation of their sexual differentiation, highlighting the need to develop tools to investigate Pf gene expression during this fundamental mechanism. METHODS We developed a high-throughput quantitative Reverse-Transcription PCR (RT-qPCR) platform to robustly monitor Pf transcriptional patterns, in particular, systematically profiling the transcriptional pattern of a large panel of gametocyte-related genes (GRG). Initially, we evaluated the technical performance of the systematic RT-qPCR platform to ensure it complies with the accepted quality standards for: (i) RNA extraction, (ii) cDNA synthesis and (iii) evaluation of gene expression through RT-qPCR. We then used this approach to monitor alterations in gene expression of a panel of GRG upon treatment with gametocytogenesis regulators. RESULTS We thoroughly elucidated GRG expression profiles under treatment with the antimalarial drug dihydroartemisinin (DHA) or the metabolite choline over the course of a Pf blood cycle (48 h). We demonstrate that both significantly alter the expression pattern of PfAP2-G, the gametocytogenesis master regulator. However, they also markedly modify the developmental rate of the parasites and thus might bias the mRNA expression. Additionally, we screened the effect of the metabolites lactate and kynurenic acid, abundant in severe malaria, as potential regulators of gametocytogenesis. CONCLUSIONS Our data demonstrate that the high-throughput RT-qPCR method enables studying the immediate transcriptional response initiating gametocytogenesis of the parasites from a very low volume of malaria-infected RBC samples. The obtained data expand the current knowledge of the initial alterations in mRNA profiles of GRG upon treatment with reported regulators. In addition, using this method emphasizes that asexual parasite stage composition is a crucial element that must be considered when interpreting changes in GRG expression by RT-qPCR, specifically when screening for novel compounds that could regulate Pf sexual differentiation.
Collapse
Affiliation(s)
- Abel Cruz Camacho
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Edo Kiper
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Sonia Oren
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Nir Zaharoni
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Netta Nir
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Noam Soffer
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yael Noy
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Bar Ben David
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Anna Rivkin
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ron Rotkopf
- grid.13992.300000 0004 0604 7563Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Dan Michael
- grid.13992.300000 0004 0604 7563Feinberg Graduate School, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Teresa G. Carvalho
- grid.1018.80000 0001 2342 0938Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC 3086 Australia
| | - Neta Regev-Rudzki
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
2
|
A Novel Ex Vivo Drug Assay for Assessing the Transmission-Blocking Activity of Compounds on Field-Isolated Plasmodium falciparum Gametocytes. Antimicrob Agents Chemother 2022; 66:e0100122. [PMID: 36321830 PMCID: PMC9764978 DOI: 10.1128/aac.01001-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discovery and development of transmission-blocking therapies challenge malaria elimination and necessitate standard and reproducible bioassays to measure the blocking properties of antimalarial drugs and candidate compounds. Most of the current bioassays evaluating the transmission-blocking activity of compounds rely on laboratory-adapted Plasmodium strains. Transmission-blocking data from clinical gametocyte isolates could help select novel transmission-blocking candidates for further development. Using freshly collected Plasmodium falciparum gametocytes from asymptomatic individuals, we first optimized ex vivo culture conditions to improve gametocyte viability and infectiousness by testing several culture parameters. We next pre-exposed ex vivo field-isolated gametocytes to chloroquine, dihydroartemisinin, primaquine, KDU691, GNF179, and oryzalin for 48 h prior to direct membrane feeding. We measured the activity of the drug on the ability of gametocytes to resume the sexual life cycle in Anopheles after drug exposure. Using 57 blood samples collected from Malian volunteers aged 6 to 15 years, we demonstrate that the infectivity of freshly collected field gametocytes can be preserved and improved ex vivo in a culture medium supplemented with 10% horse serum at 4% hematocrit for 48 h. Moreover, our optimized drug assay displays the weak transmission-blocking activity of chloroquine and dihydroartemisinin, while primaquine and oryzalin exhibited a transmission-blocking activity of ~50% at 1 μM. KDU691 and GNF179 both interrupted Plasmodium transmission at 1 μM and 5 nM, respectively. This new approach, if implemented, has the potential to accelerate the screening of compounds with transmission-blocking activity.
Collapse
|
3
|
Omorou R, Bin Sa'id I, Delves M, Severini C, Kouakou YI, Bienvenu AL, Picot S. Protocols for Plasmodium gametocyte production in vitro: an integrative review and analysis. Parasit Vectors 2022; 15:451. [PMID: 36471426 PMCID: PMC9720971 DOI: 10.1186/s13071-022-05566-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/02/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The production of Plasmodium gametocytes in vitro is a real challenge. Many protocols have been described, but few have resulted in the production of viable and infectious gametocytes in sufficient quantities to conduct research on-but not limited to-transmission-blocking drug and vaccine development. The aim of this review was to identify and discuss gametocyte production protocols that have been developed over the last two decades. METHODS We analyzed the original gametocyte production protocols published from 2000 onwards based on a literature search and a thorough review. A systematic review was performed of relevant articles identified in the PubMed, Web of Sciences and ScienceDirect databases. RESULTS A total 23 studies on the production of Plasmodium gametocytes were identified, 19 involving in vitro Plasmodium falciparum, one involving Plasmodium knowlesi and three involving ex vivo Plasmodium vivax. Of the in vitro studies, 90% used environmental stressors to trigger gametocytogenesis. Mature gametocytemia of up to 4% was reported. CONCLUSIONS Several biological parameters contribute to an optimal production in vitro of viable and infectious mature gametocytes. The knowledge gained from this systematic review on the molecular mechanisms involved in gametocytogenesis enables reproducible gametocyte protocols with transgenic parasite lines to be set up. This review highlights the need for additional gametocyte production protocols for Plasmodium species other than P. falciparum.
Collapse
Affiliation(s)
- Roukayatou Omorou
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE-University Lyon1, University of Lyon, 69100, Villeurbanne, France.
| | - Ibrahim Bin Sa'id
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE-University Lyon1, University of Lyon, 69100, Villeurbanne, France.,Institut Agama Islam Negeri (IAIN) Kediri, 64127, Kota Kediri, Jawa Timur, Indonesia
| | - Michael Delves
- Department of Infection Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1A 7HT, UK
| | - Carlo Severini
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy
| | - Yobouet Ines Kouakou
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE-University Lyon1, University of Lyon, 69100, Villeurbanne, France
| | - Anne-Lise Bienvenu
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE-University Lyon1, University of Lyon, 69100, Villeurbanne, France.,Service Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Stephane Picot
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE-University Lyon1, University of Lyon, 69100, Villeurbanne, France.,Institut de Parasitologie Et Mycologie Médicale, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
4
|
Salgado C, Ayodo G, Macklin MD, Gould MP, Nallandhighal S, Odhiambo EO, Obala A, O'Meara WP, John CC, Tran TM. The prevalence and density of asymptomatic Plasmodium falciparum infections among children and adults in three communities of western Kenya. Malar J 2021; 20:371. [PMID: 34535134 PMCID: PMC8447531 DOI: 10.1186/s12936-021-03905-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 09/03/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Further reductions in malaria incidence as more countries approach malaria elimination require the identification and treatment of asymptomatic individuals who carry mosquito-infective Plasmodium gametocytes that are responsible for furthering malaria transmission. Assessing the relationship between total parasitaemia and gametocytaemia in field surveys can provide insight as to whether detection of low-density, asymptomatic Plasmodium falciparum infections with sensitive molecular methods can adequately detect the majority of infected individuals who are potentially capable of onward transmission. METHODS In a cross-sectional survey of 1354 healthy children and adults in three communities in western Kenya across a gradient of malaria transmission (Ajigo, Webuye, and Kapsisywa-Kipsamoite), asymptomatic P. falciparum infections were screened by rapid diagnostic tests, blood smear, and quantitative PCR of dried blood spots targeting the varATS gene in genomic DNA. A multiplex quantitative reverse-transcriptase PCR assay targeting female and male gametocyte genes (pfs25, pfs230p), a gene with a transcriptional pattern restricted to asexual blood stages (piesp2), and human GAPDH was also developed to determine total parasite and gametocyte densities among parasitaemic individuals. RESULTS The prevalence of varATS-detectable asymptomatic infections was greatest in Ajigo (42%), followed by Webuye (10%). Only two infections were detected in Kapsisywa. No infections were detected in Kipsamoite. Across all communities, children aged 11-15 years account for the greatest proportion total and sub-microscopic asymptomatic infections. In younger age groups, the majority of infections were detectable by microscopy, while 68% of asymptomatically infected adults (> 21 years old) had sub-microscopic parasitaemia. Piesp2-derived parasite densities correlated poorly with microscopy-determined parasite densities in patent infections relative to varATS-based detection. In general, both male and female gametocytaemia increased with increasing varATS-derived total parasitaemia. A substantial proportion (41.7%) of individuals with potential for onward transmission had qPCR-estimated parasite densities below the limit of microscopic detection, but above the detectable limit of varATS qPCR. CONCLUSIONS This assessment of parasitaemia and gametocytaemia in three communities with different transmission intensities revealed evidence of a substantial sub-patent infectious reservoir among asymptomatic carriers of P. falciparum. Experimental studies are needed to definitively determine whether the low-density infections in communities such as Ajigo and Webuye contribute significantly to malaria transmission.
Collapse
Affiliation(s)
- Christina Salgado
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George Ayodo
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.,Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Michael D Macklin
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Srinivas Nallandhighal
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eliud O Odhiambo
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew Obala
- School of Medicine, Moi University College of Health Sciences, Eldoret, Kenya
| | | | - Chandy C John
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Tuan M Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA. .,Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
5
|
CRISPR/Cas9-engineered inducible gametocyte producer lines as a valuable tool for Plasmodium falciparum malaria transmission research. Nat Commun 2021; 12:4806. [PMID: 34376675 PMCID: PMC8355313 DOI: 10.1038/s41467-021-24954-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
The malaria parasite Plasmodium falciparum replicates inside erythrocytes in the blood of infected humans. During each replication cycle, a small proportion of parasites commits to sexual development and differentiates into gametocytes, which are essential for parasite transmission via the mosquito vector. Detailed molecular investigation of gametocyte biology and transmission has been hampered by difficulties in generating large numbers of these highly specialised cells. Here, we engineer P. falciparum NF54 inducible gametocyte producer (iGP) lines for the routine mass production of synchronous gametocytes via conditional overexpression of the sexual commitment factor GDV1. NF54/iGP lines consistently achieve sexual commitment rates of 75% and produce viable gametocytes that are transmissible by mosquitoes. We also demonstrate that further genetic engineering of NF54/iGP parasites is a valuable tool for the targeted exploration of gametocyte biology. In summary, we believe the iGP approach developed here will greatly expedite basic and applied malaria transmission stage research.
Collapse
|
6
|
Investigation of factors affecting the production of P. falciparum gametocytes in an Indian isolate. 3 Biotech 2021; 11:55. [PMID: 33489674 DOI: 10.1007/s13205-020-02586-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022] Open
Abstract
The fundamental requirement of every gametocytocidal drug screening assay is the sufficient numbers of healthy and viable gametocytes. The number of in vitro gametocytes grossly depends on the genetic capacity of parasites to produce gametocytes and on various environmental factors that are not precisely elucidated. In the present study, we tested multiple environmental factors that are reported, hypothesized, or predicted to influence gametocyte numbers. We observed that hypoxanthine and the use of freshly drawn human blood significantly enhance gametocytemia (p < 0.05) in vitro. However, other tested factors did not significantly affect gametocytemia. The addition of N-acetyl glucosamine to the culture enriched the gametocytes but d-sorbitol (5% v/v) in amounts and duration of incubation tested was unable to do so without negatively affecting the maturity and health of the gametocytes. Although the in vitro gametocyte production depends on the genetic capability of the parasite strain tested, various environmental factors also control the ability of the strain to produce gametocytes up to a certain extent. This is the first study testing the role of various environmental factors that might affect the gametocyte development in a gametocyte producing strain. The results presented herein will help in the optimization of gametocyte production procedures for various gametocytocidal drug screening assays.
Collapse
|
7
|
In Vitro Assessment of Antiplasmodial Activity and Cytotoxicity of Polyalthia longifolia Leaf Extracts on Plasmodium falciparum Strain NF54. Malar Res Treat 2019; 2019:6976298. [PMID: 30805129 PMCID: PMC6360585 DOI: 10.1155/2019/6976298] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/23/2018] [Accepted: 01/01/2019] [Indexed: 01/10/2023] Open
Abstract
Background Malaria is one of the most important life-threatening infectious diseases in the tropics. In spite of the effectiveness of artemisinin-based combination therapy, reports on reduced sensitivity of the parasite to artemisinin in Cambodia and Thailand warrants screening for new potential antimalarial drugs for future use. Ghanaian herbalists claim that Polyalthia longifolia has antimalarial activity. Therefore, antiplasmodial activity, cytotoxic effects, and antioxidant and phytochemical properties of P. longifolia leaf extract were investigated in this study. Methodology/Principal Findings Aqueous, 70% hydroethanolic and ethyl acetate leaf extracts were prepared using standard procedures. Antiplasmodial activity was assessed in vitro by using chloroquine-sensitive malaria parasite strain NF54. The SYBR® Green and tetrazolium-based calorimetric assays were used to measure parasite growth inhibition and cytotoxicity, respectively, after extract treatment. Total antioxidant activity was evaluated using a free radical scavenging assay. Results obtained showed that extracts protected red blood cells against Plasmodium falciparum mediated damage. Fifty percent inhibitory concentration (IC50) values were 24.0±1.08 μg/ml, 22.5±0.12 μg/ml, and 9.5±0.69 μg/ml for aqueous, hydroethanolic, and ethyl acetate extracts, respectively. Flavonoids, tannins, and saponins were present in the hydroethanolic extract, whereas only the latter was observed in the aqueous extract. Aqueous and hydroethanolic extracts showed stronger antioxidant activities compared to the ethyl acetate extract. Conclusions/Significance The extracts of P. longifolia have antiplasmodial properties and low toxicities to human red blood cells. The extracts could be developed as useful alternatives to antimalarial drugs. These results support claims of the herbalists that decoctions of P. longifolia are useful antimalarial agents.
Collapse
|
8
|
SADEGHI TAFRESHI A, ZAMANI Z, SABBAGHIAN M, KHAVARI-NEJAD RA, ARJMAND M, SADEGHI S, MOHAMMADI M. A Metabolomic Investigation of the Effect of Eosin B on Game-tocyte of Plasmodium falciparum Using 1HNMR Spectroscopy. IRANIAN JOURNAL OF PARASITOLOGY 2019; 14:592-603. [PMID: 32099562 PMCID: PMC7028228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Recently eosin B was shown to have an effect on the asexual stage of Plasmodium falciparum and in this study, its activity against gametocytes and changes in the culture medium metabolites were investigated using an1HNMR-based metabolomics approach. METHODS In the Biochemistry Department of Pasteur Institute of Iran in 2017, parasites were cultured and gametocytogenesis induced by heparin and 5% hematocrit. Sexual stage parasites were tested by eosin B in 90 well plates and IC50 determined using Lactate Dehydrogenase assay. Gametocytes were treated by IC50 dose of eosin B and the medium collected in the two groups: with eosin B and controls and sent for 1HNMR spectroscopy. The spectra were analyzed on MATLAB interface and the altered metabolites in the culture medium and eosin-affected biochemical pathways were identified by Human Metabolome Database and Metabo-analyst website. RESULTS The results revealed eosin B had an effective gametocytocidal activity against P. falciparum. The significant metabolites changed in the medium were thia-mine, Asp, Asn, Tyr, Lys, Ala, Phenylpyruvic acid, NAD+ and lipids. The main pathways identified were aminoacyl-tRNA biosynthesis, Phenylalanine, tyrosine and tryptophan biosynthesis, Alanine, aspartate and glutamate metabolism, Phenylala-nine metabolism, Nicotinate and nicotinamide metabolism, and lysine degradation. CONCLUSION Eosin B exhibited substantial gametocytocidal activity and affected important drug targets in the Plasmodium.
Collapse
Affiliation(s)
| | - Zahra ZAMANI
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran,Correspondence
| | - Marjan SABBAGHIAN
- Department of Andrology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Mohammad ARJMAND
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh SADEGHI
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam MOHAMMADI
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Bancells C, Llorà-Batlle O, Poran A, Nötzel C, Rovira-Graells N, Elemento O, Kafsack BFC, Cortés A. Revisiting the initial steps of sexual development in the malaria parasite Plasmodium falciparum. Nat Microbiol 2019; 4:144-154. [PMID: 30478286 PMCID: PMC6294672 DOI: 10.1038/s41564-018-0291-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/11/2018] [Indexed: 01/01/2023]
Abstract
Human to vector transmission of malaria requires that some blood-stage parasites abandon asexual growth and convert into non-replicating sexual forms called gametocytes. The initial steps of gametocytogenesis remain largely uncharacterized. Here, we study this part of the malaria life cycle in Plasmodium falciparum using PfAP2-G, the master regulator of sexual conversion, as a marker of commitment. We demonstrate the existence of PfAP2-G-positive sexually committed parasite stages that precede the previously known committed schizont stage. We also found that sexual conversion can occur by two different routes: the previously described route in which PfAP2-G-expressing parasites complete a replicative cycle as committed forms before converting into gametocytes upon re-invasion, or a direct route with conversion within the same cycle as initial PfAP2-G expression. The latter route is linked to early PfAP2-G expression in ring stages. Reanalysis of published single-cell RNA-sequencing (RNA-seq) data confirmed the presence of both routes. Consistent with these results, using plaque assays we observed that, in contrast to the prevailing model, many schizonts produced mixed plaques containing both asexual parasites and gametocytes. Altogether, our results reveal unexpected features of the initial steps of sexual development and extend the current view of this part of the malaria life cycle.
Collapse
Affiliation(s)
- Cristina Bancells
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Asaf Poran
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Christopher Nötzel
- Biochemistry, Cell & Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | | | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Björn F C Kafsack
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Alfred Cortés
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
10
|
Pathak AK, Shiau JC, Thomas MB, Murdock CC. Cryogenically preserved RBCs support gametocytogenesis of Plasmodium falciparum in vitro and gametogenesis in mosquitoes. Malar J 2018; 17:457. [PMID: 30522507 PMCID: PMC6282341 DOI: 10.1186/s12936-018-2612-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/01/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The malaria Eradication Research Agenda (malERA) has identified human-to-mosquito transmission of Plasmodium falciparum as a major target for eradication. The cornerstone for identifying and evaluating transmission in the laboratory is standard membrane feeding assays (SMFAs) where mature gametocytes of P. falciparum generated in vitro are offered to mosquitoes as part of a blood-meal. However, propagation of "infectious" gametocytes requires 10-12 days with considerable physico-chemical demands imposed on host RBCs and thus, "fresh" RBCs that are ≤ 1-week old post-collection are generally recommended. However, in addition to the costs, physico-chemical characteristics unique to RBC donors may confound reproducibility and interpretation of SMFAs. Cryogenic storage of RBCs ("cryo-preserved RBCs") is accepted by European and US FDAs as an alternative to refrigeration (4 °C) for preserving RBC "quality" and while cryo-preserved RBCs have been used for in vitro cultures of other Plasmodia and the asexual stages of P. falciparum, none of the studies required RBCs to support parasite development for > 4 days. RESULTS Using the standard laboratory strain, P. falciparum NF54, 11 SMFAs were performed with RBCs from four separate donors to demonstrate that RBCs cryo-preserved in the gaseous phase of liquid nitrogen (- 196 °C) supported gametocytogenesis in vitro and subsequent gametogenesis in Anopheles stephensi mosquitoes. Overall levels of sporogony in the mosquito, as measured by oocyst and sporozoite prevalence, as well as oocyst burden, from each of the four donors thawed after varying intervals of cryopreservation (1, 4, 8, and 12 weeks) were comparable to using ≤ 1-week old refrigerated RBCs. Lastly, the potential for cryo-preserved RBCs to serve as a suitable alternative substrate is demonstrated for a Cambodian isolate of P. falciparum across two independent SMFAs. CONCLUSIONS Basic guidelines are presented for integrating cryo-preserved RBCs into an existing laboratory/insectary framework for P. falciparum SMFAs with significant potential for reducing running costs while achieving greater reliability. Lastly, scenarios are discussed where cryo-preserved RBCs may be especially useful in enhancing the understanding and/or providing novel insights into the patterns and processes underlying human-to-mosquito transmission.
Collapse
Affiliation(s)
- Ashutosh K Pathak
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
| | - Justine C Shiau
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics and the Department of Entomology, Pennsylvania State University, State College, PA, 16803, USA
| | - Courtney C Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA
- Center for Tropical Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, 30602, USA
- Riverbasin Center, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
11
|
Josling GA, Williamson KC, Llinás M. Regulation of Sexual Commitment and Gametocytogenesis in Malaria Parasites. Annu Rev Microbiol 2018; 72:501-519. [PMID: 29975590 DOI: 10.1146/annurev-micro-090817-062712] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sexual differentiation of malaria parasites from the asexual blood stage into gametocytes is an essential part of the life cycle, as gametocytes are the form that is taken up by the mosquito host. Because of the essentiality of this process for transmission to the mosquito, gametocytogenesis is an extremely attractive target for therapeutic interventions. The subject of this review is the considerable progress that has been made in recent years in elucidating the molecular mechanisms governing this important differentiation process. In particular, a number of critical transcription factors and epigenetic regulators have emerged as crucial elements in the regulation of commitment. The identification of these factors has allowed us to understand better than ever before the events occurring prior to and during commitment to sexual development and offers potential for new therapeutic interventions.
Collapse
Affiliation(s)
- Gabrielle A Josling
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; .,Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kim C Williamson
- Microbiology and Immunology Department, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; .,Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
12
|
Wadi I, Pillai CR, Anvikar AR, Sinha A, Nath M, Valecha N. Methylene blue induced morphological deformations in Plasmodium falciparum gametocytes: implications for transmission-blocking. Malar J 2018; 17:11. [PMID: 29310655 PMCID: PMC5759873 DOI: 10.1186/s12936-017-2153-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/23/2017] [Indexed: 12/24/2022] Open
Abstract
Background Malaria remains a global health problem despite availability of effective tools. For malaria elimination, drugs targeting sexual stages of Plasmodium falciparum need to be incorporated in treatment regimen along with schizonticidal drugs to interrupt transmission. Primaquine is recommended as a transmission blocking drug for its effect on mature gametocytes but is not extensively utilized because of associated safety concerns among glucose-6-phosphate dehydrogenase (G6PD) deficient patients. In present work, methylene blue, which is proposed as an alternative to primaquine is investigated for its gametocytocidal activity amongst Indian field isolates. An effort has been made to establish Indian field isolates of P. falciparum as in vitro model for gametocytocidal drugs screening. Methods Plasmodium falciparum isolates were adapted to in vitro culture and induced to gametocyte production by hypoxanthine and culture was enriched for gametocyte stages using N-acetyl-glucosamine. Gametocytes were incubated with methylene blue for 48 h and stage specific gametocytocidal activity was evaluated by microscopic examination. Results Plasmodium falciparum field isolates RKL-9 and JDP-8 were able to reproducibly produce gametocytes in high yield and were used to screen gametocytocidal drugs. Methylene blue was found to target gametocytes in a concentration dependent manner by either completely eliminating gametocytes or rendering them morphologically deformed with mean IC50 (early stages) as 424.1 nM and mean IC50 (late stages) as 106.4 nM. These morphologically altered gametocytes appeared highly degenerated having shrinkage, distortions and membrane deformations. Conclusions Field isolates that produce gametocytes in high yield in vitro can be identified and used to screen gametocytocidal drugs. These isolates should be used for validation of gametocytocidal hits obtained previously by using lab adapted reference strains. Methylene blue was found to target gametocytes produced from Indian field isolates and is proposed to be used as a gametocytocidal adjunct with artemisinin-based combination therapy. Further exploration of methylene blue in clinical studies amongst Indian population, including G6PD deficient patients, is recommended.
Collapse
Affiliation(s)
- Ishan Wadi
- Indian Council of Medical Research-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, 110077, India. .,Department of Chemistry, University of Delhi, Delhi, 110007, India.
| | - C Radhakrishna Pillai
- Indian Council of Medical Research-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, 110077, India
| | - Anupkumar R Anvikar
- Indian Council of Medical Research-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, 110077, India
| | - Abhinav Sinha
- Indian Council of Medical Research-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, 110077, India
| | - Mahendra Nath
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Neena Valecha
- Indian Council of Medical Research-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, 110077, India
| |
Collapse
|
13
|
Abstract
Since the turn of the century, a remarkable expansion has been achieved in the range and effectiveness of products and strategies available to prevent, treat, and control malaria, including advances in diagnostics, drugs, vaccines, and vector control. These advances have once again put malaria elimination on the agenda. However, it is clear that even with the means available today, malaria control and elimination pose a formidable challenge in many settings. Thus, currently available resources must be used more effectively, and new products and approaches likely to achieve these goals must be developed. This paper considers tools (both those available and others that may be required) to achieve and maintain malaria elimination. New diagnostics are needed to direct treatment and detect transmission potential; new drugs and vaccines to overcome existing resistance and protect against clinical and severe disease, as well as block transmission and prevent relapses; and new vector control measures to overcome insecticide resistance and more powerfully interrupt transmission. It is also essential that strategies for combining new and existing approaches are developed for different settings to maximise their longevity and effectiveness in areas with continuing transmission and receptivity. For areas where local elimination has been recently achieved, understanding which measures are needed to maintain elimination is necessary to prevent rebound and the reestablishment of transmission. This becomes increasingly important as more countries move towards elimination.
Collapse
|
14
|
Sinha S, Sarma P, Sehgal R, Medhi B. Development in Assay Methods for in Vitro Antimalarial Drug Efficacy Testing: A Systematic Review. Front Pharmacol 2017; 8:754. [PMID: 29123481 PMCID: PMC5662882 DOI: 10.3389/fphar.2017.00754] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 10/04/2017] [Indexed: 11/13/2022] Open
Abstract
The emergence and spread of drug resistance are the major challenges in malaria eradication mission. Besides various strategies laid down by World Health Organization, such as vector management, source reduction, early case detection, prompt treatment, and development of new diagnostics and vaccines, nevertheless the need for new and efficacious drugs against malaria has become a critical priority on the global malaria research agenda. At several screening stages, millions of compounds are screened (1,000–2,000,000 compounds per screening campaign), before pre-clinical trials to select optimum lead. Carrying out in vitro screening of antimalarials is very difficult as different assay methods are subject to numerous sources of variability across different laboratories around the globe. Despite this, in vitro screening is an essential part of antimalarial drug development as it enables to resource various confounding factors such as host immune response and drug–drug interaction. Therefore, in this article, we try to illustrate the basic necessity behind in vitro study and how new methods are developed and subsequently adopted for high-throughput antimalarial drug screening and its application in achieving the next level of in vitro screening based on the current approaches (such as stem cells).
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
15
|
Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways. Antimicrob Agents Chemother 2016; 60:6635-6649. [PMID: 27572391 DOI: 10.1128/aac.01224-16] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/16/2016] [Indexed: 12/11/2022] Open
Abstract
The threat of widespread drug resistance to frontline antimalarials has renewed the urgency for identifying inexpensive chemotherapeutic compounds that are effective against Plasmodium falciparum, the parasite species responsible for the greatest number of malaria-related deaths worldwide. To aid in the fight against malaria, a recent extensive screening campaign has generated thousands of lead compounds with low micromolar activity against blood stage parasites. A subset of these leads has been compiled by the Medicines for Malaria Venture (MMV) into a collection of structurally diverse compounds known as the MMV Malaria Box. Currently, little is known regarding the activity of these Malaria Box compounds on parasite metabolism during intraerythrocytic development, and a majority of the targets for these drugs have yet to be defined. Here we interrogated the in vitro metabolic effects of 189 drugs (including 169 of the drug-like compounds from the Malaria Box) using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). The resulting metabolic fingerprints provide information on the parasite biochemical pathways affected by pharmacologic intervention and offer a critical blueprint for selecting and advancing lead compounds as next-generation antimalarial drugs. Our results reveal several major classes of metabolic disruption, which allow us to predict the mode of action (MoA) for many of the Malaria Box compounds. We anticipate that future combination therapies will be greatly informed by these results, allowing for the selection of appropriate drug combinations that simultaneously target multiple metabolic pathways, with the aim of eliminating malaria and forestalling the expansion of drug-resistant parasites in the field.
Collapse
|
16
|
Duffy S, Loganathan S, Holleran JP, Avery VM. Large-scale production of Plasmodium falciparum gametocytes for malaria drug discovery. Nat Protoc 2016; 11:976-92. [PMID: 27123949 DOI: 10.1038/nprot.2016.056] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tightly controlled induction of Plasmodium falciparum gametocytes in large-scale culture is a fundamental requirement for malaria drug discovery applications including, but not limited to, high-throughput screening. This protocol uses magnetic separation for isolation of hemozoin-containing parasites in order to (i) increase parasitemia, (ii) decrease hematocrit and (iii) introduce higher levels of young red blood cells in a culture simultaneously within 2-4 h. These parameters, along with red blood cell lysis products that are generated through schizont rupture, are highly relevant for enabling optimum induction of gametocytogenesis in vitro. No other previously published protocols have applied this particular approach for parasite isolation and maximization of fresh red blood cells before inducing gametocytogenesis, which is essential for obtaining highly synchronous gametocyte classical stages on a large scale. In summary, 500-1,000 million stage IV gametocytes can be obtained within 16 d from an initial 10 ml of asexual blood-stage culture.
Collapse
Affiliation(s)
- Sandra Duffy
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Sasdekumar Loganathan
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - John P Holleran
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Vicky M Avery
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
17
|
Gonçalves D, Hunziker P. Transmission-blocking strategies: the roadmap from laboratory bench to the community. Malar J 2016; 15:95. [PMID: 26888537 PMCID: PMC4758146 DOI: 10.1186/s12936-016-1163-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/11/2016] [Indexed: 11/10/2022] Open
Abstract
Malaria remains one of the most prevalent tropical and infectious diseases in the world, with an estimated more than 200 million clinical cases every year. In recent years, the mosquito stages of the parasite life cycle have received renewed attention with some progress being made in the development of transmission-blocking strategies. From gametocytes to late ookinetes, some attractive antigenic targets have been found and tested in order to develop a transmission blocking vaccine, and drugs are being currently screened for gametocytocidal activity, and also some new and less conventional approaches are drawing increased attention, such as genetically modified and fungus-infected mosquitoes that become refractory to Plasmodium infection. In this review some of those strategies focusing on the progress made so far will be summarized, but also, the challenges that come from the translation of early promising benchwork resulting in successful applications in the field. To do this, the available literature will be screened and all the pieces of the puzzle must be combined: from molecular biology to epidemiologic and clinical data.
Collapse
Affiliation(s)
- Daniel Gonçalves
- CLINAM Foundation for Nanomedicine, University of Basel, Basel, Switzerland.
| | - Patrick Hunziker
- CLINAM Foundation for Nanomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
18
|
Mokgethi-Morule T, N'Da DD. Cell based assays for anti-Plasmodium activity evaluation. Eur J Pharm Sci 2016; 84:26-36. [PMID: 26776968 DOI: 10.1016/j.ejps.2016.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/28/2015] [Accepted: 01/02/2016] [Indexed: 10/22/2022]
Abstract
Malaria remains one of the most common and deadly infectious diseases worldwide. The severity of this global public health challenge is reflected by the approximately 198 million people, who were reportedly infected in 2013 and by the more than 584,000 related deaths in that same year. The rising emergence of drug resistance towards the once effective artemisinin combination therapies (ACTs) has become a serious concern and warrants more robust drug development strategies, with the objective of eradicating malaria infections. The intricate biology and life cycle of Plasmodium parasites complicate the understanding of the disease in such a way that would enhance the development of more effective chemotherapies that would achieve radical clinical cure and that would prevent disease relapse. Phenotypic cell based assays have for long been a valuable approach and involve the screening and analysis of diverse compounds with regards to their activities towards whole Plasmodium parasites in vitro. To achieve the Millennium Development Goal (MDG) of malaria eradication by 2020, new generation drugs that are active against all parasite stages (erythrocytic (blood), exo-erythrocytic (liver stages and gametocytes)) are needed. Significant advances are being made in assay development to overcome some of the practical challenges of assessing drug efficacy, particularly in the liver and transmission stage Plasmodium models. This review discusses primary screening models and the fundamental progress being made in whole cell based efficacy screens of anti-malarial activity. Ongoing challenges and some opportunities for improvements in assay development that would assist in the discovery of effective, safe and affordable drugs for malaria treatments are also discussed.
Collapse
Affiliation(s)
- Thabang Mokgethi-Morule
- Drug Design, Centre of Excellence for Pharmaceutical Sciences (PHARMACEN), North-West University, Potchefstroom 2520, South Africa
| | - David D N'Da
- Drug Design, Centre of Excellence for Pharmaceutical Sciences (PHARMACEN), North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
19
|
Josling GA, Llinás M. Sexual development in Plasmodium parasites: knowing when it's time to commit. Nat Rev Microbiol 2015; 13:573-87. [DOI: 10.1038/nrmicro3519] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Reader J, Botha M, Theron A, Lauterbach SB, Rossouw C, Engelbrecht D, Wepener M, Smit A, Leroy D, Mancama D, Coetzer TL, Birkholtz LM. Nowhere to hide: interrogating different metabolic parameters of Plasmodium falciparum gametocytes in a transmission blocking drug discovery pipeline towards malaria elimination. Malar J 2015; 14:213. [PMID: 25994518 PMCID: PMC4449569 DOI: 10.1186/s12936-015-0718-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/22/2015] [Indexed: 12/23/2022] Open
Abstract
Background The discovery of malaria transmission-blocking compounds is seen as key to malaria elimination strategies and gametocyte-screening platforms are critical filters to identify active molecules. However, unlike asexual parasite assays measuring parasite proliferation, greater variability in end-point readout exists between different gametocytocidal assays. This is compounded by difficulties in routinely producing viable, functional and stage-specific gametocyte populations. Here, a parallel evaluation of four assay platforms on the same gametocyte populations was performed for the first time. This allowed the direct comparison of the ability of different assay platforms to detect compounds with gametocytocidal activity and revealed caveats in some assay readouts that interrogate different parasite biological functions. Methods Gametocytogenesis from Plasmodium falciparum (NF54) was optimized with a robust and standardized protocol. ATP, pLDH, luciferase reporter and PrestoBlue® assays were compared in context of a set of 10 reference compounds. The assays were performed in parallel on the same gametocyte preparation (except for luciferase reporter lines) using the same drug preparations (48 h). The remaining parameters for each assay were all comparable. Results A highly robust method for generating viable and functional gametocytes was developed and comprehensively validated resulting in an average gametocytaemia of 4 %. Subsequent parallel assays for gametocytocidal activity indicated that different assay platforms were not able to screen compounds with variant chemical scaffolds similarly. Luciferase reporter assays revealed that synchronized stage-specific gametocyte production is essential for drug discovery, as differential susceptibility in various gametocyte developmental populations is evident. Conclusions With this study, the key parameters for assays aiming at testing the gametocytocidal activity of potential transmission blocking molecules against Plasmodium gametocytes were accurately dissected. This first and uniquely comparative study emphasizes differential effects seen with the use of different assay platforms interrogating variant biological systems. Whilst this data is informative from a biological perspective and may provide indications of the drug mode of action, it does highlight the care that must be taken when screening broad-diversity chemotypes with a single assay platform against gametocytes for which the biology is not clearly understood. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0718-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janette Reader
- Malaria Parasite Molecular Laboratory, Centre for Sustainable Malaria Control, Department of Biochemistry, University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa.
| | - Mariëtte Botha
- Malaria Parasite Molecular Laboratory, Centre for Sustainable Malaria Control, Department of Biochemistry, University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa.
| | - Anjo Theron
- Biosciences, Council for Scientific and Industrial Research, PO Box 395, Pretoria, 0001, South Africa.
| | - Sonja B Lauterbach
- Plasmodium Molecular Research Unit, Wits Research Institute for Malaria, Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, 2193, South Africa.
| | - Claire Rossouw
- Biosciences, Council for Scientific and Industrial Research, PO Box 395, Pretoria, 0001, South Africa.
| | - Dewaldt Engelbrecht
- Plasmodium Molecular Research Unit, Wits Research Institute for Malaria, Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, 2193, South Africa.
| | - Melanie Wepener
- Plasmodium Molecular Research Unit, Wits Research Institute for Malaria, Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, 2193, South Africa.
| | - Annél Smit
- Malaria Parasite Molecular Laboratory, Centre for Sustainable Malaria Control, Department of Biochemistry, University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa.
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland.
| | - Dalu Mancama
- Biosciences, Council for Scientific and Industrial Research, PO Box 395, Pretoria, 0001, South Africa.
| | - Theresa L Coetzer
- Plasmodium Molecular Research Unit, Wits Research Institute for Malaria, Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, 2193, South Africa.
| | - Lyn-Marie Birkholtz
- Malaria Parasite Molecular Laboratory, Centre for Sustainable Malaria Control, Department of Biochemistry, University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028, South Africa.
| |
Collapse
|
21
|
Kumar S, Kumari R, Pandey R. New insight-guided approaches to detect, cure, prevent and eliminate malaria. PROTOPLASMA 2015; 252:717-753. [PMID: 25323622 DOI: 10.1007/s00709-014-0697-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/01/2014] [Indexed: 06/04/2023]
Abstract
New challenges posed by the development of resistance against artemisinin-based combination therapies (ACTs) as well as previous first-line therapies, and the continuing absence of vaccine, have given impetus to research in all areas of malaria control. This review portrays the ongoing progress in several directions of malaria research. The variants of RTS,S and apical membrane antigen 1 (AMA1) are being developed and test adapted as multicomponent and multistage malaria control vaccines, while many other vaccine candidates and methodologies to produce antigens are under experimentation. To track and prevent the spread of artemisinin resistance from Southeast Asia to other parts of the world, rolling circle-enhanced enzyme activity detection (REEAD), a time- and cost-effective malaria diagnosis in field conditions, and a DNA marker associated with artemisinin resistance have become available. Novel mosquito repellents and mosquito trapping and killing techniques much more effective than the prevalent ones are undergoing field testing. Mosquito lines stably infected with their symbiotic wild-type or genetically engineered bacteria that kill sympatric malaria parasites are being constructed and field tested for stopping malaria transmission. A complementary approach being pursued is the addition of ivermectin-like drug molecules to ACTs to cure malaria and kill mosquitoes. Experiments are in progress to eradicate malaria mosquito by making it genetically male sterile. High-throughput screening procedures are being developed and used to discover molecules that possess long in vivo half life and are active against liver and blood stages for the fast cure of malaria symptoms caused by simple or relapsing and drug-sensitive and drug-resistant types of varied malaria parasites, can stop gametocytogenesis and sporogony and could be given in one dose. Target-based antimalarial drug designing has begun. Some of the putative next-generation antimalarials that possess in their scaffold structure several of the desired properties of malaria cure and control are exemplified by OZ439, NITD609, ELQ300 and tafenoquine that are already undergoing clinical trials, and decoquinate, usnic acid, torin-2, ferroquine, WEHI-916, MMV396749 and benzothiophene-type N-myristoyltransferase (NMT) inhibitors, which are candidates for future clinical usage. Among these, NITD609, ELQ300, decoquinate, usnic acid, torin-2 and NMT inhibitors not only cure simple malaria and are prophylactic against simple malaria, but they also cure relapsing malaria.
Collapse
Affiliation(s)
- Sushil Kumar
- SKA Institution for Research, Education and Development (SKAIRED), 4/11 SarvPriya Vihar, New Delhi, 110016, India,
| | | | | |
Collapse
|
22
|
Roncalés M, Vidal J, Torres PA, Herreros E. <i>In Vitro</i > Culture of <i>Plasmodium falciparum</i>: Obtention of Synchronous Asexual Erythrocytic Stages. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojepi.2015.51010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Joubert JP, Smit FJ, du Plessis L, Smith PJ, N’Da DD. Synthesis and in vitro biological evaluation of aminoacridines and artemisinin–acridine hybrids. Eur J Pharm Sci 2014; 56:16-27. [DOI: 10.1016/j.ejps.2014.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/13/2014] [Accepted: 01/29/2014] [Indexed: 01/16/2023]
|
24
|
Miao J, Wang Z, Liu M, Parker D, Li X, Chen X, Cui L. Plasmodium falciparum: generation of pure gametocyte culture by heparin treatment. Exp Parasitol 2013; 135:541-5. [PMID: 24055216 DOI: 10.1016/j.exppara.2013.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 08/02/2013] [Accepted: 09/06/2013] [Indexed: 11/28/2022]
Abstract
In vitro culture of Plasmodium falciparum gametocytes is essential for studying sexual development of the parasite. Here we describe a simple method for producing synchronous gametocyte culture without contamination of asexual stages. This method employs heparin's activity in blocking merozoite invasion of erythrocytes to eliminate asexual stage parasites from gametocyte culture. We show that following induction of gametocyte formation, addition of heparin in culture medium for four days effectively eliminates asexual stages and produces pure, synchronous cultures of gametocytes. Compared with the commonly used N-acetylglucosamine treatment method, heparin treatment requires shorter time to eliminate asexual stages and causes significantly less hemolysis in late stage gametocyte cultures.
Collapse
Affiliation(s)
- Jun Miao
- Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
During the blood stage of their life cycle, malaria parasites invade and replicate within host erythrocytes. Some parasites differentiate to form male and female gametocytes, enabling transmission to the insect vector. Two studies by Regev-Rudzki et al. and Mantel et al. reveal an unexpected role for cell-cell communication using extracellular vesicles in triggering the commitment of malaria parasites toward sexual differentiation.
Collapse
Affiliation(s)
- Hernando A Del Portillo
- ICREA at Barcelona Centre for International Health Research (CRESIB, Hospital Clinic - Universitat de Barcelona), 08036 Barcelona, Spain.
| | | |
Collapse
|
26
|
Biamonte MA, Wanner J, Le Roch KG. Recent advances in malaria drug discovery. Bioorg Med Chem Lett 2013; 23:2829-43. [PMID: 23587422 PMCID: PMC3762334 DOI: 10.1016/j.bmcl.2013.03.067] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/11/2013] [Accepted: 03/20/2013] [Indexed: 01/18/2023]
Abstract
This digest covers some of the most relevant progress in malaria drug discovery published between 2010 and 2012. There is an urgent need to develop new antimalarial drugs. Such drugs can target the blood stage of the disease to alleviate the symptoms, the liver stage to prevent relapses, and the transmission stage to protect other humans. The pipeline for the blood stage is becoming robust, but this should not be a source of complacency, as the current therapies set a high standard. Drug discovery efforts directed towards the liver and transmission stages are in their infancy but are receiving increasing attention as targeting these stages could be instrumental in eradicating malaria.
Collapse
Affiliation(s)
- Marco A Biamonte
- Drug Discovery for Tropical Diseases, Suite 230, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
27
|
D'Alessandro S, Silvestrini F, Dechering K, Corbett Y, Parapini S, Timmerman M, Galastri L, Basilico N, Sauerwein R, Alano P, Taramelli D. A Plasmodium falciparum screening assay for anti-gametocyte drugs based on parasite lactate dehydrogenase detection. J Antimicrob Chemother 2013; 68:2048-58. [PMID: 23645588 DOI: 10.1093/jac/dkt165] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES Plasmodium gametocytes, responsible for malaria parasite transmission from humans to mosquitoes, represent a crucial target for new antimalarial drugs to achieve malaria elimination/eradication. We developed a novel colorimetric screening method for anti-gametocyte compounds based on the parasite lactate dehydrogenase (pLDH) assay, already standardized for asexual stages, to measure gametocyte viability and drug susceptibility. METHODS Gametocytogenesis of 3D7 and NF54 Plasmodium falciparum strains was induced in vitro and asexual parasites were depleted with N-acetylglucosamine. Gametocytes were treated with dihydroartemisinin, epoxomicin, methylene blue, primaquine, puromycin or chloroquine in 96-well plates and the pLDH activity was evaluated using a modified Makler protocol. Mosquito infectivity was measured by the standard membrane feeding assay (SMFA). RESULTS A linear correlation was found between gametocytaemia determined by Giemsa staining and pLDH activity. A concentration-dependent reduction in pLDH activity was observed after 72 h of drug treatment, whereas an additional 72 h of incubation without drugs was required to obtain complete inhibition of gametocyte viability. SMFA on treated and control gametocytes confirmed that a reduction in pLDH activity translates into reduced oocyst development in the mosquito vector. CONCLUSIONS The gametocyte pLDH assay is fast, easy to perform, cheap and reproducible and is suitable for screening novel transmission-blocking compounds, which does not require parasite transgenic lines.
Collapse
Affiliation(s)
- Sarah D'Alessandro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|