1
|
Jung MA, Song HK, Jo K, Lee A, Hwang YH, Ji KY, Jung DH, Cai M, Lee JY, Pyun BJ, Kim T. Gleditsia sinensis Lam. aqueous extract attenuates nasal inflammation in allergic rhinitis by inhibiting MUC5AC production through suppression of the STAT3/STAT6 pathway. Biomed Pharmacother 2023; 161:114482. [PMID: 36921533 DOI: 10.1016/j.biopha.2023.114482] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Allergic rhinitis (AR), a chronic respiratory inflammatory disease, is among the most common chronic diseases reported worldwide. Mucus hypersecretion is a critical feature of AR pathogenesis. Although the Gleditsia sinensis extract has several beneficial effects on human health, its effects on allergic inflammation have not yet been investigated. In this study, we examined the effects of G. sinensis aqueous extract (GSAE) on nasal inflammation in an ovalbumin (OVA)-induced AR mouse model. GSAE was administered orally for 1 week and then the clinical nasal symptoms were evaluated. The levels of histamine, OVA-specific immunoglobulin (Ig) E, and interleukin (IL)-13 were measured in the serum using an enzyme-linked immunosorbent assay (ELISA). Inflammatory cells were then counted in the nasal lavage fluid (NALF) and histopathology in the nasal epithelium was evaluated. STAT3/STAT6 phosphorylation was examined in primary human nasal epithelial cells (HNEpCs) using western blot analysis. Oral administration of GSAE to OVA-induced AR mice alleviated nasal clinical symptoms and reduced OVA-specific immunoglobulin E, interleukin (IL)-13, and histamine levels. The accumulation of eosinophils in nasal lavage fluid, nasal mucosa, mast cells, goblet cells, and mucin 5AC (MUC5AC) in the nasal epithelium was also inhibited by GSAE. Treatment with GSAE inhibited the production of MUC5AC in IL-4/IL-13-stimulated primary human nasal epithelial cells through the signal transducer and activator of transcription (STAT)3/STAT6 signaling pathway. These results indicated that GSAE reduces nasal inflammation suggesting that it is a potential treatment option for AR.
Collapse
Affiliation(s)
- Myung-A Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Hyun-Kyung Song
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Kyuhyung Jo
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Ami Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Youn-Hwan Hwang
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Kon-Young Ji
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea; Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology (KIT), 30 Baekhak1-gil, Jeongeup-si 56212, the Republic of Korea
| | - Dong Ho Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Mudan Cai
- KM Science Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Joo Young Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Bo-Jeong Pyun
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea.
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, the Republic of Korea.
| |
Collapse
|
2
|
Liao Q, Chen W, Tong Z, Xue M, Gu T, Yuan Y, Song Z, Tao Z. Shufeng Jiedu capsules protect rats against LPS-induced acute lung injury via activating NRF2-associated antioxidant pathway. Histol Histopathol 2021; 36:317-324. [PMID: 33346364 DOI: 10.14670/hh-18-293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shufeng Jiedu capsule (SFJDC) is a traditional Chinese medicine, which has been used for the treatment of respiratory infections for more than thirty years in Hunan (China). SFJDC protected rats against LPS-induced acute lung injury (ALI); however, the molecular mechanisms underlying the therapeutic effects of SFJDC remain unclear. Therefore, this study aimed at analyzing the major anti-inflammatory compounds of SFJDC and exploring the underlying molecular mechanisms. SFJDC dissolved in water was fingerprinted by UPLC/Q-TOF. Inflammation response was assessed by histopathological examination and ELISA assay. Arterial blood gases were also analyzed to evaluate the function of rat lungs. The expression levels of Kelch-like ECH-associating protein 1 (Keap1), Nrf2, heme oxygenase-1 (HO1), Cullin 3 (CUL3) and NQO1 were analyzed by Western blotting. Results indicated that SFJDC alleviated inflammation response by reducing the level of inflammatory cytokines, and upregulation of glutathione-S-transferase (GST) and superoxide dismutase (SOD) in lung tissues. Furthermore, SFJDC suppressed LPS-induced upregulation of Keap 1 and CUL3 in rat lungs. The expression of NRF2 HO1 and NQO1 were further upregulated by SFJDC in the presence of LPS, indicating that SFJDC might activate the NRF2-associated antioxidant pathway. In conclusion, SFJDC treatment may protect the rat lungs from LPS by alleviating the inflammation response via NRF2-associated antioxidant pathway.
Collapse
Affiliation(s)
- Qingwu Liao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenan Chen
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhufeng Tong
- Department of General Practice, Yijishan Hospital of Wannan Medical College, Anhui, China
| | - Mingming Xue
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianwen Gu
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Yuan
- Geriatrics Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenju Song
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengang Tao
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Isobavachalcone attenuates Sephadex-induced lung injury via activation of A20 and NRF2/HO-1 in rats. Eur J Pharmacol 2019; 848:49-54. [DOI: 10.1016/j.ejphar.2019.01.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/15/2022]
|
4
|
Lee YS, Cho IJ, Kim JW, Lee SK, Ku SK, Lee HJ. Evaluation of in vitro anti-oxidant and anti-inflammatory activities of Korean and Chinese Lonicera caerulea. Nutr Res Pract 2018; 12:486-493. [PMID: 30515276 PMCID: PMC6277309 DOI: 10.4162/nrp.2018.12.6.486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/22/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND/OBJECTIVES The honeysuckle berry (HB) contains ascorbic acid and phenolic components, especially anthocyanins, flavonoids, and low-molecular-weight phenolic acids. In order to examine the potential of HB as a hepatoprotective medicinal food, we evaluated the in vitro anti-oxidant and anti-inflammatory activities of Korean HB (HBK) and Chinese HB (HBC). MATERIALS/METHODS Antioxidant and anti-inflammatory effects of the extracts were examined in HepG2 and RAW 264.7 cells, respectively. The anti-oxidant capacity was determined by DPPH, SOD, CAT, and ARE luciferase activities. The production of nitric oxide (NO) as an inflammatory marker was also evaluated. The Nrf2-mediated mRNA levels of heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase [quinone] 1 (Nqo1), and glutamate-cysteine ligase catalytic subunit (Gclc) were measured. The concentrations of HB extracts used were 3, 10, 30, 100, and 300 µg/mL. RESULTS The radical scavenging activity of all HB extracts increased in a concentration-dependent manner (P < 0.01 or P < 0.05). SOD (P < 0.05) and CAT (P < 0.01) activities were increased by treatment with 300 µg/mL of each HB extract, when compared to those in the control. NO production was observed in cells pretreated with 100 or 300 µg/mL of HBC and HBK (P < 0.01). Treatment with 300 µg/mL of HBC significantly increased Nqo1 (P < 0.01) and Gclc (P < 0.05) mRNA levels compared to those in the control. Treatment with 300 µg/mL of HBK (P < 0.05) and HBC (P < 0.01) also significantly increased the HO-1 mRNA level compared to that in the control. CONCLUSIONS Thus, the Korean and Chinese HBs were found to possess favorable in vitro anti-oxidant and anti-inflammatory activities. Nrf2 and its related anti-oxidant genes were associated with both anti-oxidant and anti-inflammatory activities in HB-treated cells. Further studies are needed to confirm these in vivo effects.
Collapse
Affiliation(s)
- You-Suk Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi 13120, Korea
| | - Il Je Cho
- The Medical Research Center for Globalization of Herbal Formulation and Department of Herbal Formulation, College of Oriental Medicine, Daegu Haany University, Gyeongbuk 38610, Korea
| | - Joo Wan Kim
- Department of Internal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Sun-Kyoung Lee
- Department of Life Physical Education, Myongji University, Seoul 03674, Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University, 1, Hanuidae-ro, Gyeongsan, Gyeongbuk 38610, Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi 13120, Korea
| |
Collapse
|
5
|
Chrysin attenuates carrageenan-induced pleurisy and lung injury via activation of SIRT1/NRF2 pathway in rats. Eur J Pharmacol 2018; 836:83-88. [DOI: 10.1016/j.ejphar.2018.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022]
|
6
|
Lee JH, Go Y, Lee B, Hwang YH, Park KI, Cho WK, Ma JY. The fruits of Gleditsia sinensis Lam. inhibits adipogenesis through modulation of mitotic clonal expansion and STAT3 activation in 3T3-L1 cells. JOURNAL OF ETHNOPHARMACOLOGY 2018; 222:61-70. [PMID: 29689351 DOI: 10.1016/j.jep.2018.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 04/05/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gleditsia sinensis Lam. (G. sinensis) has been used in Oriental medicine for tumor, thrombosis, inflammation-related disease, and obesity. AIM OF THE STUDY The pharmacological inhibitory effects of fruits of G. sinensis (GFE) on hyperlipidemia have been reported, but its inhibitory effects on adipogenesis and underlying mechanisms have not been elucidated. Herein we evaluated the anti-adipogenic effects of GFE and described the underlying mechanisms. MATERIALS AND METHODS The effects of ethanol extracts of GFE on adipocyte differentiation were examined in 3T3-L1 cells using biochemical and molecular analyses. RESULTS During the differentiation of 3T3-L1 cells, GFE significantly reduced lipid accumulation and downregulated master adipogenic transcription factors, including CCAAT/enhancer-binding protein-α and peroxisome proliferator-activated receptor-γ, at mRNA and protein levels. These changes led to the suppression of several adipogenic-specific genes and proteins, including fatty acid synthase, sterol regulatory element-binding protein 1, stearoyl-CoA desaturase-1, and acetyl CoA carboxylase. However, the inhibitory effects of GFE on lipogenesis were only shown when GFE is treated in the early stage of adipogenesis within the first two days of differentiation. As a potential mechanism, during the early stages of differentiation, GFE inhibited cell proliferation by a decrease in the expression of DNA synthesis-related proteins and increased p27 expression and suppressed signal transducer and activator of transcription 3 (STAT3) activation induced in a differentiation medium. CONCLUSIONS GFE inhibits lipogenesis by negative regulation of adipogenic transcription factors, which is associated with GFE-mediated cell cycle arrest and STAT3 inhibition.
Collapse
Affiliation(s)
- Ji-Hye Lee
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Younghoon Go
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Bonggi Lee
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Youn-Hwan Hwang
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Kwang Il Park
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Won-Kyung Cho
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea.
| | - Jin Yeul Ma
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea.
| |
Collapse
|
7
|
Alternative and Natural Therapies for Acute Lung Injury and Acute Respiratory Distress Syndrome. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2476824. [PMID: 29862257 PMCID: PMC5976962 DOI: 10.1155/2018/2476824] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/08/2018] [Indexed: 01/17/2023]
Abstract
Introduction Acute respiratory distress syndrome (ARDS) is a complex clinical syndrome characterized by acute inflammation, microvascular damage, and increased pulmonary vascular and epithelial permeability, frequently resulting in acute respiratory failure and death. Current best practice for ARDS involves “lung-protective ventilation,” which entails low tidal volumes and limiting the plateau pressures in mechanically ventilated patients. Although considerable progress has been made in understanding the pathogenesis of ARDS, little progress has been made in the development of specific therapies to combat injury and inflammation. Areas Covered In recent years, several natural products have been studied in experimental models and have been shown to inhibit multiple inflammatory pathways associated with acute lung injury and ARDS at a molecular level. Because of the pleiotropic effects of these agents, many of them also activate antioxidant pathways through nuclear factor erythroid-related factor 2, thereby targeting multiple pathways. Several of these agents are prescribed for treatment of inflammatory conditions in the Asian subcontinent and have shown to be relatively safe. Expert Commentary Here we review natural remedies shown to attenuate lung injury and inflammation in experimental models. Translational human studies in patients with ARDS may facilitate treatment of this devastating disease.
Collapse
|
8
|
Yi YS, Kim MY, Cho JY. JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:345-352. [PMID: 28461777 PMCID: PMC5409119 DOI: 10.4196/kjpp.2017.21.3.345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/29/2017] [Accepted: 02/03/2017] [Indexed: 12/25/2022]
Abstract
Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin E2 (PGE2) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1b without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the NF-kB transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the NF-kB pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the NF-kB and AP-1 pathways, respectively.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea.,Department of Pharmaceutical Engineering, Cheongju University, Cheongju 28503, Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
9
|
Zhu G, Xin X, Liu Y, Huang Y, Li K, Wu C. Geraniin attenuates LPS-induced acute lung injury via inhibiting NF-κB and activating Nrf2 signaling pathways. Oncotarget 2017; 8:22835-22841. [PMID: 28423560 PMCID: PMC5410266 DOI: 10.18632/oncotarget.15227] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/13/2017] [Indexed: 12/21/2022] Open
Abstract
Geraniin, a typical ellagitannin isolated from Phyllanthusurinaria Linn, has been reported to have anti-inflammatory effect. The aim of the study is to investigate the therapeutic effects of geraniin on LPS-induced acute lung injury (ALI) in mice. The mice were intranasal adminisration of LPS for 12 h. Geraniin was intra-peritoneal injection 1 h after LPS treatment. The results showed that geraniin significantly attenuated LPS-induced pathological changes in the lung. Geraniin also inhibited LPS-induced macrophages and neutrophils infiltration in the lung. Geraniin significantly attenuated LPS-induced elevation of MPO level. LPS-induced TNF-α, IL-6 and IL-1β production were markedly suppressed by treatment of geraniin. Furthermore, geraniin inhibited NF-κB activation in LPS-induced ALI. In addition, geraniin was found to up-regulate the expression of Nrf2 and HO-1. In conclusion, these data suggested that geraniin had therapeutic effects in LPS-induced ALI by inhibiting NF-κB and activating Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Guangfa Zhu
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
- Department of Infectious Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Xi Xin
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Yan Liu
- Department of Infectious Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Yan Huang
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Keng Li
- Department of Infectious Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Chunting Wu
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| |
Collapse
|
10
|
Kim HP, Lim H, Kwon YS. Therapeutic Potential of Medicinal Plants and Their Constituents on Lung Inflammatory Disorders. Biomol Ther (Seoul) 2017; 25:91-104. [PMID: 27956716 PMCID: PMC5340533 DOI: 10.4062/biomolther.2016.187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022] Open
Abstract
Acute bronchitis and chronic obstructive pulmonary diseases (COPD) are essentially lung inflammatory disorders. Various plant extracts and their constituents showed therapeutic effects on several animal models of lung inflammation. These include coumarins, flavonoids, phenolics, iridoids, monoterpenes, diterpenes and triterpenoids. Some of them exerted inhibitory action mainly by inhibiting the mitogen-activated protein kinase pathway and nuclear transcription factor-κB activation. Especially, many flavonoid derivatives distinctly showed effectiveness on lung inflammation. In this review, the experimental data for plant extracts and their constituents showing therapeutic effectiveness on animal models of lung inflammation are summarized.
Collapse
Affiliation(s)
- Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| | - Hyun Lim
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| | - Yong Soo Kwon
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| |
Collapse
|
11
|
The Fruit Hull of Gleditsia sinensis Enhances the Anti-Tumor Effect of cis-Diammine Dichloridoplatinum II (Cisplatin). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7480971. [PMID: 27721894 PMCID: PMC5046024 DOI: 10.1155/2016/7480971] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/18/2016] [Indexed: 11/18/2022]
Abstract
Lung cancer has substantial mortality worldwide, and chemotherapy is a routine regimen for the treatment of patients with lung cancer, despite undesirable effects such as drug resistance and chemotoxicity. Here, given a possible antitumor effect of the fruit hull of Gleditsia sinensis (FGS), we tested whether FGS enhances the effectiveness of cis-diammine dichloridoplatinum (II) (CDDP), a chemotherapeutic drug. We found that CDDP, when administered with FGS, significantly decreased the viability and increased the apoptosis and cell cycle arrest of Lewis lung carcinoma (LLC) cells, which were associated with the increase of p21 and decreases of cyclin D1 and CDK4. Concordantly, when combined with FGS, CDDP significantly reduced the volume and weight of tumors derived from LLC subcutaneously injected into C57BL/6 mice, with concomitant increases of phosphor-p53 and p21 in tumor tissue. Together, these results show that FGS could enhance the antitumor activity of CDDP, suggesting that FGS can be used as a complementary measure to enhance the efficacy of a chemotherapeutic agent such as CDDP.
Collapse
|
12
|
Kim KH, Park H, Park HJ, Choi KH, Sadikot RT, Cha J, Joo M. Glycosylation enables aesculin to activate Nrf2. Sci Rep 2016; 6:29956. [PMID: 27417293 PMCID: PMC4945939 DOI: 10.1038/srep29956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/28/2016] [Indexed: 02/08/2023] Open
Abstract
Since aesculin, 6,7-dihydroxycoumarin-6-O-β-glucopyranoside, suppresses inflammation, we asked whether its anti-inflammatory activity is associated with the activation of nuclear factor-E2-related factor 2 (Nrf2), a key anti-inflammatory factor. Our results, however, show that aesculin marginally activated Nrf2. Since glycosylation can enhance the function of a compound, we then asked whether adding a glucose makes aesculin activate Nrf2. Our results show that the glycosylated aesculin, 3-O-β-d-glycosyl aesculin, robustly activated Nrf2, inducing the expression of Nrf2-dependent genes, such as heme oxygenase-1, glutamate-cysteine ligase catalytic subunit, and NAD(P)H quinone oxidoreductase 1 in macrophages. Mechanistically, 3-O-β-d-glycosyl aesculin suppressed ubiquitination of Nrf2, retarding degradation of Nrf2. Unlike aesculin, 3-O-β-d-glycosyl aesculin significantly suppressed neutrophilic lung inflammation, a hallmark of acute lung injury (ALI), in mice, which was not recapitulated in Nrf2 knockout mice, suggesting that the anti-inflammatory function of the compound largely acts through Nrf2. In a mouse model of sepsis, a major cause of ALI, 3-O-β-d-glycosyl aesculin significantly enhanced the survival of mice, compared with aesculin. Together, these results show that glycosylation could confer the ability to activate Nrf2 on aesculin, enhancing the anti-inflammatory function of aesculin. These results suggest that glycosylation can be a way to improve or alter the function of aesculin.
Collapse
Affiliation(s)
- Kyun Ha Kim
- School of Korean Medicine, Pusan National University, Yangsan 626-870, Korea
| | - Hyunsu Park
- Department of Microbiology, Pusan National University, Busan 609-735, Korea
| | - Hee Jin Park
- Department of Microbiology, Pusan National University, Busan 609-735, Korea
| | - Kyoung-Hwa Choi
- Department of Microbiology, Pusan National University, Busan 609-735, Korea
| | - Ruxana T Sadikot
- Section of Pulmonary and Critical Care Medicine, Atlanta Veterans Affairs Medical Center, Emory University, Decatur, GA30033, USA
| | - Jaeho Cha
- Department of Microbiology, Pusan National University, Busan 609-735, Korea
| | - Myungsoo Joo
- School of Korean Medicine, Pusan National University, Yangsan 626-870, Korea
| |
Collapse
|
13
|
Zhang JP, Tian XH, Yang YX, Liu QX, Wang Q, Chen LP, Li HL, Zhang WD. Gleditsia species: An ethnomedical, phytochemical and pharmacological review. JOURNAL OF ETHNOPHARMACOLOGY 2016; 178:155-71. [PMID: 26643065 DOI: 10.1016/j.jep.2015.11.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plants in the genus Gleditsia, mainly distributed in central and Southeast Asia and North and South America, have been used as local and traditional medicines in many regions, especially in China, for the treatment of measles, indigestion, whooping, smallpox, arthrolithiasis, constipation, diarrhea, hematochezia, dysentery, carbuncle, etc. This present paper systemically reviews the miscellaneous information surrounding its traditional use, phytochemistry and pharmacology to provide opportunities and recommendations for the future research. MATERIALS AND METHODS The scientific literatures were systematically searched from scientific databases (PubMed, Scopus, Elsevier, SpringerLink, SciFinder, Google Scholar and others). In addition, the ethnopharmacological information on this genus was mainly acquired from Chinese and Korean herbal classics, and library catalogs. RESULTS More than 60 compounds including triterpenes, sterols, flavonoids, alkaloids, phenolics and their derivatives were isolated from Gleditsia japonica Miq., Gleditsia sinensis Lam., Gleditsia caspica Desf. and Gleditsia triacanthos L. Among these compounds, triterpenoid saponins were the main constituents of Gleditsia species. Moreover, the crude extracts and purified molecules were tested, revealing diverse biological activities such as anti-tumor, anti-inflammatory, anti-allergic, anti-hyperlipidemic, analgesic, antimutagenic, antioxidant, anti-HIV, antibacterial, antifungal activities, etc. Among these biological studies, the possible mechanisms of antitumor action are stressed in this review, and these include causing cytotoxicity to cancer cells, inhibition of proliferation of cancer cells by affecting their growth, regeneration and apoptosis, inhibition of basic fibroblast growth factor (bFGF) and nitric oxide (NO), modulation of the oncogenic expression and telomerase activity results, inhibition of the expression of pro-angiogenic proteins, as well as down-regulation of intra/extracellular proangiogenic modulators, etc. CONCLUSIONS On the basis of preliminary research on Gleditsia genus it could be stated that saponins investigations may be more promising in future. Although 32 compounds of 67 identified compounds were saponins, modern pharmacological research on saponins were not a priority in Gleditsia species. Therefore, more bioactive experiments and in-depth mechanisms of action are required for elucidating their roles in physiological systems. Moreover, the present review also highlights that analgesic, anti-tumor and anti-HIV activities should have priority in saponins research. Additionally, it is imperative to explore more structure-activity relationships and possible synergistic actions of triterpenoid saponins for revaluating their pharmacological activities.
Collapse
Affiliation(s)
- Jian-Ping Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Xin-Hui Tian
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Yong-Xun Yang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Qing-Xin Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Qun Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Li-Ping Chen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Hui-Liang Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China.
| | - Wei-Dong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200030, PR China
| |
Collapse
|
14
|
Choi HJ, Choi HJ, Park MJ, Lee JY, Jeong SI, Lee S, Kim KH, Joo M, Jeong HS, Kim JE, Ha KT. The inhibitory effects of Geranium thunbergii on interferon-γ- and LPS-induced inflammatory responses are mediated by Nrf2 activation. Int J Mol Med 2015; 35:1237-45. [PMID: 25761198 PMCID: PMC4380198 DOI: 10.3892/ijmm.2015.2128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/02/2015] [Indexed: 01/08/2023] Open
Abstract
Geranium thunbergii Sieb. et Zucc. (GT; which belongs to the Geraniaceae family) has been used as a traditional medicine in East Asia for the treatment of inflammatory diseases, including arthritis and diarrhea. However, the underlying mechanisms of the anti-inflammatory effects of GT remain poorly understood. In the present study, we examined the mechanisms responsible for the anti-inflammatory activity of GT in macrophages. The results revealed that GT significantly inhibited the lipopolysaccharide (LPS)- and interferon-γ (IFN-γ)-induced expression of pro-inflammatory genes, such as inducible nitric oxide synthase, tumor necrosis factor-α and interleukin-1β, as shown by RT-PCR. However, the inhibitory effects of GT on LPS- and IFN-γ-induced inflammation were associated with an enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) activity, but not with the suppression of nuclear factor (NF)-κB activity, as shown by western blot analysis. In addition, in bone marrow-derived macrophages (BMDM) isolated from Nrf2 knockout mice, GT did not exert any inhibitory effect on the LPS- and IFN-γ-induced inflammation. Taken together, our findings indicate that the anti-inflammatory effects of GT may be associated with the activation of Nrf2, an anti-inflammatory transcription factor.
Collapse
Affiliation(s)
- Hee-Jin Choi
- Department of Pathology, College of Korean Medicine, Dongguk University, Siksa-dong, Ilsan, Gyeonggi-do, Republic of Korea
| | - Hee-Jung Choi
- Department of Korean Medical Science, School of Korean Medicine and Korean Medicine Research Center for Healthy Aging, Pusan National University, Mulgeum-eup, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Mi-Ju Park
- Department of Korean Medical Science, School of Korean Medicine and Korean Medicine Research Center for Healthy Aging, Pusan National University, Mulgeum-eup, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Ji-Yeon Lee
- Department of Korean Medical Science, School of Korean Medicine and Korean Medicine Research Center for Healthy Aging, Pusan National University, Mulgeum-eup, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Seung-Il Jeong
- Jeonju Biomaterials Institute, Jeonju, Republic of Korea
| | - Seongoo Lee
- Department of Korean Pathology, College of Korean Medicine, Sangji University, Wonju, Gangwon, Republic of Korea
| | - Kyun Ha Kim
- Department of Korean Medical Science, School of Korean Medicine and Korean Medicine Research Center for Healthy Aging, Pusan National University, Mulgeum-eup, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Myungsoo Joo
- Department of Korean Medical Science, School of Korean Medicine and Korean Medicine Research Center for Healthy Aging, Pusan National University, Mulgeum-eup, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Han-Sol Jeong
- Department of Korean Medical Science, School of Korean Medicine and Korean Medicine Research Center for Healthy Aging, Pusan National University, Mulgeum-eup, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Jai-Eun Kim
- Department of Pathology, College of Korean Medicine, Dongguk University, Siksa-dong, Ilsan, Gyeonggi-do, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine and Korean Medicine Research Center for Healthy Aging, Pusan National University, Mulgeum-eup, Yangsan, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
15
|
Kim KH, Kwun MJ, Han CW, Ha KT, Choi JY, Joo M. Suppression of lung inflammation in an LPS-induced acute lung injury model by the fruit hull of Gleditsia sinensis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:402. [PMID: 25318387 PMCID: PMC4203922 DOI: 10.1186/1472-6882-14-402] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 10/07/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND The fruit hull of Gleditsia sinensis (FGS) used in traditional Asian medicine was reported to have a preventive effect on lung inflammation in an acute lung injury (ALI) mouse model. Here, we explored FGS as a possible therapeutics against inflammatory lung diseases including ALI, and examined an underlying mechanism for the effect of FGS. METHODS The decoction of FGS in water was prepared and fingerprinted. Mice received an intra-tracheal (i.t.) FGS 2 h after an intra-peritoneal (i.p.) injection of lipopolysaccharide (LPS). The effect of FGS on lung inflammation was determined by chest imaging of NF-κB reporter mice, counting inflammatory cells in bronchoalveolar lavage fluid, analyzing lung histology, and performing semi-quantitative RT-PCR analysis of lung tissue. Impact of Nrf2 on FGS effect was assessed by comparing Nrf2 knockout (KO) and wild type (WT) mice that were treated similarly. RESULTS Bioluminescence from the chest of the reporter mice was progressively increased to a peak at 16 h after an i.p. LPS treatment. FGS treatment 2 h after LPS reduced the bioluminescence and the expression of pro-inflammatory cytokine genes in the lung. While suppressing the infiltration of inflammatory cells to the lungs of WT mice, FGS post-treatment failed to reduce lung inflammation in Nrf2 KO mice. FGS activated Nrf2 and induced Nrf2-dependent gene expression in mouse lung. CONCLUSIONS FGS post-treatment suppressed lung inflammation in an LPS-induced ALI mouse model, which was mediated at least in part by Nrf2. Our results suggest a therapeutic potential of FGS on inflammatory lung diseases.
Collapse
|
16
|
Desoxyrhapontigenin up-regulates Nrf2-mediated heme oxygenase-1 expression in macrophages and inflammatory lung injury. Redox Biol 2014; 2:504-12. [PMID: 24624340 PMCID: PMC3949088 DOI: 10.1016/j.redox.2014.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/03/2014] [Accepted: 02/11/2014] [Indexed: 12/30/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an important anti-inflammatory, antioxidative and cytoprotective enzyme that is regulated by the activation of the major transcription factor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In the present study, six stilbene derivatives isolated from Rheum undulatum L. were assessed for their antioxidative potential. In the tert-butylhydroperoxide (t-BHP)-induced RAW 264.7 macrophage cell line, desoxyrhapontigenin was the most potent component that reduced intracellular reactive oxygen species (ROS) and peroxynitrite. In response to desoxyrhapontigenin, the mRNA expression levels of antioxidant enzymes were up-regulated. An electrophoretic mobility shift assay (EMSA) confirmed that desoxyrhapontigenin promoted the DNA binding of Nrf2 and increased the expression of antioxidant proteins and enzymes regulated by Nrf2. Further investigation utilizing specific inhibitors of Akt, p38, JNK and ERK demonstrated that the phosphatidylinositol 3-kinase (PI3K)/Akt pathway mediates HO-1 expression. Moreover, the increase in Nrf2 expression mediated by treatment with desoxyrhapontigenin was reversed by Nrf2 or Akt gene knock-down. In the LPS-induced in vivo lung inflammation model, pretreatment with desoxyrhapontigenin markedly ameliorated LPS-induced lung inflammation and histological changes. Immunohistochemical analysis of Nrf2, HO-1 and p65 was conducted and confirmed that treatment with desoxyrhapontigenin induced Nrf2 and HO-1 expression but reduced p65 expression. These findings suggest that desoxyrhapontigenin may be a potential therapeutic candidate as an antioxidant or an anti-inflammatory agent. Enhancement of the levels of antioxidant enzymes by desoxyrhapontigenin. Promotion of DNA binding affinity of Nrf2 in RAW 264.7 macrophages. Induction of HO-1 expression and inhibition of Keap1 by desoxyrhapontigenin via the Akt pathway. Amelioration of LPS-induced inflammatory lung injury in mice.
Collapse
|
17
|
Therapeutic Effect of Chung-Pae, an Experimental Herbal Formula, on Acute Lung Inflammation Is Associated with Suppression of NF- κ B and Activation of Nrf2. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:659459. [PMID: 24062787 PMCID: PMC3770013 DOI: 10.1155/2013/659459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/24/2013] [Indexed: 12/20/2022]
Abstract
Acute lung injury (ALI) is an inflammatory disease with high mortality, but therapeutics against it is unavailable. Recently, we elaborated a formula, named Chung-pae (CP), that comprises four ethnic herbs commonly prescribed against various respiratory diseases in Asian traditional medicine. CP is being administered in aerosol to relieve various respiratory symptoms of patients in our clinic. Here, we sought to examine whether CP has a therapeutic effect on ALI and to uncover the mechanism behind it. Reporter assays show that CP suppressed the transcriptional activity of proinflammatory NF-κB and activated that of anti-inflammatory Nrf2. Similarly, CP suppressed the expression of NF-κB dependent, proinflammatory cytokines and induced that of Nrf2 dependent genes in RAW 264.7. An aerosol intratracheal administration of CP effectively reduced neutrophilic infiltration and the expression of pro-inflammatory cytokines, hallmarks of ALI, in the lungs of mice that received a prior intraperitoneal injection of lipopolysaccharide. The intratracheal CP administration concomitantly enhanced the expression of Nrf2 dependent genes in the lung. Therefore, our results evidenced a therapeutic effect of CP on ALI, in which differential regulation of the two key inflammatory factors, NF-κB and Nrf2, was involved. We propose that CP can be a new therapeutic formula against ALI.
Collapse
|
18
|
Byeon SE, Yu T, Yang Y, Lee YG, Kim JH, Oh J, Jeong HY, Hong S, Yoo BC, Cho WJ, Hong S, Cho JY. Hydroquinone regulates hemeoxygenase-1 expression via modulation of Src kinase activity through thiolation of cysteine residues. Free Radic Biol Med 2013; 57:105-18. [PMID: 23290930 DOI: 10.1016/j.freeradbiomed.2012.12.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 11/19/2012] [Accepted: 12/18/2012] [Indexed: 12/14/2022]
Abstract
The hydroxylated benzene metabolite hydroquinone (HQ) is mainly generated from benzene, an important industrial chemical, and is also a common dietary component. Although numerous papers have addressed the potential role of HQ in tumorigenic responses, the immunosuppressive and anti-inflammatory effects of hydroquinone have also been considered. In this study, we characterized the mechanism of the induction of hemeoxygenase (HO)-1 and other phase 2 enzymes by HQ and its derivatives. HQ upregulated the mRNA and protein levels of HO-1 by increasing the antioxidant-response element-dependent transcriptional activation of Nrf-2. Src knockdown or deficiency induced via siRNA treatment and infection with a retrovirus expressing shRNA targeting Src, as well as exposure to PP2, a Src kinase inhibitor, strongly abrogated HO-1 expression. Interestingly, HQ directly targeted and bound to the sulfhydryl group of cysteine-483 (C483) and C400 residues of Src, potentially leading to disruption of intracellular disulfide bonds. Src kinase activity was dramatically enhanced by mutation of these cysteine sites, implying that these sites may play an important role in the regulation of Src kinase activity. Therefore, our data suggest that Src and, particularly, its C483 target site can be considered as prime molecular targets of the HQ-mediated induction of phase 2 enzymes, which is potentially linked to HO-1-mediated cellular responses such as immunosuppressive and anti-inflammatory actions.
Collapse
Affiliation(s)
- Se Eun Byeon
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 446-746, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Han CW, Kwun MJ, Kim KH, Choi JY, Oh SR, Ahn KS, Lee JH, Joo M. Ethanol extract of Alismatis Rhizoma reduces acute lung inflammation by suppressing NF-κB and activating Nrf2. JOURNAL OF ETHNOPHARMACOLOGY 2013; 146:402-10. [PMID: 23333748 DOI: 10.1016/j.jep.2013.01.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The tuber of Alisma orientale Juzepzuk, a medicinal herb that has been used for the treatment of various disorders in Korea, has an anti-inflammatory effect. Here, we investigated a possible underlying mechanism and a protective effect on acute lung injury (ALI). MATERIALS AND METHODS Alisma orientale tuber was extracted in 80% ethanol and dried. The powder of the ethanol extract of Alisma orientale tuber (EEAO) was dissolved in PBS. The effect of EEAO on NF-κB and Nrf2 activities was analyzed with RAW 264.7 cells. The effect of EEAO on lung inflammation was determined by histologic and molecular biological analyses of the lung tissue of C57BL/6 mice that were gavaged once a day with 0.3 or 1.2 g/kg of EEAO for 14 days, prior to an intranasal administration of LPS (0.01 g/kg) for inducing ALI. RESULTS EEAO pre-treatment of RAW 264.7 cells suppressed NF-κB activity and the expression of its dependent genes including COX-2, IL-1β and iNOS. Similar treatment enhanced Nrf2 activity and the expression of Nrf2-regulated genes including NQO-1, HO-1 and GCLC. LPS instillation induced acute neutrophilic lung inflammation, which was significantly suppressed by pre-treatment with EEAO. Analysis of the lungs revealed that EEAO pre-treatment induced the expression of Nrf2-regulated genes, with concomitant down-regulation of inflammatory gene expression. CONCLUSIONS EEAO attenuated lung inflammation in LPS-induced ALI mice, which was associated with differential regulation of NF-κB and Nrf2 activities. We suggest that EEAO can be developed as a potential therapeutics for the treatment of ALI.
Collapse
Affiliation(s)
- Chang Woo Han
- School of Korean Medicine, Pusan National University, Korean Medicine Hospital, Yangsan 626-789, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|