1
|
Shirani M, Pakzad R, Haddadi MH, Akrami S, Asadi A, Kazemian H, Moradi M, Kaviar VH, Zomorodi AR, Khoshnood S, Shafieian M, Tavasolian R, Heidary M, Saki M. The global prevalence of gastric cancer in Helicobacter pylori-infected individuals: a systematic review and meta-analysis. BMC Infect Dis 2023; 23:543. [PMID: 37598157 PMCID: PMC10439572 DOI: 10.1186/s12879-023-08504-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/31/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Helicobacter pylori is a gastrointestinal pathogen that infects around half of the world's population. H. pylori infection is the most severe known risk factor for gastric cancer (GC), which is the second highest cause of cancer-related deaths globally. We conducted a systematic review and meta-analysis to assess the global prevalence of GC in H. pylori-infected individuals. METHODS We performed a systematic search of the PubMed, Web of Science, and Embase databases for studies of the prevalence of GC in H. pylori-infected individuals published from 1 January 2011 to 20 April 2021. Metaprop package were used to calculate the pooled prevalence with 95% confidence interval. Random-effects model was applied to estimate the pooled prevalence. We also quantified it with the I2 index. Based on the Higgins classification approach, I2 values above 0.7 were determined as high heterogeneity. RESULTS Among 17,438 reports screened, we assessed 1053 full-text articles for eligibility; 149 were included in the final analysis, comprising data from 32 countries. The highest and lowest prevalence was observed in America (pooled prevalence: 18.06%; 95% CI: 16.48 - 19.63; I2: 98.84%) and Africa (pooled prevalence: 9.52%; 95% CI: 5.92 - 13.12; I2: 88.39%). Among individual countries, Japan had the highest pooled prevalence of GC in H. pylori positive patients (Prevalence: 90.90%:95% CI: 83.61-95.14), whereas Sweden had the lowest prevalence (Prevalence: 0.07%; 95% CI: 0.06-0.09). The highest and lowest prevalence was observed in prospective case series (pooled prevalence: 23.13%; 95% CI: 20.41 - 25.85; I2: 97.70%) and retrospective cohort (pooled prevalence: 1.17%; 95% CI: 0.55 - 1.78; I 2: 0.10%). CONCLUSIONS H. pylori infection in GC patients varied between regions in this systematic review and meta-analysis. We observed that large amounts of GCs in developed countries are associated with H. pylori. Using these data, regional initiatives can be taken to prevent and eradicate H. pylori worldwide, thus reducing its complications.
Collapse
Affiliation(s)
- Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Pakzad
- Department of Epidemiology, Faculty of Health, Ilam University Medical Sciences, Ilam, Iran
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Sousan Akrami
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arezoo Asadi
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Melika Moradi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahab Hassan Kaviar
- Department of Medical Microbiology, Faculty of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Khoshnood
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mahnaz Shafieian
- Department of Midwifery, Faculty of Nursing and Midwifery, Ilam University of Medical Sciences, Ilam, Iran
| | - Ronia Tavasolian
- Department of Medicine, Faculty of Nutrition Science, University of Cheste, Chester, UK
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran.
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Chen R, Chen C, Han N, Guo W, Deng H, Wang Y, Ding Y, Zhang M. Annexin-1 is an oncogene in glioblastoma and causes tumour immune escape through the indirect upregulation of interleukin-8. J Cell Mol Med 2022; 26:4343-4356. [PMID: 35770335 PMCID: PMC9344830 DOI: 10.1111/jcmm.17458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
Annexin‐1 (ANXA1) is widely reported to be deregulated in various cancers and is involved in tumorigenesis. However, its effects on glioblastoma (GBM) remain unclear. Using immunohistochemistry with tissue microarrays, we showed that ANXA1 was overexpressed in GBM, positively correlated with higher World Health Organization (WHO) grades of glioma, and negatively associated with poor survival. To further explore its role and the underlying molecular mechanism in GBM, we constructed ANXA1shRNA U87 and U251 cell lines for further experiments. ANXA1 downregulation suppressed GBM cell proliferation, migration, and invasion and enhanced their radiosensitivity. Furthermore, we determined that ANXA1 was involved in dendritic cell (DC) maturation in patients with GBM and that DC infiltration was inversely proportional to GBM prognosis. Considering that previous reports have shown that Interleukin‐8 (IL‐8) is associated with DC migration and maturation and is correlated with NF‐κB transcriptional regulation, we examined IL‐8 and p65 subunit expressions and p65 phosphorylation levels in GBM cells under an ANXA1 knockdown. These results suggest that ANXA1 significantly promotes IL‐8 production and p65 phosphorylation levels. We inferred that ANXA1 is a potential biomarker and a candidate therapeutic target for GBM treatment and may mediate tumour immune escape through NF‐kB (p65) activation and IL‐8 upregulation.
Collapse
Affiliation(s)
- Rui Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengqi Chen
- Department of Oncology, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Na Han
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjing Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Deng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yali Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanpeng Ding
- Department of Oncology, Zhongnan Hospital, Wuhan university, Wuhan, China
| | - Mengxian Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Feng S, Lou K, Zou X, Zou J, Zhang G. The Potential Role of Exosomal Proteins in Prostate Cancer. Front Oncol 2022; 12:873296. [PMID: 35747825 PMCID: PMC9209716 DOI: 10.3389/fonc.2022.873296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer is the most prevalent malignant tumor in men across developed countries. Traditional diagnostic and therapeutic methods for this tumor have become increasingly difficult to adapt to today’s medical philosophy, thus compromising early detection, diagnosis, and treatment. Prospecting for new diagnostic markers and therapeutic targets has become a hot topic in today’s research. Notably, exosomes, small vesicles characterized by a phospholipid bilayer structure released by cells that is capable of delivering different types of cargo that target specific cells to regulate biological properties, have been extensively studied. Exosomes composition, coupled with their interactions with cells make them multifaceted regulators in cancer development. Numerous studies have described the role of prostate cancer-derived exosomal proteins in diagnosis and treatment of prostate cancer. However, so far, there is no relevant literature to systematically summarize its role in tumors, which brings obstacles to the later research of related proteins. In this review, we summarize exosomal proteins derived from prostate cancer from different sources and summarize their roles in tumor development and drug resistance.
Collapse
Affiliation(s)
- Shangzhi Feng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
| | - Kecheng Lou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Junrong Zou, ; Guoxi Zhang,
| | - Guoxi Zhang
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Junrong Zou, ; Guoxi Zhang,
| |
Collapse
|
4
|
Mozaffari MS, Abdelsayed R. Expression Profiles of GILZ and Annexin A1 in Human Oral Candidiasis and Lichen Planus. Cells 2022; 11:cells11091470. [PMID: 35563776 PMCID: PMC9100531 DOI: 10.3390/cells11091470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 12/10/2022] Open
Abstract
Adrenal glands are the major source of glucocorticoids, but recent studies indicate tissue-specific production of cortisol, including that in the oral mucosa. Both endogenous and exogenous glucocorticoids regulate the production of several proteins, including the glucocorticoid-induced leucine zipper (GILZ) and Annexin A1, which play important roles in the regulation of immune and inflammatory responses. Common inflammation-associated oral conditions include lichen planus and candidiasis, but the status of GILZ and Annexin A1 in these human conditions remains to be established. Accordingly, archived paraffin-embedded biopsy samples were subjected to immunohistochemistry to establish tissue localization and profile of GILZ and Annexin A1 coupled with the use of hematoxylin–eosin stain for histopathological assessment; for comparison, fibroma specimens served as controls. Histopathological examination confirmed the presence of spores and pseudohyphae for oral candidiasis (OC) specimens and marked inflammatory cell infiltrates for both OC and oral lichen planus (OLP) specimens compared to control specimens. All specimens displayed consistent and prominent nuclear staining for GILZ throughout the full thickness of the epithelium and, to varying extent, for inflammatory infiltrates and stromal cells. On the other hand, a heterogeneous pattern of nuclear, cytoplasmic, and cell membrane staining was observed for Annexin A1 for all specimens in the suprabasal layers of epithelium and, to varying extent, for inflammatory and stromal cells. Semi-quantitative analyses indicated generally similar fractional areas of staining for both GILZ and Annexin A1 among the groups, but normalized staining for GILZ, but not Annexin A1, was reduced for OC and OLP compared to the control specimens. Thus, while the cellular expression pattern of GILZ and Annexin A1 does not differentiate among these conditions, differential cellular profiles for GILZ vs. Annexin A1 are suggestive of their distinct physiological functions in the oral mucosa.
Collapse
|
5
|
Schmidinger B, Petri K, Lettl C, Li H, Namineni S, Ishikawa-Ankerhold H, Jiménez-Soto LF, Haas R. Helicobacter pylori binds human Annexins via Lipopolysaccharide to interfere with Toll-like Receptor 4 signaling. PLoS Pathog 2022; 18:e1010326. [PMID: 35176125 PMCID: PMC8890734 DOI: 10.1371/journal.ppat.1010326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/02/2022] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori colonizes half of the global population and causes gastritis, peptic ulcer disease or gastric cancer. In this study, we were interested in human annexin (ANX), which comprises a protein family with diverse and partly unknown physiological functions, but with a potential role in microbial infections and possible involvement in gastric cancer. We demonstrate here for the first time that H. pylori is able to specifically bind ANXs. Binding studies with purified H. pylori LPS and specific H. pylori LPS mutant strains indicated binding of ANXA5 to lipid A, which was dependent on the lipid A phosphorylation status. Remarkably, ANXA5 binding almost completely inhibited LPS-mediated Toll-like receptor 4- (TLR4) signaling in a TLR4-specific reporter cell line. Furthermore, the interaction is relevant for gastric colonization, as a mouse-adapted H. pylori increased its ANXA5 binding capacity after gastric passage and its ANXA5 incubation in vitro interfered with TLR4 signaling. Moreover, both ANXA2 and ANXA5 levels were upregulated in H. pylori-infected human gastric tissue, and H. pylori can be found in close association with ANXs in the human stomach. Furthermore, an inhibitory effect of ANXA5 binding for CagA translocation could be confirmed. Taken together, our results highlight an adaptive ability of H. pylori to interact with the host cell factor ANX potentially dampening innate immune recognition. H. pylori is very well adapted to its natural habitat, the human gastric mucosa. For this purpose, the bacterium has evolved a number of highly specific virulence factors, such as the cag-type IV secretion system, vacuolating cytotoxin A (VacA) or secreted gamma-glutamyl transpeptidase. An important function of these bacterial factors is to manipulate the host immune response to enable a chronic H. pylori infection. The present work identifies a new player in this process. Here, we have discovered that H. pylori, as well as several other bacterial species, can bind human annexins (ANX), suggesting a more widespread phenomenon. We show that H. pylori specifically binds ANXA5 via lipid A. The interaction is strictly dependent on calcium and modulated by the phosphorylation status of lipid A. Notably, ANXA5 binding strongly inhibits LPS-mediated Toll-like receptor 4 (TLR4) signal transduction, suggesting that H. pylori exploits ANXs binding to avoid its recognition by this important receptor of the innate immune system. The study thus provides novel molecular and mechanistic insights into a further strategy of H. pylori to successfully evade recognition by the host.
Collapse
Affiliation(s)
- Barbara Schmidinger
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Kristina Petri
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Clara Lettl
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Hong Li
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Sukumar Namineni
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Hellen Ishikawa-Ankerhold
- Department of Internal Medicine I, Faculty of Medicine, LMU Munich, Germany
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Germany
| | - Luisa Fernanda Jiménez-Soto
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Rainer Haas
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
- German Center for Infection Research (DZIF), LMU Munich, Germany
- * E-mail:
| |
Collapse
|
6
|
Girol AP, de Freitas Zanon C, Caruso ÍP, de Souza Costa S, Souza HR, Cornélio ML, Oliani SM. Annexin A1 Mimetic Peptide and Piperlongumine: Anti-Inflammatory Profiles in Endotoxin-Induced Uveitis. Cells 2021; 10:3170. [PMID: 34831393 PMCID: PMC8625584 DOI: 10.3390/cells10113170] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Uveitis is one of the main causes of blindness worldwide, and therapeutic alternatives are worthy of study. We investigated the effects of piperlongumine (PL) and/or annexin A1 (AnxA1) mimetic peptide Ac2-26 on endotoxin-induced uveitis (EIU). Rats were inoculated with lipopolysaccharide (LPS) and intraperitoneally treated with Ac2-26 (200 µg), PL (200 and 400 µg), or Ac2-26 + PL after 15 min. Then, 24 h after LPS inoculation, leukocytes in aqueous humor, mononuclear cells, AnxA1, formyl peptide receptor (fpr)1, fpr2, and cyclooxygenase (COX)-2 were evaluated in the ocular tissues, along with inflammatory mediators in the blood and macerated supernatant. Decreased leukocyte influx, levels of inflammatory mediators, and COX-2 expression confirmed the anti-inflammatory actions of the peptide and pointed to the protective effects of PL at higher dosage. However, when PL and Ac2-26 were administered in combination, the inflammatory potential was lost. AnxA1 expression was elevated among groups treated with PL or Ac2-26 + PL but reduced after treatment with Ac2-26. Fpr2 expression was increased only in untreated EIU and Ac2-26 groups. The interaction between Ac2-26 and PL negatively affected the anti-inflammatory action of Ac2-26 or PL. We emphasize that the anti-inflammatory effects of PL can be used as a therapeutic strategy to protect against uveitis.
Collapse
Affiliation(s)
- Ana Paula Girol
- Department of Physical and Morphological Sciences, University Center Padre Albino (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.P.G.); (S.d.S.C.); (H.R.S.)
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
- Post Graduate Program in Structural and Functional Biology, Escola Paulista de Medicina (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil
| | - Caroline de Freitas Zanon
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | - Ícaro Putinhon Caruso
- Department of Phisics, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil; (Í.P.C.); (M.L.C.)
| | - Sara de Souza Costa
- Department of Physical and Morphological Sciences, University Center Padre Albino (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.P.G.); (S.d.S.C.); (H.R.S.)
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | - Helena Ribeiro Souza
- Department of Physical and Morphological Sciences, University Center Padre Albino (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.P.G.); (S.d.S.C.); (H.R.S.)
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | - Marinônio Lopes Cornélio
- Department of Phisics, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil; (Í.P.C.); (M.L.C.)
| | - Sonia Maria Oliani
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
- Post Graduate Program in Structural and Functional Biology, Escola Paulista de Medicina (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil
- Advanced Research Center in Medicine (CEPAM), União das Faculdades dos Grandes Lagos (Unilago), São José do Rio Preto 15030-070, SP, Brazil
| |
Collapse
|
7
|
Carino A, Graziosi L, Marchianò S, Biagioli M, Marino E, Sepe V, Zampella A, Distrutti E, Donini A, Fiorucci S. Analysis of Gastric Cancer Transcriptome Allows the Identification of Histotype Specific Molecular Signatures With Prognostic Potential. Front Oncol 2021; 11:663771. [PMID: 34012923 PMCID: PMC8126708 DOI: 10.3389/fonc.2021.663771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the fifth most common malignancy but the third leading cause of cancer-associated mortality worldwide. Therapy for gastric cancer remain largely suboptimal making the identification of novel therapeutic targets an urgent medical need. In the present study we have carried out a high-throughput sequencing of transcriptome expression in patients with gastric cancers. Twenty-four patients, among a series of 53, who underwent an attempt of curative surgery for gastric cancers in a single center, were enrolled. Patients were sub-grouped according to their histopathology into diffuse and intestinal types, and the transcriptome of the two subgroups assessed by RNAseq analysis and compared to the normal gastric mucosa. The results of this investigation demonstrated that the two histopathology phenotypes express two different patterns of gene expression. A total of 2,064 transcripts were differentially expressed between neoplastic and non-neoplastic tissues: 772 were specific for the intestinal type and 407 for the diffuse type. Only 885 transcripts were simultaneously differentially expressed by both tumors. The per pathway analysis demonstrated an enrichment of extracellular matrix and immune dysfunction in the intestinal type including CXCR2, CXCR1, FPR2, CARD14, EFNA2, AQ9, TRIP13, KLK11 and GHRL. At the univariate analysis reduced levels AQP9 was found to be a negative predictor of 4 years survival. In the diffuse type low levels CXCR2 and high levels of CARD14 mRNA were negative predictors of 4 years survival. In summary, we have identified a group of genes differentially regulated in the intestinal and diffuse histotypes of gastric cancers with AQP9, CARD14 and CXCR2 impacting on patients' prognosis, although CXCR2 is the only factor independently impacting overall survival.
Collapse
Affiliation(s)
- Adriana Carino
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigina Graziosi
- S.C.Gastroenterologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elisabetta Marino
- S.C.Gastroenterologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Annibale Donini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
8
|
Li L, Wang Z, Lu T, Li Y, Pan M, Yu D, Hu G. Expression and Functional Relevance of ANXA1 in Hypopharyngeal Carcinoma with Lymph Node Metastasis. Onco Targets Ther 2021; 14:1387-1399. [PMID: 33658802 PMCID: PMC7920586 DOI: 10.2147/ott.s292287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/11/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose The purpose of this study is to investigate the expression and functional role of Annexin (ANXA1) in lymph node (LN) metastasis of hypopharyngeal carcinoma (HSCC). Methods Differentially expressed genes in tissue from HSCC with or without LN metastasis were obtained from a previous RNA sequencing experiment. The presence of LN metastasis is determined by pathological diagnosis after neck dissection. ANXA1 expression was detected by qRT-PCR and Western blotting. Immunohistochemistry was used to detect the expression of ANXA1 in 74 cases of HSCC and normal control tissues. We also evaluated the clinical significance of ANXA1 in HSCC. Differentially expressed genes related to ANXA1 were analyzed using bioinformatic tools, and potential mechanisms of action of ANXA1 were assessed using in vitro experiments. In these in vitro experiments, cell proliferation was detected by CCK8 staining, and colony formation, migration and invasion were assessed using Transwell assays, and apoptosis as well as cell cycle status were quantified by flow cytometry. Results ANXA1 was significantly downregulated in HSCC with LN metastasis. The survival rate of patients with low ANXA1 expression was significantly worse than that of patients with high ANXA1 expression (p<0.05). Silencing ANXA1 in cell culture experiments promoted the proliferation, migration and invasion of FaDu cells, inhibited apoptosis, and increased the proportion of cells in S phase. We furthermore found that the mRNA expression of ANXA1 was positively correlated with Yap1 expression (p<0.0001). Our in vitro experiments showed that ANXA1 regulates the expression of Yap1, and over-expression of Yap1 could reverse the effect of ANXA1 silencing on cancer cell progression. Conclusion Our findings suggest that ANXA1 is a putative LN metastasis suppressor gene in tumor, which may suppress the LN metastasis of HSCC by regulating the expression of Yap1.
Collapse
Affiliation(s)
- Lei Li
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhihai Wang
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Tao Lu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yanshi Li
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Min Pan
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dan Yu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Guohua Hu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
9
|
Shao G, Zhou H, Zhang Q, Jin Y, Fu C. Advancements of Annexin A1 in inflammation and tumorigenesis. Onco Targets Ther 2019; 12:3245-3254. [PMID: 31118675 PMCID: PMC6500875 DOI: 10.2147/ott.s202271] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Annexin A1 is a Ca2+-dependent phospholipid binding protein involved in a variety of pathophysiological processes. Accumulated evidence has indicated that Annexin A1 has important functions in cell proliferation, apoptosis, differentiation, metastasis, and inflammatory response. Moreover, the abnormal expression of Annexin A1 is closely related to the occurrence and development of tumors. In this review article, we focus on the structure and function of Annexin A1 protein, especially the recent evidence of Annexin A1 in the pathophysiological role of inflammatory and cancer. This summary will be very important for further investigation of the pathophysiological role of Annexin A1 and for the development of novel therapeutics of inflammatory and cancer based on targeting Annexin A1 protein.
Collapse
Affiliation(s)
- Gang Shao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Hanwei Zhou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.,Institute of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou 311201, People's Republic of China
| | - Qiyu Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yuanting Jin
- College of Life Sciences, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
10
|
Cardin LT, Prates J, da Cunha BR, Tajara EH, Oliani SM, Rodrigues‐Lisoni FC. Annexin A1 peptide and endothelial cell-conditioned medium modulate cervical tumorigenesis. FEBS Open Bio 2019; 9:668-681. [PMID: 30984541 PMCID: PMC6443877 DOI: 10.1002/2211-5463.12603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/17/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023] Open
Abstract
Cervical cancer is one of the leading causes of cancer death in women worldwide, and its tumorigenesis can be influenced by the microenvironment. The anti-inflammatory protein annexin A1 (ANXA1) has been reported to be associated with cancer progression and metastasis, suggesting that it plays a role in regulating tumour cell proliferation. Here, we examined the effect of the N-terminal peptide Ac2-26 of ANXA1 on the HaCaT cell line (normal) and HeLa cell line (cervical cancer) co-cultured with endothelium cell-conditioned medium (HMC). Treatment with Ac2-26 decreased proliferation and increased motility of cervical cancer cells, but did not affect cellular morphology or viability. Combined HMC stimulus and Ac2-26 treatment resulted in an increase in apoptotic HeLa cells, upregulated expression of MMP2, and downregulated expression of COX2,EP3 and EP4. In conclusion, Ac2-26 treatment may modulate cellular and molecular mechanisms underlying cervical carcinogenesis.
Collapse
Affiliation(s)
- Laila Toniol Cardin
- Institute of Bioscience, Humanities and Exact ScienceSão Paulo State University (Unesp)São José do Rio PretoBrazil
| | - Janesly Prates
- Institute of Bioscience, Humanities and Exact ScienceSão Paulo State University (Unesp)São José do Rio PretoBrazil
| | - Bianca Rodrigues da Cunha
- Department of Molecular BiologySchool of Medicine of São José do Rio PretoSão José do Rio PretoBrazil
| | - Eloiza Helena Tajara
- Department of Molecular BiologySchool of Medicine of São José do Rio PretoSão José do Rio PretoBrazil
| | - Sonia Maria Oliani
- Institute of Bioscience, Humanities and Exact ScienceSão Paulo State University (Unesp)São José do Rio PretoBrazil
| | | |
Collapse
|
11
|
Rostami-Nejad M, Rezaei-Tavirani M, Mansouri V, Akbari Z, Abdi S. Impact of proteomics investigations on gastric cancer treatment and diagnosis. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2019; 12:S1-S7. [PMID: 32099594 PMCID: PMC7011056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/08/2019] [Indexed: 11/16/2022]
Abstract
Gastric cancer is one of the epidemics diseases with a high mortality rate in different countries. It causes many health problems in the world every year. It affects the digestive tract, and in advanced cases, its treatment has many difficulties. Early detection of cancer in different parts of the gastrointestinal tract can be accompanied by inexpensive treatment. As cancer cells make different biomarkers during different stages of the disease, researchers are looking for different biomarkers for gastrointestinal cancers detection. On the other hand, with the advent of advanced techniques such as proteomics and the discovery of a large number of proteins related to gastrointestinal cancer, finding the role of these proteins is essential. Indeed, the function of large amounts of these proteins has remained unknown. Data from databases such as genes and proteins associated with gastrointestinal cancers were collected and the proteomic data of these databases were analyzed to find a clear perspective of the impact of proteomics in gastric cancer management. The role of heat shock proteins, metabolic proteins, membrane binding proteins, galectins, prohibitins, S100 proteins, and many different types of proteins in gastric cancer was highlighted. This article reviewed proteomic researches in cancer-related areas of the gastric cancer in order to evaluate the findings of researchers.
Collapse
Affiliation(s)
- Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Akbari
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Abdi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Moraes LA, Ampomah PB, Lim LHK. Annexin A1 in inflammation and breast cancer: a new axis in the tumor microenvironment. Cell Adh Migr 2018; 12:417-423. [PMID: 30122097 DOI: 10.1080/19336918.2018.1486143] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Targeting inflammation in cancer has shown promise to improve and complement current therapies. The tumor microenvironment plays an important role in cancer growth and metastasis and -tumor associated macrophages possess pro-tumoral and pro-metastatic properties. Annexin A1 (ANXA1) is an immune-modulating protein with diverse functions in the immune system and in cancer. In breast cancer, high ANXA1 expression leads to poor prognosis and increased metastasis. Here, we will review ANXA1 as a modulator of inflammation, and discuss its importance in breast cancer and highlight its new role in alternative macrophage activation in the tumor microenvironment. This review may provide an updated understanding into the various roles of ANXA1 which may enable future therapeutic developments for the treatment of breast cancer.
Collapse
Affiliation(s)
- Leonardo A Moraes
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore, & NUS Immunology Program, Life Sciences Institute, Centre for Life Sciences, National University of Singapore , Singapore
| | - Patrick B Ampomah
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore, & NUS Immunology Program, Life Sciences Institute, Centre for Life Sciences, National University of Singapore , Singapore
| | - Lina H K Lim
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore, & NUS Immunology Program, Life Sciences Institute, Centre for Life Sciences, National University of Singapore , Singapore
| |
Collapse
|
13
|
Hebeda CB, Machado ID, Reif-Silva I, Moreli JB, Oliani SM, Nadkarni S, Perretti M, Bevilacqua E, Farsky SHP. Endogenous annexin A1 (AnxA1) modulates early-phase gestation and offspring sex-ratio skewing. J Cell Physiol 2018; 233:6591-6603. [PMID: 29115663 DOI: 10.1002/jcp.26258] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022]
Abstract
Annexin A1 (AnxA1) is a glucocorticoid-regulated anti-inflammatory protein secreted by phagocytes and other specialised cells. In the endocrine system, AnxA1 controls secretion of steroid hormones and it is abundantly expressed in the testis, ovaries, placenta and seminal fluid, yet its potential modulation of fertility has not been described. Here, we observed that AnxA1 knockout (KO) mice delivered a higher number of pups, with a higher percentage of female offsprings. This profile was not dependent on the male features, as sperm from KO male mice did not present functional alterations, and had an equal proportion of Y and X chromosomes, comparable to wild type (WT) male mice. Furthermore, mismatched matings of male WT mice with female KO yielded a higher percentage of female pups per litter, a phenomenon which was not observed when male KO mice mated with female WT animals. Indeed, AnxA1 KO female mice displayed several differences in parameters related to gestation including (i) an arrested estrous cycle at proestrus phase; (ii) increased sites of implantation; (iii) reduced pre- and post-implantation losses; (iv) exacerbated features of the inflammatory reaction in the uterine fluid during implantation phase; and (v) enhanced plasma progesterone in the beginning of pregnancy. In summary, herein we highlight that AnxA1 pathway as a novel determinant of fundamental non-redundant regulatory functions during early pregnancy.
Collapse
Affiliation(s)
- Cristina B Hebeda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Isabel D Machado
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Isadora Reif-Silva
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Jusciele B Moreli
- Federal University of São Paulo (UNIFESP), Botucatu, São Paulo, Brazil
| | - Sonia M Oliani
- Federal University of São Paulo (UNIFESP), Botucatu, São Paulo, Brazil.,Department of Biology, IBILCE, University of São Paulo State (UNESP), São Paulo, Brazil
| | - Suchita Nadkarni
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Mauro Perretti
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Estela Bevilacqua
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Takaoka RTC, Sertório ND, Magalini LPJ, Dos Santos LM, Souza HR, Iyomasa-Pilon MM, Possebon L, Costa SS, Girol AP. Expression profiles of Annexin A1, formylated peptide receptors and cyclooxigenase-2 in gastroesophageal inflammations and neoplasias. Pathol Res Pract 2017; 214:181-186. [PMID: 29254791 DOI: 10.1016/j.prp.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/25/2017] [Accepted: 12/04/2017] [Indexed: 01/14/2023]
Abstract
The anti-inflammatory protein Annexin-A1 (ANXA1) is associated to tumor invasion process and its actions can be mediated by formylated peptides receptors (FPRs). Therefore, we evaluated the expression and correlation of ANXA1, FPR and cyclooxygenase-2 (COX-2) enzyme in esophageal and stomach inflammations and neoplasias. The study of proteins was performed by immunohistochemistry in biopsies of esophagitis, Barrett's esophagus, squamous cell carcinoma and adenocarcinoma of the esophagus, as well as gastritis, stomach polypus and gastric adenocarcinoma. The intensity of the expressions was evaluated by densitometry. The immunohistochemical and densitometric analyzes showed specificity for the FPR1 receptor and modulation of the ANXA1, COX-2 and FPR1 expressions in the epithelial cells in the different studied conditions. Increased immunoreactivity of these proteins was observed in cases of inflammation and stomach polypus. Interestingly, moderate immunoreactivity for ANXA1 and FPR1 but increased immunolabeling for COX-2 were observed in Barrett́s esophagus and esophageal adenocarcinomas. Also, there was reduced expression of ANXA1 and FPR1 in esophageal carcinoma but COX-2 overexpression in this tumor. There was no expression of FPR2 but ANXA1 and FPR1 expressions were positively correlated in all clinical conditions studied. Positive correlation between ANXA1 and COX-2 were also observed in inflammation conditions while negative correlation between ANXA1 and COX-2 was observed in esophageal carcinoma. Our results demonstrate the unregulated expression of ANXA1 and COX-2 in precursor lesions of esophageal and stomach cancers, reinforcing their involvement in gastroesophageal carcinogenesis. In addition, the data show that the actions of ANXA1 in the inflammatory and neoplastic processes of the esophagus and stomach are specifically mediated by the FPR1 receptor.
Collapse
Affiliation(s)
- Rodolfo T C Takaoka
- Padre Albino Integrated College (FIPA), Department of Physical and Biological Sciences, Catanduva, São Paulo, Brazil
| | - Nathália D Sertório
- Padre Albino Integrated College (FIPA), Department of Physical and Biological Sciences, Catanduva, São Paulo, Brazil
| | - Lara P J Magalini
- Padre Albino Integrated College (FIPA), Department of Physical and Biological Sciences, Catanduva, São Paulo, Brazil
| | - Leandro M Dos Santos
- Padre Albino Integrated College (FIPA), Department of Physical and Biological Sciences, Catanduva, São Paulo, Brazil
| | - Helena R Souza
- Padre Albino Integrated College (FIPA), Department of Physical and Biological Sciences, Catanduva, São Paulo, Brazil
| | - Melina M Iyomasa-Pilon
- Padre Albino Integrated College (FIPA), Department of Physical and Biological Sciences, Catanduva, São Paulo, Brazil
| | - Lucas Possebon
- Padre Albino Integrated College (FIPA), Department of Physical and Biological Sciences, Catanduva, São Paulo, Brazil; São Paulo State University, (UNESP), Department of Biology, Laboratory of Immunomorphology, São José do Rio Preto, São Paulo, Brazil
| | - Sara S Costa
- Padre Albino Integrated College (FIPA), Department of Physical and Biological Sciences, Catanduva, São Paulo, Brazil
| | - Ana P Girol
- Padre Albino Integrated College (FIPA), Department of Physical and Biological Sciences, Catanduva, São Paulo, Brazil; São Paulo State University, (UNESP), Department of Biology, Laboratory of Immunomorphology, São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
15
|
Chen K, Bao Z, Gong W, Tang P, Yoshimura T, Wang JM. Regulation of inflammation by members of the formyl-peptide receptor family. J Autoimmun 2017; 85:64-77. [PMID: 28689639 PMCID: PMC5705339 DOI: 10.1016/j.jaut.2017.06.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 12/14/2022]
Abstract
Inflammation is associated with a variety of diseases. The hallmark of inflammation is leukocyte infiltration at disease sites in response to pathogen- or damage-associated chemotactic molecular patterns (PAMPs and MAMPs), which are recognized by a superfamily of seven transmembrane, Gi-protein-coupled receptors (GPCRs) on cell surface. Chemotactic GPCRs are composed of two major subfamilies: the classical GPCRs and chemokine GPCRs. Formyl-peptide receptors (FPRs) belong to the classical chemotactic GPCR subfamily with unique properties that are increasingly appreciated for their expression on diverse host cell types and the capacity to interact with a plethora of chemotactic PAMPs and MAMPs. Three FPRs have been identified in human: FPR1-FPR3, with putative corresponding mouse counterparts. FPR expression was initially described in myeloid cells but subsequently in many non-hematopoietic cells including cancer cells. Accumulating evidence demonstrates that FPRs possess multiple functions in addition to controlling inflammation, and participate in the processes of many pathophysiologic conditions. They are not only critical mediators of myeloid cell trafficking, but are also implicated in tissue repair, angiogenesis and protection against inflammation-associated tumorigenesis. A series recent discoveries have greatly expanded the scope of FPRs in host defense which uncovered the essential participation of FPRs in step-wise trafficking of myeloid cells including neutrophils and dendritic cells (DCs) in host responses to bacterial infection, tissue injury and wound healing. Also of great interest is the FPRs are exploited by malignant cancer cells for their growth, invasion and metastasis. In this article, we review the current understanding of FPRs concerning their expression in a vast array of cell types, their involvement in guiding leukocyte trafficking in pathophysiological conditions, and their capacity to promote the differentiation of immune cells, their participation in tumor-associated inflammation and cancer progression. The close association of FPRs with human diseases and cancer indicates their potential as targets for the development of therapeutics.
Collapse
Affiliation(s)
- Keqiang Chen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Zhiyao Bao
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA; Department of Pulmonary & Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
| | - Peng Tang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA; Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| |
Collapse
|
16
|
Evaluation of miRNA-196a2 and apoptosis-related target genes: ANXA1, DFFA and PDCD4 expression in gastrointestinal cancer patients: A pilot study. PLoS One 2017; 12:e0187310. [PMID: 29091952 PMCID: PMC5665540 DOI: 10.1371/journal.pone.0187310] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/17/2017] [Indexed: 12/26/2022] Open
Abstract
Previous reports have suggested the significant association of miRNAs aberrant expression with tumor initiation, progression and metastasis in cancer, including gastrointestinal (GI) cancers. The current preliminary study aimed to evaluate the relative expression levels of miR-196a2 and three of its selected apoptosis-related targets; ANXA1, DFFA and PDCD4 in a sample of GI cancer patients. Quantitative real-time PCR for miR-196a2 and its selected mRNA targets, as well as immunohistochemical assay for annexin A1 protein expression were detected in 58 tissues with different GI cancer samples. In addition, correlation with the clinicopathological features and in silico network analysis of the selected molecular markers were analyzed. Stratified analyses by cancer site revealed elevated levels of miR-196a2 and low expression of the selected target genes. Annexin protein expression was positively correlated with its gene expression profile. In colorectal cancer, miR-196a over-expression was negatively correlated with annexin A1 protein expression (r = -0.738, p < 0.001), and both were indicators of unfavorable prognosis in terms of poor differentiation, larger tumor size, and advanced clinical stage. Taken together, aberrant expression of miR-196a2 and the selected apoptosis-related biomarkers might be involved in GI cancer development and progression and could have potential diagnostic and prognostic roles in these types of cancer; particularly colorectal cancer, provided the results experimentally validated and confirmed in larger multi-center studies.
Collapse
|
17
|
Estevam RB, Wood da Silva NMJ, Wood da Silva, Fonseca FM, Oliveira AGD, Nogueira, Pereira SADL, Pereira TL, Adad SJ, Rodrigues VJ, Rodrigues DBR. Modulation of Galectin-3 and Galectin 9 in gastric mucosa of patients with chronic gastritis and positive Helicobacter pylori infection. Pathol Res Pract 2017; 213:1276-1281. [DOI: 10.1016/j.prp.2017.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/15/2017] [Accepted: 08/17/2017] [Indexed: 01/19/2023]
|
18
|
Bacigalupo ML, Carabias P, Troncoso MF. Contribution of galectin-1, a glycan-binding protein, to gastrointestinal tumor progression. World J Gastroenterol 2017; 23:5266-5281. [PMID: 28839427 PMCID: PMC5550776 DOI: 10.3748/wjg.v23.i29.5266] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/04/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal cancer is a group of tumors that affect multiple sites of the digestive system, including the stomach, liver, colon and pancreas. These cancers are very aggressive and rapidly metastasize, thus identifying effective targets is crucial for treatment. Galectin-1 (Gal-1) belongs to a family of glycan-binding proteins, or lectins, with the ability to cross-link specific glycoconjugates. A variety of biological activities have been attributed to Gal-1 at different steps of tumor progression. Herein, we summarize the current literature regarding the roles of Gal-1 in gastrointestinal malignancies. Accumulating evidence shows that Gal-1 is drastically up-regulated in human gastric cancer, hepatocellular carcinoma, colorectal cancer and pancreatic ductal adenocarcinoma tissues, both in tumor epithelial and tumor-associated stromal cells. Moreover, Gal-1 makes a crucial contribution to the pathogenesis of gastrointestinal malignancies, favoring tumor development, aggressiveness, metastasis, immunosuppression and angiogenesis. We also highlight that alterations in Gal-1-specific glycoepitopes may be relevant for gastrointestinal cancer progression. Despite the findings obtained so far, further functional studies are still required. Elucidating the precise molecular mechanisms modulated by Gal-1 underlying gastrointestinal tumor progression, might lead to the development of novel Gal-1-based diagnostic methods and/or therapies.
Collapse
|
19
|
Xiao Y, Ouyang C, Huang W, Tang Y, Fu W, Cheng A. Annexin A1 can inhibit the in vitro invasive ability of nasopharyngeal carcinoma cells possibly through Annexin A1/S100A9/Vimentin interaction. PLoS One 2017; 12:e0174383. [PMID: 28355254 PMCID: PMC5371313 DOI: 10.1371/journal.pone.0174383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/08/2017] [Indexed: 12/05/2022] Open
Abstract
Annexin A1 is a member of a large superfamily of glucocorticoid-regulated, calcium- and phospholipid-binding proteins. Our previous studies have shown that the abnormal expression of Annexin A1 is related to the occurrence and development of nasopharyngeal carcinoma (NPC). To understand the roles of Annexin A1 in the tumorigenesis of NPC, targeted proteomic analysis was performed on Annexin A1-associated proteins from NPC cells. We identified 436 proteins associated with Annexin A1, as well as two Annexin A1-interacted key proteins, S100A9 and Vimentin, which were confirmed by co-immunoprecipitation. Gene function classification revealed that the Annexin A1-associated proteins can be grouped into 21 clusters based on their molecular functions. Protein–protein interaction analysis indicated that Annexin A1 /S100A9/Vimentin interactions may be involved in the invasion and metastasis of NPC because they can form complexes in NPC cells. The down-regulation of Annexin A1 in NPC may lead to the overexpression of S100A9/Vimentin, which may increase the possibility of the invasion ability of NPC cells by adjusting the function of cytoskeleton proteins. Results suggested that the biological functions of Annexin A1 in NPC were diverse, and that Annexin A1 can inhibit the in vitro invasive ability of NPC cells through Annexin A1 /S100A9/Vimentin interaction.
Collapse
Affiliation(s)
- Ying Xiao
- Cancer Research Institute, University of South China, Hengyang, China
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Hengyang, China
| | - Chenjie Ouyang
- Department of Pathology, Maternal and Children’s Hospital of Foshan, Foshan, Guangdong, China
| | - Weiguo Huang
- Cancer Research Institute, University of South China, Hengyang, China
- Hunan Province Cooperative innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Yunlian Tang
- Cancer Research Institute, University of South China, Hengyang, China
- Hunan Province Cooperative innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Weiting Fu
- Cancer Research Institute, University of South China, Hengyang, China
| | - Ailan Cheng
- Cancer Research Institute, University of South China, Hengyang, China
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Hengyang, China
- * E-mail:
| |
Collapse
|
20
|
Liu XX, Ye H, Wang P, Li LX, Zhang Y, Zhang JY. Proteomic-based identification of HSP70 as a tumor-associated antigen in ovarian cancer. Oncol Rep 2017; 37:2771-2778. [PMID: 28339059 DOI: 10.3892/or.2017.5525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/21/2016] [Indexed: 11/06/2022] Open
|
21
|
Franco-Salla GB, Prates J, Cardin LT, Dos Santos ARD, Silva WAD, da Cunha BR, Tajara EH, Oliani SM, Rodrigues-Lisoni FC. Euphorbia tirucalli modulates gene expression in larynx squamous cell carcinoma. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:136. [PMID: 27209356 PMCID: PMC4875670 DOI: 10.1186/s12906-016-1115-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 05/13/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND Some plants had been used in the treatment of cancer and one of these has attracted scientific interest, the Euphorbia tirucalli (E. tirucalli), used in the treatment of asthma, ulcers, warts has active components with activities scientifically proven as antimutagenic, anti-inflammatory and anticancer. METHODS We evaluate the influence of the antitumoral fraction of the E. tirucalli latex in the larynx squamous cell carcinoma (Hep-2), on the morphology, cell proliferation and gene expression. The Hep-2 cells were cultivated in complete medium (MEM 10 %) and treated with E. tirucalli latex for 1, 3, 5 and 7 days. After statistically analyzing the proliferation of the tested cells, the cells were cultivated again for RNA extraction and the Rapid Subtractive Hybridization (RaSH) technique was used to identify genes with altered expression. The genes found using the RaSH technique were analyzed by Gene Ontology (GO) using Ingenuity Systems. RESULTS The five genes found to have differential expression were validated by real-time quantitative PCR. Though treatment with E. tirucalli latex did not change the cell morphology in comparison to control samples, but the cell growth was significantly decreased. The RaSH showed change in the expression of some genes, including ANXA1, TCEA1, NGFRAP1, ITPR1 and CD55, which are associated with inflammatory response, transcriptional regulation, apoptosis, calcium ion transport regulation and complement system, respectively. The E. tirucalli latex treatment down-regulated ITPR1 and up-regulated ANXA1 and CD55 genes, and was validated by real-time quantitative PCR. CONCLUSIONS The data indicate the involvement of E. tirucalli latex in the altered expression of genes involved in tumorigenic processes, which could potentially be applied as a therapeutic indicator of larynx cancer.
Collapse
Affiliation(s)
- Gabriela Bueno Franco-Salla
- Department of Biology, Institute of Biosciences, Letters and Science - IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Janesly Prates
- Department of Biology, Institute of Biosciences, Letters and Science - IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Laila Toniol Cardin
- Department of Biology, Institute of Biosciences, Letters and Science - IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Anemari Ramos Dinarte Dos Santos
- Department of Clinical Medical, Foundation Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo - FCFRP/USP, Ribeirão Preto, SP, Brazil
| | - Wilson Araújo da Silva
- Department of Clinical Medical, Foundation Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo - FCFRP/USP, Ribeirão Preto, SP, Brazil
| | - Bianca Rodrigues da Cunha
- Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto - FAMERP, São José do Rio Preto, SP, Brazil
| | - Eloiza Helena Tajara
- Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto - FAMERP, São José do Rio Preto, SP, Brazil
| | - Sonia Maria Oliani
- Department of Biology, Institute of Biosciences, Letters and Science - IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Flávia Cristina Rodrigues-Lisoni
- Department of Biology and Animal Science, Faculty of Engineering of Ilha Solteira - FEIS/UNESP, Av. Brasil, 56, CEP: 15385-000, Ilha Solteira, São Paulo, Brazil.
| |
Collapse
|
22
|
Leal MF, Wisnieski F, de Oliveira Gigek C, do Santos LC, Calcagno DQ, Burbano RR, Smith MC. What gastric cancer proteomic studies show about gastric carcinogenesis? Tumour Biol 2016; 37:9991-10010. [PMID: 27126070 DOI: 10.1007/s13277-016-5043-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/28/2016] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer is a complex, heterogeneous, and multistep disease. Over the past decades, several studies have aimed to determine the molecular factors that lead to gastric cancer development and progression. After completing the human genome sequencing, proteomic technologies have presented rapid progress. Differently from the relative static state of genome, the cell proteome is dynamic and changes in pathologic conditions. Proteomic approaches have been used to determine proteome profiles and identify differentially expressed proteins between groups of samples, such as neoplastic and nonneoplastic samples or between samples of different cancer subtypes or stages. Therefore, proteomic technologies are a useful tool toward improving the knowledge of gastric cancer molecular pathogenesis and the understanding of tumor heterogeneity. This review aimed to summarize the proteins or protein families that are frequently identified by using high-throughput screening methods and which thus may have a key role in gastric carcinogenesis. The increased knowledge of gastric carcinogenesis will clearly help in the development of new anticancer treatments. Although the studies are still in their infancy, the reviewed proteins may be useful for gastric cancer diagnosis, prognosis, and patient management.
Collapse
Affiliation(s)
- Mariana Ferreira Leal
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038-032, São Paulo, São Paulo, Brazil. .,Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil.
| | - Fernanda Wisnieski
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| | - Carolina de Oliveira Gigek
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| | - Leonardo Caires do Santos
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, 66073-000, Belém, Pará, Brazil
| | - Rommel Rodriguez Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Pará, Brazil
| | - Marilia Cardoso Smith
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| |
Collapse
|
23
|
Vanessa KHQ, Julia MG, Wenwei L, Michelle ALT, Zarina ZRS, Lina LHK, Sylvie A. Absence of Annexin A1 impairs host adaptive immunity against Mycobacterium tuberculosis in vivo. Immunobiology 2014; 220:614-23. [PMID: 25533809 DOI: 10.1016/j.imbio.2014.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022]
Abstract
The role of Annexin A1 (ANXA1) in counter-regulating the activities of innate immune cells, such as the migration of neutrophils and monocytes, and the generation of pro-inflammatory mediators in various models of inflammatory and autoimmune diseases is well documented. However, while ANXA1 has been proposed as an important mediator of the adaptive immune response, its involvement in this respect has been less studied. Furthermore, while there have been numerous studies on the role of ANXA1 in inflammatory diseases, less has been reported on its influence in immunity against infection. A recent study reported a link between ANXA1 and tuberculosis, and proposed a model in which Mycobacterium tuberculosis exerts its virulence by manipulating the ANXA1-mediated host apoptotic response. This has prompted us to further investigate the role of ANXA1 in the pathogenesis of tuberculosis in vivo. Here, we show that ANXA1(-/-) mice are more susceptible to M. tuberculosis infection, as evidenced by a transient increase in the pulmonary bacterial burden, and exacerbated and disorganized granulomatous inflammation. These pathological manifestations correlated with an impaired ability of ANXA1(-/-) dendritic cells to activate naïve T cells, thereby supporting a role for ANXA1 in shaping the adaptive immunity against M. tuberculosis.
Collapse
Affiliation(s)
- Koh Hui Qi Vanessa
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore
| | - Martínez Gómez Julia
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore
| | - Lin Wenwei
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore
| | - Ang Lay Teng Michelle
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore
| | - Zainul Rahim Siti Zarina
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore
| | - Lim Hsiu Kim Lina
- Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Alonso Sylvie
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore.
| |
Collapse
|
24
|
Gastardelo TS, Cunha BR, Raposo LS, Maniglia JV, Cury PM, Lisoni FCR, Tajara EH, Oliani SM. Inflammation and cancer: role of annexin A1 and FPR2/ALX in proliferation and metastasis in human laryngeal squamous cell carcinoma. PLoS One 2014; 9:e111317. [PMID: 25490767 PMCID: PMC4260827 DOI: 10.1371/journal.pone.0111317] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 09/30/2014] [Indexed: 11/19/2022] Open
Abstract
The anti-inflammatory protein annexin A1 (ANXA1) has been associated with cancer progression and metastasis, suggesting its role in regulating tumor cell proliferation. We investigated the mechanism of ANXA1 interaction with formylated peptide receptor 2 (FPR2/ALX) in control, peritumoral and tumor larynx tissue samples from 20 patients, to quantitate the neutrophils and mast cells, and to evaluate the protein expression and co-localization of ANXA1/FPR2 in these inflammatory cells and laryngeal squamous cells by immunocytochemistry. In addition, we performed in vitro experiments to further investigate the functional role of ANXA1/FPR2 in the proliferation and metastasis of Hep-2 cells, a cell line from larynx epidermoid carcinoma, after treatment with ANXA12–26 (annexin A1 N-terminal-derived peptide), Boc2 (antagonist of FPR) and/or dexamethasone. Under these treatments, the level of Hep-2 cell proliferation, pro-inflammatory cytokines, ANXA1/FPR2 co-localization, and the prostaglandin signalling were analyzed using ELISA, immunocytochemistry and real-time PCR. An influx of neutrophils and degranulated mast cells was detected in tumor samples. In these inflammatory cells of peritumoral and tumor samples, ANXA1/FPR2 expression was markedly exacerbated, however, in laryngeal carcinoma cells, this expression was down-regulated. ANXA12–26 treatment reduced the proliferation of the Hep-2 cells, an effect that was blocked by Boc2, and up-regulated ANXA1/FPR2 expression. ANXA12–26 treatment also reduced the levels of pro-inflammatory cytokines and affected the expression of metalloproteinases and EP receptors, which are involved in the prostaglandin signalling. Overall, this study identified potential roles for the molecular mechanism of the ANXA1/FPR2 interaction in laryngeal cancer, including its relationship with the prostaglandin pathway, providing promising starting points for future research. ANXA1 may contribute to the regulation of tumor growth and metastasis through paracrine mechanisms that are mediated by FPR2/ALX. These data may lead to new biological targets for therapeutic intervention in human laryngeal cancer.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Amino Acid Sequence
- Annexin A1/chemistry
- Annexin A1/metabolism
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Degranulation/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Humans
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Laryngeal Neoplasms/immunology
- Laryngeal Neoplasms/metabolism
- Laryngeal Neoplasms/pathology
- Male
- Mast Cells/cytology
- Mast Cells/drug effects
- Metalloproteases/metabolism
- Middle Aged
- Molecular Sequence Data
- Neoplasm Metastasis
- Neutrophils/drug effects
- Neutrophils/immunology
- Peptide Fragments/chemistry
- Peptide Fragments/pharmacology
- Prostaglandins/metabolism
- Receptors, Formyl Peptide/metabolism
- Receptors, Lipoxin/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Signal Transduction/drug effects
- Tumor Microenvironment/drug effects
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Thaís Santana Gastardelo
- From the Post-graduation in Structural and Functional Biology, Federal University of São Paulo (UNIFESP), Paulista School of Medicine (EPM), São Paulo, SP, Brazil
| | - Bianca Rodrigues Cunha
- Department of Molecular Biology, Faculty of Medicine (FAMERP), São José do Rio Preto, SP, Brazil
| | - Luís Sérgio Raposo
- Department of Otorhinolaringology, Faculty of Medicine (FAMERP), São José do Rio Preto, SP, Brazil
| | - José Victor Maniglia
- Department of Otorhinolaringology, Faculty of Medicine (FAMERP), São José do Rio Preto, SP, Brazil
| | - Patrícia Maluf Cury
- Department of Pathology, Faculty of Medicine (FAMERP), São José do Rio Preto, SP, Brazil
| | | | - Eloiza Helena Tajara
- Department of Molecular Biology, Faculty of Medicine (FAMERP), São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Sonia Maria Oliani
- From the Post-graduation in Structural and Functional Biology, Federal University of São Paulo (UNIFESP), Paulista School of Medicine (EPM), São Paulo, SP, Brazil
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
25
|
Increased expression of annexin A1 predicts poor prognosis in human hepatocellular carcinoma and enhances cell malignant phenotype. Med Oncol 2014; 31:327. [PMID: 25412936 DOI: 10.1007/s12032-014-0327-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 02/07/2023]
Abstract
Annexin A1 (ANXA1) belongs to the annexin superfamily of proteins, which contribute to the pathological consequence and sequelae of most serious human diseases. Recent studies have reported diverse roles of ANXA1 in various human cancers; however, its involvement in human hepatocellular carcinoma (HCC) still remains controversial. To investigate the expression pattern of ANXA1 in HCC tissues and evaluate its associations with tumor progression and patients' prognosis, immunohistochemistry was performed using 160 pairs of formalin-fixed and paraffin-embedded cancerous and adjacent non-cancerous tissues from patients with HCC. Then, the associations between ANXA1 expression, clinicopathological characteristics, and prognosis of HCC patients were statistically evaluated. In vitro migration and invasion assays of siRNA-targeted ANXA1-transfected cells were further performed. As a result, the expression levels of ANXA1 protein in HCC tissues were significantly higher than those in adjacent non-cancerous tissues (P < 0.001). High ANXA1 expression was closely correlated with advanced TNM stage (P = 0.001) and high Edmondson grade (P = 0.02). Then, univariate and multivariate analyses showed that the status of ANXA1 expression was an independent predictor for overall survival of HCC patients. Furthermore, knockdown of ANXA1 by transfection of siRNA-ANXA1 could suppress the migration and invasion abilities of HCC cells in vitro. Collectively, these findings offer the convincing evidence that ANXA1 may play an important role in HCC progression and can be used as a molecular marker to predict prognosis and a potential target for therapeutic intervention of HCC.
Collapse
|
26
|
Jeanson L, Guerrera IC, Papon JF, Chhuon C, Zadigue P, Prulière-Escabasse V, Amselem S, Escudier E, Coste A, Edelman A. Proteomic analysis of nasal epithelial cells from cystic fibrosis patients. PLoS One 2014; 9:e108671. [PMID: 25268127 PMCID: PMC4182543 DOI: 10.1371/journal.pone.0108671] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/24/2014] [Indexed: 11/21/2022] Open
Abstract
The pathophysiology of cystic fibrosis (CF) lung disease remains incompletely understood. New explanations for the pathogenesis of CF lung disease may be discovered by studying the patterns of protein expression in cultured human nasal epithelial cells (HNEC). To that aim, we compared the level of protein expressions in primary cultures of HNEC from nasal polyps secondary to CF (CFNP, n = 4), primary nasal polyps (NP, n = 8) and control mucosa (CTRL, n = 4) using isobaric tag for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography (LC)-MS-MS. The analysis of the data revealed 42 deregulated protein expressions in CFNP compared to NP and CTRL, suggesting that these alterations are related to CF. Overall, AmiGo analysis highlighted six major pathways important for cell functions that seem to be impaired: metabolism, G protein process, inflammation and oxidative stress response, protein folding, proteolysis and structural proteins. Among them, glucose and fatty acid metabolic pathways could be impaired in CF with nine deregulated proteins. Our proteomic study provides a reproducible set of differentially expressed proteins in airway epithelial cells from CF patients and reveals many novel deregulated proteins that could lead to further studies aiming to clarify the involvement of such proteins in CF pathophysiology.
Collapse
Affiliation(s)
- Ludovic Jeanson
- Service de Génétique et Embryologie Médicales, Unité Mixte de Recherche_Scientifique 933, Institut National de la Santé et de la Recherche Médicale, Université Pierre et Marie Curie – Paris 6, and Assistance Publique – Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
- Unité_1151, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Paris, France
| | - Ida Chiara Guerrera
- Unité_1151, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Paris, France
- Plateau Proteome Necker, Structure Fédérative de Recherche de Necker, Université Paris Descartes, Paris, France
| | - Jean-François Papon
- Unité Mixte de Recherche_Scientifique 855, Institut National de la Santé et de la Recherche Médicale, Université Paris 12, Faculté de Médecine, Créteil, France
- Service d’Otorhinolaryngologie et de chirurgie cervico-faciale, Assistance Publique – Hôpitaux de Paris, Hôpital inter-communal et Groupe Hospitalier Henri Mondor-Albert Chenevier, Créteil, France
| | - Cerina Chhuon
- Unité_1151, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Paris, France
- Plateau Proteome Necker, Structure Fédérative de Recherche de Necker, Université Paris Descartes, Paris, France
| | - Patricia Zadigue
- Unité Mixte de Recherche_Scientifique 855, Institut National de la Santé et de la Recherche Médicale, Université Paris 12, Faculté de Médecine, Créteil, France
| | - Virginie Prulière-Escabasse
- Service d’Otorhinolaryngologie et de chirurgie cervico-faciale, Assistance Publique – Hôpitaux de Paris, Hôpital inter-communal et Groupe Hospitalier Henri Mondor-Albert Chenevier, Créteil, France
| | - Serge Amselem
- Service de Génétique et Embryologie Médicales, Unité Mixte de Recherche_Scientifique 933, Institut National de la Santé et de la Recherche Médicale, Université Pierre et Marie Curie – Paris 6, and Assistance Publique – Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Estelle Escudier
- Service de Génétique et Embryologie Médicales, Unité Mixte de Recherche_Scientifique 933, Institut National de la Santé et de la Recherche Médicale, Université Pierre et Marie Curie – Paris 6, and Assistance Publique – Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - André Coste
- Unité Mixte de Recherche_Scientifique 855, Institut National de la Santé et de la Recherche Médicale, Université Paris 12, Faculté de Médecine, Créteil, France
- Service d’Otorhinolaryngologie et de chirurgie cervico-faciale, Assistance Publique – Hôpitaux de Paris, Hôpital inter-communal et Groupe Hospitalier Henri Mondor-Albert Chenevier, Créteil, France
| | - Aleksander Edelman
- Unité_1151, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Paris, France
- Plateau Proteome Necker, Structure Fédérative de Recherche de Necker, Université Paris Descartes, Paris, France
| |
Collapse
|
27
|
Rossi AFT, Duarte MC, Poltronieri AB, Valsechi MC, Jorge YC, de-Santi Neto D, Rahal P, Oliani SM, Silva AE. Deregulation of annexin-A1 and galectin-1 expression in precancerous gastric lesions: intestinal metaplasia and gastric ulcer. Mediators Inflamm 2014; 2014:478138. [PMID: 24719523 PMCID: PMC3955591 DOI: 10.1155/2014/478138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Annexin-A1 (ANXA1/AnxA1) and galectin-1 (LGALS1/Gal-1) are mediators that play an important role in the inflammatory response and are also associated with carcinogenesis. We investigated mRNA and protein expression in precancerous gastric lesions that participate in the progression cascade to gastric cancer, such as intestinal metaplasia (IM) and gastric ulcer (GU). METHODS Quantitative real-time PCR (qPCR) and immunohistochemical techniques were used to analyze the relative quantification levels (RQ) of ANXA1 and LGALS1 mRNA and protein expression, respectively. RESULTS Increased relative expression levels of ANXA1 were found in 100% of cases, both in IM (mean RQ = 6.22 ± 0.06) and in GU (mean RQ = 6.69 ± 0.10). However, the LGALS1 presented basal expression in both groups (IM: mean RQ = 0.35 ± 0.07; GU: mean RQ = 0.69 ± 0.09). Immunohistochemistry revealed significant positive staining for both the AnxA1 and Gal-1 proteins in the epithelial nucleus and cytoplasm as well as in the stroma of the IM and GU groups (P < 0.05) but absence or low immunorectivity in normal mucosa. CONCLUSION Our results bring an important contribution by evidencing that both the AnxA1 and Gal-1 anti-inflammatory proteins are deregulated in precancerous gastric lesions, suggesting their involvement in the early stages of gastric carcinogenesis, possibly due to an inflammatory process in the gastric mucosa.
Collapse
Affiliation(s)
- Ana Flávia Teixeira Rossi
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Márcia Cristina Duarte
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Ayla Blanco Poltronieri
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Marina Curado Valsechi
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Yvana Cristina Jorge
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Dalísio de-Santi Neto
- Legal Medicine Department and Pathology Service, Hospital de Base, Avenida Brigadeiro Faria Lima 5544, 15090-000 São José do Rio Preto, SP, Brazil
| | - Paula Rahal
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Sonia Maria Oliani
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Ana Elizabete Silva
- Department of Biology, São Paulo State University (UNESP), Câmpus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| |
Collapse
|
28
|
Han G, Tian Y, Duan B, Sheng H, Gao H, Huang J. Association of nuclear annexin A1 with prognosis of patients with esophageal squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:751-759. [PMID: 24551299 PMCID: PMC3925923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/31/2013] [Indexed: 06/03/2023]
Abstract
Although recent progress has been made in the diagnosis and treatment of cancer, the prognosis of esophageal squamous cell carcinoma (ESCC) remains poor. The identification of biomarkers for ESCC prognosis is important for treatment decisions. The aim of this study was to evaluate the relationship between the expressions of Annexin A1 (ANXA1), three prime repair exonuclease 1 (TREX1) and apurinic/apyrimidinic endonuclease-1 (APE1) and clinical outcome of patients with ESCC. The expressions of ANXA1, TREX1 and APE1 in 93 pairs of ESCC and paracancerous tissues were tested using immunohistochemistry. ANX1, TREX1 and APE1 were dysregulated in ESCC. Nuclear expressions of ANXA1 and APE1 were significantly associated with pathologic type (P = 0.004 and 0.040, respectively). Patients with low expression of nuclear ANXA1 had a better prognosis than those with high expression of nuclear ANXA1 (HR = 0. 448, 95% CI 0.236-0.849, P = 0.014), especially for those with histologic grade 1 and 2 (HR = 0.303, 95% CI: 0.155-0.593, P < 0.001). In conclusion, nuclear ANXA1 may be potentially used as a prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Gaohua Han
- Department of Oncology, The Affiliated Second Hospital of Suzhou UniversitySuzhou, Jiangsu, China
- Department of Oncology, Taizhou People’s HospitalTaizhou, Jiangsu, China
| | - Ye Tian
- Department of Oncology, The Affiliated Second Hospital of Suzhou UniversitySuzhou, Jiangsu, China
| | - Bensong Duan
- Institute of Digestive Disease, Department of Gastroenterology, Tongji Hospital, Tongji UniversityShanghai, China
- National Engineering Center for Biochip at ShanghaiShanghai, China
| | - Haihui Sheng
- National Engineering Center for Biochip at ShanghaiShanghai, China
| | - Hengjun Gao
- Institute of Digestive Disease, Department of Gastroenterology, Tongji Hospital, Tongji UniversityShanghai, China
- National Engineering Center for Biochip at ShanghaiShanghai, China
| | - Junxing Huang
- Department of Oncology, Taizhou People’s HospitalTaizhou, Jiangsu, China
| |
Collapse
|
29
|
Zhang ZQ, Li XJ, Liu GT, Xia Y, Zhang XY, Wen H. Identification of Annexin A1 protein expression in human gastric adenocarcinoma using proteomics and tissue microarray. World J Gastroenterol 2013; 19:7795-7803. [PMID: 24282368 PMCID: PMC3837281 DOI: 10.3748/wjg.v19.i43.7795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the differential expression of Annexin A1 (ANXA1) protein in human gastric adenocarcinoma. This study was also designed to analyze the relationship between ANXA1 expression and the clinicopathological parameters of gastric carcinoma.
METHODS: Purified gastric adenocarcinoma cells (GAC) and normal gastric epithelial cells (NGEC) were obtained from 15 patients with gastric cancer by laser capture microdissection. All of the peptide specimens were labeled as 18O/16O after trypsin digestion. Differential protein expressions were quantitatively identified between GAC and NGEC by nanoliter-reverse-phase liquid chromatography-mass/mass spectrometry (nano-RPLC-MS/MS). The expressions of ANXA1 in GAC and NGEC were verified by western blot analysis. The tissue microarray containing the expressed ANXA1 in 75 pairs of gastric carcinoma and paracarcinoma specimens was detected by immunohistochemistry (IHC). The relationship between ANXA1 expression and clinicopathological parametes of gastric carcinoma was analyzed.
RESULTS: A total of 78 differential proteins were identified. Western blotting revealed that ANXA1 expression was significantly upregulated in GAC (2.17/1, P < 0.01). IHC results showed the correlations between ANXA1 protein expression and the clinicopathological parameters, including invasive depth (T stage), lymph node metastasis (N stage), distant metastasis (M stage) and tumour-lymph node metastasis stage (P < 0.01). However, the correlations between ANXA1 protein expression and the remaining clinicopathological parameters, including sex, age, histological differentiation and the size of tumour were not found (P > 0.05).
CONCLUSION: The upregulated ANXA1 expression may be associated with carcinogenesis, progression, invasion and metastasis of GAC. This protein could be considered as a biomarker of clinical prognostic prediction and targeted therapy of GAC.
Collapse
|
30
|
Abstract
The annexins are a well-known, closely related, multigene superfamily of Ca2+-regulated, phospholipid-dependent, membrane-binding proteins. As a member of the annexins, Anxa1 participates in a variety of important biological processes, such as cellular transduction, membrane aggregation, inflammation, phagocytosis, proliferation, differentiation and apoptosis. Accumulated evidence has indicated that Anxa1 deregulations are associated with the development, invasion, metastasis, occurrence and drug resistance of cancers. The research evidence in recent years indicates that Anxa1 might specifically function either as a tumor suppressor or a tumor promoter candidate for certain cancers depending on the particular type of tumor cells/tissues. This article summarizes the associations between Anxa1 and malignant tumors, as well as potential action mechanisms. Anxa1 has the potential to be used in the future as a biomarker for the diagnosis, treatment and prognosis of certain tumors.
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Shuqing Liu
- Department of Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| |
Collapse
|