1
|
Orozco RC, Marquardt K, Pratumchai I, Shaikh AF, Mowen K, Domissy A, Teijaro JR, Sherman LA. Autoimmunity-associated allele of tyrosine phosphatase gene PTPN22 enhances anti-viral immunity. PLoS Pathog 2024; 20:e1012095. [PMID: 38512979 PMCID: PMC10987006 DOI: 10.1371/journal.ppat.1012095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 04/02/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
The 1858C>T allele of the tyrosine phosphatase PTPN22 is present in 5-10% of the North American population and is strongly associated with numerous autoimmune diseases. Although research has been done to define how this allele potentiates autoimmunity, the influence PTPN22 and its pro-autoimmune allele has in anti-viral immunity remains poorly defined. Here, we use single cell RNA-sequencing and functional studies to interrogate the impact of this pro-autoimmune allele on anti-viral immunity during Lymphocytic Choriomeningitis Virus clone 13 (LCMV-cl13) infection. Mice homozygous for this allele (PEP-619WW) clear the LCMV-cl13 virus whereas wildtype (PEP-WT) mice cannot. This is associated with enhanced anti-viral CD4 T cell responses and a more immunostimulatory CD8α- cDC phenotype. Adoptive transfer studies demonstrated that PEP-619WW enhanced anti-viral CD4 T cell function through virus-specific CD4 T cell intrinsic and extrinsic mechanisms. Taken together, our data show that the pro-autoimmune allele of Ptpn22 drives a beneficial anti-viral immune response thereby preventing what is normally a chronic virus infection.
Collapse
Affiliation(s)
- Robin C. Orozco
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Kristi Marquardt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Isaraphorn Pratumchai
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Anam Fatima Shaikh
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Kerri Mowen
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Alain Domissy
- Genomics Core, Scripps Research, La Jolla, California, United States of America
| | - John R. Teijaro
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Linda A. Sherman
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| |
Collapse
|
2
|
Urnikyte A, Masiulyte A, Pranckeniene L, Kučinskas V. Disentangling archaic introgression and genomic signatures of selection at human immunity genes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105528. [PMID: 37977419 DOI: 10.1016/j.meegid.2023.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Pathogens and infectious diseases have imposed exceptionally strong selective pressure on ancient and modern human genomes and contributed to the current variation in many genes. There is evidence that modern humans acquired immune variants through interbreeding with ancient hominins, but the impact of such variants on human traits is not fully understood. The main objectives of this research were to infer the genetic signatures of positive selection that may be involved in adaptation to infectious diseases and to investigate the function of Neanderthal alleles identified within a set of 50 Lithuanian genomes. Introgressed regions were identified using the machine learning tool ArchIE. Recent positive selection signatures were analysed using iHS. We detected high-scoring signals of positive selection at innate immunity genes (EMB, PARP8, HLAC, and CDSN) and evaluated their interactions with the structural proteins of pathogens. Interactions with human immunodeficiency virus (HIV) 1 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were identified. Overall, genomic regions introgressed from Neanderthals were shown to be enriched in genes related to immunity, keratinocyte differentiation, and sensory perception.
Collapse
Affiliation(s)
- Alina Urnikyte
- Faculty of Medicine, Department of Human and Medical Genetics, Institute of Biomedical Sciences, Vilnius University, Santariskiu Street 2, Vilnius LT-08661, Lithuania.
| | - Abigaile Masiulyte
- Faculty of Medicine, Department of Human and Medical Genetics, Institute of Biomedical Sciences, Vilnius University, Santariskiu Street 2, Vilnius LT-08661, Lithuania
| | - Laura Pranckeniene
- Faculty of Medicine, Department of Human and Medical Genetics, Institute of Biomedical Sciences, Vilnius University, Santariskiu Street 2, Vilnius LT-08661, Lithuania.
| | - Vaidutis Kučinskas
- Faculty of Medicine, Department of Human and Medical Genetics, Institute of Biomedical Sciences, Vilnius University, Santariskiu Street 2, Vilnius LT-08661, Lithuania.
| |
Collapse
|
3
|
Zhao D, Zhang Z, Niu H, Guo H. Pathogens are an important driving force for the rapid spread of symbionts in an insect host. Nat Ecol Evol 2023; 7:1667-1681. [PMID: 37563464 DOI: 10.1038/s41559-023-02160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/06/2023] [Indexed: 08/12/2023]
Abstract
One of the biggest challenges for pathogens invading hosts is microbial symbionts but the role of pathogens in symbionts in nature is unknown. By tracking the dynamics of the entomopathogenic fungal Cordyceps javanica and symbionts in natural populations of the whitefly Bemisia tabaci from 2016 to 2021 across China, we reveal that Rickettsia, a newly invaded symbiont, is positively correlated with the pathogen in both frequency and density. We confirm that applying pathogen pressure can selectively drive Rickettsia to sudden fixation in whiteflies both in the laboratory and in the field. Furthermore, the driving force is elucidated by the Rickettsia-conferred suppression of pathogen infection quantity, proliferation and sporulation, acting as a potential barrier of onward transmission of the pathogen. These results show that pathogens are an important driving force for rapid shifts in host symbionts in the natural niche.
Collapse
Affiliation(s)
- Dongxiao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhichun Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongtao Niu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
4
|
Caro-Consuegra R, Lucas-Sánchez M, Comas D, Bosch E. Identifying signatures of positive selection in human populations from North Africa. Sci Rep 2023; 13:8166. [PMID: 37210386 DOI: 10.1038/s41598-023-35312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
Because of its location, North Africa (NA) has witnessed continuous demographic movements with an impact on the genomes of present-day human populations. Genomic data describe a complex scenario with varying proportions of at least four main ancestry components: Maghrebi, Middle Eastern-, European-, and West-and-East-African-like. However, the footprint of positive selection in NA has not been studied. Here, we compile genome-wide genotyping data from 190 North Africans and individuals from surrounding populations, investigate for signatures of positive selection using allele frequencies and linkage disequilibrium-based methods and infer ancestry proportions to discern adaptive admixture from post-admixture selection events. Our results show private candidate genes for selection in NA involved in insulin processing (KIF5A), immune function (KIF5A, IL1RN, TLR3), and haemoglobin phenotypes (BCL11A). We also detect signatures of positive selection related to skin pigmentation (SLC24A5, KITLG), and immunity function (IL1R1, CD44, JAK1) shared with European populations and candidate genes associated with haemoglobin phenotypes (HPSE2, HBE1, HBG2), other immune-related (DOCK2) traits, and insulin processing (GLIS3) traits shared with West and East African populations. Finally, the SLC8A1 gene, which codifies for a sodium-calcium exchanger, was the only candidate identified under post-admixture selection in Western NA.
Collapse
Affiliation(s)
- Rocio Caro-Consuegra
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Marcel Lucas-Sánchez
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - David Comas
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
5
|
Fuess LE, Bolnick DI. Single-Cell RNA Sequencing Reveals Microevolution of the Stickleback Immune System. Genome Biol Evol 2023; 15:evad053. [PMID: 37039516 PMCID: PMC10116603 DOI: 10.1093/gbe/evad053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 04/12/2023] Open
Abstract
The risk and severity of pathogen infections in humans, livestock, or wild organisms depend on host immune function, which can vary between closely related host populations or even among individuals. This immune variation can entail between-population differences in immune gene coding sequences, copy number, or expression. In recent years, many studies have focused on population divergence in immunity using whole-tissue transcriptomics. But, whole-tissue transcriptomics cannot distinguish between evolved differences in gene regulation within cells, versus changes in cell composition within the focal tissue. Here, we leverage single-cell transcriptomic approaches to document signatures of microevolution of immune system structure in a natural system, the three-spined stickleback (Gasterosteus aculeatus). We sampled nine adult fish from three populations with variability in resistance to a cestode parasite, Schistocephalus solidus, to create the first comprehensive immune cell atlas for G. aculeatus. Eight broad immune cell types, corresponding to major vertebrate immune cells, were identified. We were also able to document significant variation in both abundance and expression profiles of the individual immune cell types among the three populations of fish. Furthermore, we demonstrate that identified cell type markers can be used to reinterpret traditional transcriptomic data: we reevaluate previously published whole-tissue transcriptome data from a quantitative genetic experimental infection study to gain better resolution relating infection outcomes to inferred cell type variation. Our combined study demonstrates the power of single-cell sequencing to not only document evolutionary phenomena (i.e., microevolution of immune cells) but also increase the power of traditional transcriptomic data sets.
Collapse
Affiliation(s)
- Lauren E Fuess
- Department of Biology, Texas State University
- Department of Ecology and Evolutionary Biology, University of Connecticut
| | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut
| |
Collapse
|
6
|
Muehlenbein MP, Gassen J, Nowak TJ, Henderson AD, Thum E, Weaver SP, Baker EJ. Exploring links between pathogen avoidance motivation, COVID-19 case counts, and immune function. Am J Hum Biol 2023; 35:e23833. [PMID: 36382790 DOI: 10.1002/ajhb.23833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/26/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES The selection pressures exerted by pathogens have played important roles in shaping the biology and behavior of animals, including humans. Immune systems recognize and respond to cues of infection or damage by coordinating cellular, humoral, and metabolic shifts that promote recovery. Moreover, animals also possess a repertoire of behavioral tools to help combat the threat of pathogens, often referred to as the behavioral immune system. Recently, researchers have begun to examine how cognitive, affective, and behavioral disease avoidance mechanisms interact with the biological immune system. METHODS The present study explored relationships among individual differences in behavioral immune system activity (e.g., pathogen disgust), shifts in SARS-CoV-2 infection risk (i.e., 7-day case averages), and immune function in a community cohort from McLennan County, Texas, USA (n = 387). RESULTS Levels of disease concern were not consistently associated with immune markers. However, serum levels of IFN-γ, TNF-α, IL-2, and IL-8, as well as serum killing ability of Escherichia coli, each varied with case counts. Additional analyses found that case counts also predicted changes in stress physiology, but not subjective measures of distress. However, follow-up mediation models did not provide evidence that relationships between case counts and immunological outcomes were mediated through levels of stress. CONCLUSIONS The present project provides initial evidence that markers of immune function may be sensitive to changes in infection risk during the COVID-19 pandemic. This adds to the growing body of research finding relationships among behavioral and biological pathogen management mechanisms.
Collapse
Affiliation(s)
| | - Jeffrey Gassen
- Department of Anthropology, Baylor University, Waco, Texas, USA
| | - Tomasz J Nowak
- Department of Anthropology, Baylor University, Waco, Texas, USA
| | | | - Edward Thum
- Department of Anthropology, Baylor University, Waco, Texas, USA
| | | | - Erich J Baker
- Department of Computer Science, Baylor University, Waco, Texas, USA
| |
Collapse
|
7
|
Papadaki GF, Ani O, Florio TJ, Young MC, Danon JN, Sun Y, Dersh D, Sgourakis NG. Decoupling peptide binding from T cell receptor recognition with engineered chimeric MHC-I molecules. Front Immunol 2023; 14:1116906. [PMID: 36761745 PMCID: PMC9905809 DOI: 10.3389/fimmu.2023.1116906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Major Histocompatibility Complex class I (MHC-I) molecules display self, viral or aberrant epitopic peptides to T cell receptors (TCRs), which employ interactions between complementarity-determining regions with both peptide and MHC-I heavy chain 'framework' residues to recognize specific Human Leucocyte Antigens (HLAs). The highly polymorphic nature of the HLA peptide-binding groove suggests a malleability of interactions within a common structural scaffold. Here, using structural data from peptide:MHC-I and pMHC:TCR structures, we first identify residues important for peptide and/or TCR binding. We then outline a fixed-backbone computational design approach for engineering synthetic molecules that combine peptide binding and TCR recognition surfaces from existing HLA allotypes. X-ray crystallography demonstrates that chimeric molecules bridging divergent HLA alleles can bind selected peptide antigens in a specified backbone conformation. Finally, in vitro tetramer staining and biophysical binding experiments using chimeric pMHC-I molecules presenting established antigens further demonstrate the requirement of TCR recognition on interactions with HLA framework residues, as opposed to interactions with peptide-centric Chimeric Antigen Receptors (CARs). Our results underscore a novel, structure-guided platform for developing synthetic HLA molecules with desired properties as screening probes for peptide-centric interactions with TCRs and other therapeutic modalities.
Collapse
Affiliation(s)
- Georgia F. Papadaki
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Omar Ani
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tyler J. Florio
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael C. Young
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Julia N. Danon
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yi Sun
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Devin Dersh
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nikolaos G. Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Yu Z, Abdel-Azim S, Duggal P, Vergara C. Identity by descent mapping of HCV spontaneous clearance in populations of diverse ancestry. RESEARCH SQUARE 2023:rs.3.rs-2433454. [PMID: 36712049 PMCID: PMC9882640 DOI: 10.21203/rs.3.rs-2433454/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Acute infection with hepatitis C virus (HCV) affects millions of individuals worldwide. Host genetics plays a role in spontaneous clearance of the acute infection which occurs in approximately 30% of the individuals. Common variants in GPR158, genes in the interferon lambda (IFNL) cluster, and the MHC region have been associated with HCV clearance in populations of diverse ancestry. Fine mapping of those regions has identified some key variants and amino acids as potential causal variants but the role of rare variants in those regions and in the genome, in general, has not been explored. We aimed to detect haplotypes containing rare variants related to HCV clearance using identity-by-descent (IBD) haplotype sharing between unrelated cases/case pairs and case/controls pairs in 3,608 individuals with European and African ancestry. Results We detected 1,711,832 and 5,678,043 and individual pairs of IBD segments in the European and African ancestry individuals, respectively. As expected, individuals of African descent had more, and shorter segments compared to Europeans. We did not detect any significant IBD signals in the known associated gene regions. Conclusions IBD is based on sharing of haplotypes and is most powerful in populations with a shared founder or recent common ancestor. For the complex trait of HCV clearance, we used two outbred, global populations that limited our power to detect IBD associations. Overall, in this population-based sample we failed to detect rare variations associated with HCV clearance in individuals of European and African ancestry.
Collapse
Affiliation(s)
- Zixuan Yu
- Johns Hopkins University, Bloomberg School of Public Health
| | | | - Priya Duggal
- Johns Hopkins University, Bloomberg School of Public Health
| | | |
Collapse
|
9
|
Cook CJ, Fletcher JM. Heterogeneity in disease resistance and the impact of antibiotics in the US. ECONOMICS AND HUMAN BIOLOGY 2022; 47:101155. [PMID: 35944452 PMCID: PMC9972546 DOI: 10.1016/j.ehb.2022.101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
We hypothesize that the impact of antibiotics is moderated by a population's inherent (genetic) resistance to infectious disease. Using the introduction of sulfa drugs in 1937, we show that US states that are more genetically susceptible to infectious disease saw larger declines in their bacterial mortality rates following the introduction of sulfa drugs in 1937. This suggests area-level genetic endowments of disease resistance and the discovery of medical technologies have acted as substitutes in determining levels of health across the US. We also document immediate effects of sulfa drug exposure to the age of the workforce and cumulative effects on educational attainment for cohorts exposed to sulfa drugs in early life.
Collapse
|
10
|
Nilsson P, Ravinet M, Cui Y, Berg PR, Zhang Y, Guo R, Luo T, Song Y, Trucchi E, Hoff SNK, Lv R, Schmid BV, Easterday WR, Jakobsen KS, Stenseth NC, Yang R, Jentoft S. Polygenic plague resistance in the great gerbil uncovered by population sequencing. PNAS NEXUS 2022; 1:pgac211. [PMID: 36712379 PMCID: PMC9802093 DOI: 10.1093/pnasnexus/pgac211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 06/18/2023]
Abstract
Pathogens can elicit high selective pressure on hosts, potentially altering genetic diversity over short evolutionary timescales. Intraspecific variation in immune response is observable as variable survivability from specific infections. The great gerbil (Rhombomys opimus) is a rodent plague host with a heterogenic but highly resistant phenotype. Here, we investigate the genomic basis for plague-resistant phenotypes by exposing wild-caught great gerbils to plague (Yersinia pestis). Whole genome sequencing of 10 survivors and 10 moribund individuals revealed a subset of genomic regions showing elevated differentiation. Gene ontology analysis of candidate genes in these regions demonstrated enrichment of genes directly involved in immune functions, cellular metabolism and the regulation of apoptosis as well as pathways involved in transcription, translation, and gene regulation. Transcriptomic analysis revealed that the early activated great gerbil immune response to plague consisted of classical components of the innate immune system. Our approach combining challenge experiments with transcriptomics and population level sequencing, provides new insight into the genetic background of plague-resistance and confirms its complex nature, most likely involving multiple genes and pathways of both the immune system and regulation of basic cellular functions.
Collapse
Affiliation(s)
- Pernille Nilsson
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | | | | | | | | | - Rong Guo
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, China
| | - Tao Luo
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Siv N K Hoff
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Ruichen Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Boris V Schmid
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - W Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | | | | | - Ruifu Yang
- To whom correspondence should be addressed:
| | | |
Collapse
|
11
|
Georgiadou A, Dunican C, Soro-Barrio P, Lee HJ, Kaforou M, Cunnington AJ. Comparative transcriptomic analysis reveals translationally relevant processes in mouse models of malaria. eLife 2022; 11:e70763. [PMID: 35006075 PMCID: PMC8747512 DOI: 10.7554/elife.70763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Recent initiatives to improve translation of findings from animal models to human disease have focussed on reproducibility but quantifying the relevance of animal models remains a challenge. Here, we use comparative transcriptomics of blood to evaluate the systemic host response and its concordance between humans with different clinical manifestations of malaria and five commonly used mouse models. Plasmodium yoelii 17XL infection of mice most closely reproduces the profile of gene expression changes seen in the major human severe malaria syndromes, accompanied by high parasite biomass, severe anemia, hyperlactatemia, and cerebral microvascular pathology. However, there is also considerable discordance of changes in gene expression between the different host species and across all models, indicating that the relevance of biological mechanisms of interest in each model should be assessed before conducting experiments. These data will aid the selection of appropriate models for translational malaria research, and the approach is generalizable to other disease models.
Collapse
Affiliation(s)
- Athina Georgiadou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Pablo Soro-Barrio
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
| | - Hyun Jae Lee
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Myrsini Kaforou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
12
|
Karimi K, Farid AH, Myles S, Miar Y. Detection of selection signatures for response to Aleutian mink disease virus infection in American mink. Sci Rep 2021; 11:2944. [PMID: 33536540 PMCID: PMC7859209 DOI: 10.1038/s41598-021-82522-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Aleutian disease (AD) is the most significant health issue for farmed American mink. The objective of this study was to identify the genomic regions subjected to selection for response to infection with Aleutian mink disease virus (AMDV) in American mink using genotyping by sequencing (GBS) data. A total of 225 black mink were inoculated with AMDV and genotyped using a GBS assay based on the sequencing of ApeKI-digested libraries. Five AD-characterized phenotypes were used to assign animals to pairwise groups. Signatures of selection were detected using integrated measurement of fixation index (FST) and nucleotide diversity (θπ), that were validated by haplotype-based (hap-FLK) test. The total of 99 putatively selected regions harbouring 63 genes were detected in different groups. The gene ontology revealed numerous genes related to immune response (e.g. TRAF3IP2, WDR7, SWAP70, CBFB, and GPR65), liver development (e.g. SULF2, SRSF5) and reproduction process (e.g. FBXO5, CatSperβ, CATSPER4, and IGF2R). The hapFLK test supported two strongly selected regions that contained five candidate genes related to immune response, virus–host interaction, reproduction and liver regeneration. This study provided the first map of putative selection signals of response to AMDV infection in American mink, bringing new insights into genomic regions controlling the AD phenotypes.
Collapse
Affiliation(s)
- Karim Karimi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - A Hossain Farid
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Sean Myles
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
| |
Collapse
|
13
|
Poretti M, Praz CR, Meile L, Kälin C, Schaefer LK, Schläfli M, Widrig V, Sanchez-Vallet A, Wicker T, Bourras S. Domestication of High-Copy Transposons Underlays the Wheat Small RNA Response to an Obligate Pathogen. Mol Biol Evol 2020; 37:839-848. [PMID: 31730193 PMCID: PMC7038664 DOI: 10.1093/molbev/msz272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plant genomes have evolved several evolutionary mechanisms to tolerate and make use of transposable elements (TEs). Of these, transposon domestication into cis-regulatory and microRNA (miRNA) sequences is proposed to contribute to abiotic/biotic stress adaptation in plants. The wheat genome is derived at 85% from TEs, and contains thousands of miniature inverted-repeat transposable elements (MITEs), whose sequences are particularly prone for domestication into miRNA precursors. In this study, we investigate the contribution of TEs to the wheat small RNA immune response to the lineage-specific, obligate powdery mildew pathogen. We show that MITEs of the Mariner superfamily contribute the largest diversity of miRNAs to the wheat immune response. In particular, MITE precursors of miRNAs are wide-spread over the wheat genome, and highly conserved copies are found in the Lr34 and QPm.tut-4A mildew resistance loci. Our work suggests that transposon domestication is an important evolutionary force driving miRNA functional innovation in wheat immunity.
Collapse
Affiliation(s)
- Manuel Poretti
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Coraline Rosalie Praz
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Lukas Meile
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Carol Kälin
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | | | - Michael Schläfli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Victoria Widrig
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | | | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Salim Bourras
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.,Department of Forest Mycology and Plant Pathology, Division of Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
14
|
Lanata CM, Blazer A, Criswell LA. The Contribution of Genetics and Epigenetics to Our Understanding of Health Disparities in Rheumatic Diseases. Rheum Dis Clin North Am 2020; 47:65-81. [PMID: 34042055 DOI: 10.1016/j.rdc.2020.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Socioeconomic determinants of health are associated with worse outcomes in the rheumatic diseases and contribute significantly to health disparities. However, genetic and epigenetic risk factors may affect different populations disproportionally and further exacerbate health disparities. We discuss the role of genetics and epigenetics to the health disparities observed in rheumatic diseases. We review concepts of population genetics and natural selection, current genome-wide genetic and epigenetic studies of several autoimmune diseases, and environmental exposures associated with disease risk in different populations. To understand how genomics influence health disparities in the rheumatic diseases, further studies in different populations worldwide are needed.
Collapse
Affiliation(s)
- Cristina M Lanata
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco, 513 Parnassus Avenue, MSB S865, San Francisco, CA, USA
| | - Ashira Blazer
- Department of Medicine, Division of Rheumatology, NYU Langone Health, 550 1st Avenue, MSB 606, New York, NY 10029, USA
| | - Lindsey A Criswell
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco, 513 Parnassus Avenue, MSB S864, San Francisco, CA, USA.
| |
Collapse
|
15
|
Karapetyan L, Luke JJ, Davar D. Toll-Like Receptor 9 Agonists in Cancer. Onco Targets Ther 2020; 13:10039-10060. [PMID: 33116588 PMCID: PMC7553670 DOI: 10.2147/ott.s247050] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/16/2020] [Indexed: 12/19/2022] Open
Abstract
Toll-like receptor 9 (TLR9) is a pattern recognition receptor that is predominantly located intracellularly in immune cells, including dendritic cells, macrophages, natural killer cells, and other antigen-presenting cells (APC). The primary ligands for TLR9 receptors are unmethylated cytidine phosphate guanosine (CpG) oligodinucleotides (ODN). TLR9 agonists induce inflammatory processes that result in the enhanced uptake and killing of microorganisms and cancer cells as well as the generation of adaptive immune responses. Preclinical studies of TLR9 agonists suggested efficacy both as monotherapy and in combination with several agents, which led to clinical trials in patients with advanced cancer. In these studies, intravenous, intratumoral, and subcutaneous routes of administration have been tested; with anti-tumor responses in both treated and untreated metastatic sites. TLR9 agonist monotherapy is safe, although efficacy is minimal in advanced cancer patients; conversely, combinations appear to be more promising. Several ongoing phase I and II clinical trials are evaluating TLR9 agonists in combination with a variety of agents including chemotherapy, radiotherapy, targeted therapy, and immunotherapy agents. In this review article, we describe the distribution, structure and signaling of TLR9; discuss the results of preclinical studies of TLR9 agonists; and review ongoing clinical trials of TLR9 agonists singly and in combination in patients with advanced solid tumors.
Collapse
Affiliation(s)
- Lilit Karapetyan
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Pittsburgh, PA, USA
| | - Jason J Luke
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Pittsburgh, PA, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diwakar Davar
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Pittsburgh, PA, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
ERAP1 shapes just part of the immunopeptidome. Hum Immunol 2019; 80:296-301. [DOI: 10.1016/j.humimm.2019.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 01/22/2023]
|
17
|
Noll KE, Ferris MT, Heise MT. The Collaborative Cross: A Systems Genetics Resource for Studying Host-Pathogen Interactions. Cell Host Microbe 2019; 25:484-498. [PMID: 30974083 PMCID: PMC6494101 DOI: 10.1016/j.chom.2019.03.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Host genetic variation has a major impact on infectious disease susceptibility. The study of pathogen resistance genes, largely aided by mouse models, has significantly advanced our understanding of infectious disease pathogenesis. The Collaborative Cross (CC), a newly developed multi-parental mouse genetic reference population, serves as a tractable model system to study how pathogens interact with genetically diverse populations. In this review, we summarize progress utilizing the CC as a platform to develop improved models of pathogen-induced disease and to map polymorphic host response loci associated with variation in susceptibility to pathogens.
Collapse
Affiliation(s)
- Kelsey E Noll
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martin T Ferris
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Mark T Heise
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Lima THA, Souza AS, Porto IOP, Paz MA, Veiga-Castelli LC, Oliveira MLG, Donadi EA, Meyer D, Sabbagh A, Mendes-Junior CT, Castelli EC. HLA-A promoter, coding, and 3'UTR sequences in a Brazilian cohort, and their evolutionary aspects. HLA 2019; 93:65-79. [PMID: 30666817 DOI: 10.1111/tan.13474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
Abstract
HLA-A is the second most polymorphic locus of the human leucocyte antigen (HLA) complex encoding a key molecule for antigen presentation and NK cell modulation. Many studies have evaluated HLA-A variability in worldwide populations, focusing mainly on exons, but the regulatory segments have been poorly characterized. HLA-A variability is particularly high in the segment encoding the peptide-binding groove (exons 2 and 3), which is related to the antigen presentation function and the balancing selection in these segments. Here we evaluate the genetic diversity of the HLA-A gene considering a continuous segment encompassing the extended promoter (1.5 kb upstream of the first translated ATG), all exons and introns, and the entire 3' untranslated region, by using massively parallel sequencing. To achieve this goal, we used a freely available bioinformatics workflow that optimizes read mapping for HLA genes and defines complete sequences using either the phase among variable sites directly observed in sequencing data and probabilistic models. The HLA-A variability detected in a highly admixed population sample from Brazil shows that the HLA-A regulatory segments present few, but divergent sequences. The regulatory segments are in close association with the coding alleles. Both exons and introns are highly variable. Moreover, patterns of molecular diversity suggest that the promoter, in addition to the coding region, might be under the same selective pressure, but a different scenario arises when it comes to exon 4 and the 3'UTR segment.
Collapse
Affiliation(s)
- Thálitta H A Lima
- Molecular Genetics and Bioinformatics Laboratory - Experimental Research Unity, School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil.,São Paulo State University (UNESP), Genetics Program, Institute of Biosciences of Botucatu, Botucatu, Brazil
| | - Andreia S Souza
- Molecular Genetics and Bioinformatics Laboratory - Experimental Research Unity, School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil.,São Paulo State University (UNESP), Genetics Program, Institute of Biosciences of Botucatu, Botucatu, Brazil
| | - Iane O P Porto
- Molecular Genetics and Bioinformatics Laboratory - Experimental Research Unity, School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil.,Pathology Program, School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Michelle A Paz
- Molecular Genetics and Bioinformatics Laboratory - Experimental Research Unity, School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil.,Pathology Program, School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Luciana C Veiga-Castelli
- Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Maria Luiza G Oliveira
- Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Eduardo A Donadi
- Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Audrey Sabbagh
- UMR 216 MERIT, IRD, Université Paris Descartes, Faculté de Pharmacie, Paris, France
| | - Celso T Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Erick C Castelli
- Molecular Genetics and Bioinformatics Laboratory - Experimental Research Unity, School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil.,São Paulo State University (UNESP), Genetics Program, Institute of Biosciences of Botucatu, Botucatu, Brazil.,Pathology Program, School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
19
|
Birth and death of Mx genes and the presence/absence of genes regulating Mx transcription are correlated with the diversity of anti-pathogenicity in vertebrate species. Mol Genet Genomics 2018; 294:121-133. [DOI: 10.1007/s00438-018-1490-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/08/2018] [Indexed: 12/20/2022]
|
20
|
Abstract
Human genetic diversity is the result of population genetic forces. This genetic variation influences disease risk and contributes to health disparities. Natural selection is an important influence on human genetic variation. Because immune and inflammatory function genes are enriched for signals of positive selection, the prevalence of rheumatic disease-risk alleles seen in different populations is partially the result of differing selective pressures (eg, due to pathogens). This review summarizes the genetic regions associated with susceptibility to different rheumatic diseases and concomitant evidence for natural selection, including known agents of selection exerting selective pressure in these regions.
Collapse
Affiliation(s)
- Paula S Ramos
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 816, Charleston, SC 29425, USA; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
21
|
Population genetic evidence for positive and purifying selection acting at the human IFN-γ locus in Africa. Genes Immun 2018; 20:143-157. [PMID: 29599512 DOI: 10.1038/s41435-018-0016-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 01/09/2023]
Abstract
Despite its critical role in the defense against microbial infection and tumor development, little is known about the range of nucleotide and haplotype variation at IFN-γ, or the evolutionary forces that have shaped patterns of diversity at this locus. To address this gap in knowledge, we examined sequence data from the IFN-γ gene in 1461 individuals from 15 worldwide populations. Our analyses uncovered novel patterns of variation in distinct African populations, including an excess of high frequency-derived alleles, unusually long haplotype structure surrounding the IFN-γ gene, and a "star-like" genealogy of African-specific haplotypes carrying variants previously associated with infectious disease. We also inferred a deep time to coalescence of variation at IFN-γ (~ 0.8 million years ago) and ancient ages for common polymorphisms predating the evolution of modern humans. Taken together, these results are congruent with a model of positive selection on standing variation in African populations. Furthermore, we inferred that common variants in intron 3 of IFN-γ are the likely targets of selection. In addition, we observed a paucity of non-synonymous substitutions relative to synonymous changes in the exons of IFN-γ in African and non-African populations, suggestive of strong purifying selection. Therefore, we contend that positive and purifying selection have influenced levels of diversity in different regions of IFN-γ, implying that these distinct genic regions are, or have been, functionally important. Overall, this study provides additional insights into the evolutionary events that have contributed to the frequency and distribution of alleles having a role in human health and disease.
Collapse
|
22
|
Human Genomic Loci Important in Common Infectious Diseases: Role of High-Throughput Sequencing and Genome-Wide Association Studies. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2018; 2018:1875217. [PMID: 29755620 PMCID: PMC5884297 DOI: 10.1155/2018/1875217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 03/07/2018] [Indexed: 12/27/2022]
Abstract
HIV/AIDS, tuberculosis (TB), and malaria are 3 major global public health threats that undermine development in many resource-poor settings. Recently, the notion that positive selection during epidemics or longer periods of exposure to common infectious diseases may have had a major effect in modifying the constitution of the human genome is being interrogated at a large scale in many populations around the world. This positive selection from infectious diseases increases power to detect associations in genome-wide association studies (GWASs). High-throughput sequencing (HTS) has transformed both the management of infectious diseases and continues to enable large-scale functional characterization of host resistance/susceptibility alleles and loci; a paradigm shift from single candidate gene studies. Application of genome sequencing technologies and genomics has enabled us to interrogate the host-pathogen interface for improving human health. Human populations are constantly locked in evolutionary arms races with pathogens; therefore, identification of common infectious disease-associated genomic variants/markers is important in therapeutic, vaccine development, and screening susceptible individuals in a population. This review describes a range of host-pathogen genomic loci that have been associated with disease susceptibility and resistant patterns in the era of HTS. We further highlight potential opportunities for these genetic markers.
Collapse
|
23
|
Hong CC, Sucheston-Campbell LE, Liu S, Hu Q, Yao S, Lunetta KL, Haddad SA, Ruiz-Narváez EA, Bensen JT, Cheng TYD, Bandera EV, Rosenberg LA, Haiman CA, Lee K, Evans SS, Abrams SI, Repasky EA, Olshan AF, Palmer JR, Ambrosone CB. Genetic Variants in Immune-Related Pathways and Breast Cancer Risk in African American Women in the AMBER Consortium. Cancer Epidemiol Biomarkers Prev 2018; 27:321-330. [PMID: 29339359 PMCID: PMC5835191 DOI: 10.1158/1055-9965.epi-17-0434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/23/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022] Open
Abstract
Background: Constitutional immunity shaped by exposure to endemic infectious diseases and parasitic worms in Sub-Saharan Africa may play a role in the etiology of breast cancer among African American (AA) women.Methods: A total of 149,514 gene variants in 433 genes across 45 immune pathways were analyzed in the AMBER consortium among 3,663 breast cancer cases and 4,687 controls. Gene-based pathway analyses were conducted using the adaptive rank truncated product statistic for overall breast cancer risk, and risk by estrogen receptor (ER) status. Unconditional logistic regression analysis was used to estimate ORs and 95% confidence intervals (CIs) for single variants.Results: The top pathways were Interleukin binding (P = 0.01), Biocarta TNFR2 (P = 0.005), and positive regulation of cytokine production (P = 0.024) for overall, ER+, and ER- cancers, respectively. The most significant gene was IL2RB (P = 0.001) for overall cancer, with rs228952 being the top variant identified (OR = 0.85; 95% CI, 0.79-0.92). Only BCL3 contained a significant variant for ER+ breast cancer. Variants in IL2RB, TLR6, IL8, PRKDC, and MAP3K1 were associated with ER- disease. The only genes showing heterogeneity between ER- and ER+ cancers were TRAF1, MAP3K1, and MAPK3 (P ≤ 0.02). We also noted genes associated with autoimmune and atopic disorders.Conclusions: Findings from this study suggest that genetic variants in immune pathways are relevant to breast cancer susceptibility among AA women, both for ER+ and ER- breast cancers.Impact: Results from this study extend our understanding of how inherited genetic variation in immune pathways is relevant to breast cancer susceptibility. Cancer Epidemiol Biomarkers Prev; 27(3); 321-30. ©2018 AACR.
Collapse
Affiliation(s)
- Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York.
| | | | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Stephen A Haddad
- Slone Epidemiology Center at Boston University, Boston, Massachusetts
| | | | - Jeannette T Bensen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ting-Yuan David Cheng
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainsville, Florida
| | - Elisa V Bandera
- Cancer Prevention and Control, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Lynn A Rosenberg
- Slone Epidemiology Center at Boston University, Boston, Massachusetts
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California
| | - Kelvin Lee
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Sharon S Evans
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Scott I Abrams
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, Massachusetts
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
24
|
Meyer D, C Aguiar VR, Bitarello BD, C Brandt DY, Nunes K. A genomic perspective on HLA evolution. Immunogenetics 2018; 70:5-27. [PMID: 28687858 PMCID: PMC5748415 DOI: 10.1007/s00251-017-1017-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/16/2017] [Indexed: 12/20/2022]
Abstract
Several decades of research have convincingly shown that classical human leukocyte antigen (HLA) loci bear signatures of natural selection. Despite this conclusion, many questions remain regarding the type of selective regime acting on these loci, the time frame at which selection acts, and the functional connections between genetic variability and natural selection. In this review, we argue that genomic datasets, in particular those generated by next-generation sequencing (NGS) at the population scale, are transforming our understanding of HLA evolution. We show that genomewide data can be used to perform robust and powerful tests for selection, capable of identifying both positive and balancing selection at HLA genes. Importantly, these tests have shown that natural selection can be identified at both recent and ancient timescales. We discuss how findings from genomewide association studies impact the evolutionary study of HLA genes, and how genomic data can be used to survey adaptive change involving interaction at multiple loci. We discuss the methodological developments which are necessary to correctly interpret genomic analyses involving the HLA region. These developments include adapting the NGS analysis framework so as to deal with the highly polymorphic HLA data, as well as developing tools and theory to search for signatures of selection, quantify differentiation, and measure admixture within the HLA region. Finally, we show that high throughput analysis of molecular phenotypes for HLA genes-namely transcription levels-is now a feasible approach and can add another dimension to the study of genetic variation.
Collapse
Affiliation(s)
- Diogo Meyer
- Department of Genetics and Evolutionary Biology, University of São Paulo, 05508-090, São Paulo, SP, Brazil.
| | - Vitor R C Aguiar
- Department of Genetics and Evolutionary Biology, University of São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Bárbara D Bitarello
- Department of Genetics and Evolutionary Biology, University of São Paulo, 05508-090, São Paulo, SP, Brazil
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Débora Y C Brandt
- Department of Genetics and Evolutionary Biology, University of São Paulo, 05508-090, São Paulo, SP, Brazil
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Kelly Nunes
- Department of Genetics and Evolutionary Biology, University of São Paulo, 05508-090, São Paulo, SP, Brazil
| |
Collapse
|
25
|
Tan JL, Ng KP, Ong CS, Ngeow YF. Genomic Comparisons Reveal Microevolutionary Differences in Mycobacterium abscessus Subspecies. Front Microbiol 2017; 8:2042. [PMID: 29109707 PMCID: PMC5660101 DOI: 10.3389/fmicb.2017.02042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/06/2017] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium abscessus, a rapid-growing non-tuberculous mycobacterium, has been the cause of sporadic and outbreak infections world-wide. The subspecies in M. abscessus complex (M. abscessus, M. massiliense, and M. bolletii) are associated with different biologic and pathogenic characteristics and are known to be among the most frequently isolated opportunistic pathogens from clinical material. To date, the evolutionary forces that could have contributed to these biological and clinical differences are still unclear. We compared genome data from 243 M. abscessus strains downloaded from the NCBI ftp Refseq database to understand how the microevolutionary processes of homologous recombination and positive selection influenced the diversification of the M. abscessus complex at the subspecies level. The three subspecies are clearly separated in the Minimum Spanning Tree. Their MUMi-based genomic distances support the separation of M. massiliense and M. bolletii into two subspecies. Maximum Likelihood analysis through dN/dS (the ratio of number of non-synonymous substitutions per non-synonymous site, to the number of synonymous substitutions per synonymous site) identified distinct genes in each subspecies that could have been affected by positive selection during evolution. The results of genome-wide alignment based on concatenated locally-collinear blocks suggest that (a) recombination has affected the M. abscessus complex more than mutation and positive selection; (b) recombination occurred more frequently in M. massiliense than in the other two subspecies; and (c) the recombined segments in the three subspecies have come from different intra-species and inter-species origins. The results lead to the identification of possible gene sets that could have been responsible for the subspecies-specific features and suggest independent evolution among the three subspecies, with recombination playing a more significant role than positive selection in the diversification among members in this complex.
Collapse
Affiliation(s)
- Joon L Tan
- Faculty of Information Science and Technology, Multimedia University, Melaka, Malaysia
| | - Kee P Ng
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chia S Ong
- Faculty of Information Science and Technology, Multimedia University, Melaka, Malaysia
| | - Yun F Ngeow
- Department of Pre-clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Petaling Jaya, Malaysia
| |
Collapse
|
26
|
Carter CJ. Genetic, Transcriptome, Proteomic, and Epidemiological Evidence for Blood-Brain Barrier Disruption and Polymicrobial Brain Invasion as Determinant Factors in Alzheimer's Disease. J Alzheimers Dis Rep 2017; 1:125-157. [PMID: 30480234 PMCID: PMC6159731 DOI: 10.3233/adr-170017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diverse pathogens are detected in Alzheimer's disease (AD) brains. A bioinformatics survey showed that AD genome-wide association study (GWAS) genes (localized in bone marrow, immune locations and microglia) relate to multiple host/pathogen interactomes (Candida albicans, Cryptococcus neoformans, Bornavirus, Borrelia burgdorferri, cytomegalovirus, Ebola virus, HSV-1, HERV-W, HIV-1, Epstein-Barr, hepatitis C, influenza, Chlamydia pneumoniae, Porphyrymonas gingivalis, Helicobacter pylori, Toxoplasma gondii, Trypanosoma cruzi). These interactomes also relate to the AD hippocampal transcriptome and to plaque or tangle proteins. Upregulated AD hippocampal genes match those upregulated by multiple bacteria, viruses, fungi, or protozoa in immunocompetent cells. AD genes are enriched in GWAS datasets reflecting pathogen diversity, suggesting selection for pathogen resistance, as supported by the old age of AD patients, implying resistance to earlier infections. APOE4 is concentrated in regions of high parasitic burden and protects against childhood tropical infections and hepatitis C. Immune/inflammatory gain of function applies to APOE4, CR1, and TREM2 variants. AD genes are also expressed in the blood-brain barrier (BBB), which is disrupted by AD risk factors (age, alcohol, aluminum, concussion, cerebral hypoperfusion, diabetes, homocysteine, hypercholesterolemia, hypertension, obesity, pesticides, pollution, physical inactivity, sleep disruption, smoking) and by pathogens, directly or via olfactory routes to basal-forebrain BBB control centers. The BBB benefits from statins, NSAIDs, estrogen, melatonin, memantine, and the Mediterranean diet. Polymicrobial involvement is supported by upregulation of bacterial, viral, and fungal sensors/defenders in the AD brain, blood, or cerebrospinal fluid. AD serum amyloid-β autoantibodies may attenuate its antimicrobial effects favoring microbial survival and cerebral invasion leading to activation of neurodestructive immune/inflammatory processes, which may also be augmented by age-related immunosenescence. AD may thus respond to antibiotic, antifungal, or antiviral therapy.
Collapse
|
27
|
Domaszewska T, Scheuermann L, Hahnke K, Mollenkopf H, Dorhoi A, Kaufmann SHE, Weiner J. Concordant and discordant gene expression patterns in mouse strains identify best-fit animal model for human tuberculosis. Sci Rep 2017; 7:12094. [PMID: 28935874 PMCID: PMC5608750 DOI: 10.1038/s41598-017-11812-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/30/2017] [Indexed: 12/22/2022] Open
Abstract
Immunity in infection, inflammation and malignancy differs markedly in man and mouse. Still, we learn about human immunity in large extent from experimental mouse models. We propose a novel data integration approach which identifies concordant and discordant gene expression patterns of the immune responses in heterologous data sets. We have conducted experiments to compare human and murine transcriptional responses to Mycobacterium tuberculosis (Mtb) infection in whole blood (WB) as well as macrophages and compared them with simulated as well as publicly available data. Our results indicate profound differences between patterns of gene expression in innate and adaptive immunity in man and mouse upon Mtb infection. We characterized differential expression of T-cell related genes corresponding to the differences in phenotype between tuberculosis (TB) highly and low susceptible mouse strains. Our approach is general and facilitates the choice of optimal animal model for studies of the human immune response to a particular disease.
Collapse
Affiliation(s)
- Teresa Domaszewska
- Max Planck Institute for Infection Biology, Department of Immunology, Charitéplatz 1, D-10117, Berlin, Germany
| | - Lisa Scheuermann
- Max Planck Institute for Infection Biology, Department of Immunology, Charitéplatz 1, D-10117, Berlin, Germany
| | - Karin Hahnke
- Max Planck Institute for Infection Biology, Department of Immunology, Charitéplatz 1, D-10117, Berlin, Germany
| | - Hans Mollenkopf
- Max Planck Institute for Infection Biology, Department of Immunology, Charitéplatz 1, D-10117, Berlin, Germany
| | - Anca Dorhoi
- Max Planck Institute for Infection Biology, Department of Immunology, Charitéplatz 1, D-10117, Berlin, Germany
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Department of Immunology, Charitéplatz 1, D-10117, Berlin, Germany.
| | - January Weiner
- Max Planck Institute for Infection Biology, Department of Immunology, Charitéplatz 1, D-10117, Berlin, Germany.
| |
Collapse
|
28
|
Hedrick SM. Understanding Immunity through the Lens of Disease Ecology. Trends Immunol 2017; 38:888-903. [PMID: 28882454 DOI: 10.1016/j.it.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 10/25/2022]
Abstract
As we describe the immune system in ever more exquisite detail, we might find that no matter how successful, this approach will not be sufficient to understand the spread of infectious agents, their susceptibility to vaccine therapy, and human disease resistance. Compared with the strict reductionism practiced as a means of characterizing most biological processes, I propose that the progression and outcome of disease-causing host-parasite interactions will be more clearly understood through a focus on disease ecology.
Collapse
Affiliation(s)
- Stephen M Hedrick
- Departments of Molecular Biology and Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
29
|
(De)contaminating product preferences: A multi-method investigation into pathogen threat's influence on used product preferences. JOURNAL OF EXPERIMENTAL SOCIAL PSYCHOLOGY 2017. [DOI: 10.1016/j.jesp.2017.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
da Silva J, Galbraith JD. Hill-Robertson interference maintained by Red Queen dynamics favours the evolution of sex. J Evol Biol 2017; 30:994-1010. [PMID: 28295769 DOI: 10.1111/jeb.13068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 02/17/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022]
Abstract
Although it is well established theoretically that selective interference among mutations (Hill-Robertson interference) favours meiotic recombination, genomewide mean rates of mutation and strengths of selection appear too low to support this as the mechanism favouring recombination in nature. A possible solution to this discrepancy between theory and observation is that selection is at least intermittently very strong due to the antagonistic coevolution between a host and its parasites. The Red Queen theory posits that such coevolution generates fitness epistasis among loci, which generates negative linkage disequilibrium among beneficial mutations, which in turn favours recombination. This theory has received only limited support. However, Red Queen dynamics without epistasis may provide the ecological conditions that maintain strong and frequent selective interference in finite populations that indirectly selects for recombination. This hypothesis is developed here through the simulation of Red Queen dynamics. This approach required the development of a method to calculate the exact frequencies of multilocus haplotypes after recombination. Simulations show that recombination is favoured by the moderately weak selection of many loci involved in the interaction between a host and its parasites, which results in substitution rates that are compatible with empirical estimates. The model also reproduces the previously reported rapid increase in the rate of outcrossing in Caenorhabditis elegans coevolving with a bacterial pathogen.
Collapse
Affiliation(s)
- J da Silva
- Department of Genetics and Evolution, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - J D Galbraith
- Department of Genetics and Evolution, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
31
|
Technologies for Proteome-Wide Discovery of Extracellular Host-Pathogen Interactions. J Immunol Res 2017; 2017:2197615. [PMID: 28321417 PMCID: PMC5340944 DOI: 10.1155/2017/2197615] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Pathogens have evolved unique mechanisms to breach the cell surface barrier and manipulate the host immune response to establish a productive infection. Proteins exposed to the extracellular environment, both cell surface-expressed receptors and secreted proteins, are essential targets for initial invasion and play key roles in pathogen recognition and subsequent immunoregulatory processes. The identification of the host and pathogen extracellular molecules and their interaction networks is fundamental to understanding tissue tropism and pathogenesis and to inform the development of therapeutic strategies. Nevertheless, the characterization of the proteins that function in the host-pathogen interface has been challenging, largely due to the technical challenges associated with detection of extracellular protein interactions. This review discusses available technologies for the high throughput study of extracellular protein interactions between pathogens and their hosts, with a focus on mammalian viruses and bacteria. Emerging work illustrates a rich landscape for extracellular host-pathogen interaction and points towards the evolution of multifunctional pathogen-encoded proteins. Further development and application of technologies for genome-wide identification of extracellular protein interactions will be important in deciphering functional host-pathogen interaction networks, laying the foundation for development of novel therapeutics.
Collapse
|
32
|
Cadzow M, Merriman TR, Boocock J, Dalbeth N, Stamp LK, Black MA, Visscher PM, Wilcox PL. Lack of direct evidence for natural selection at the candidate thrifty gene locus, PPARGC1A. BMC MEDICAL GENETICS 2016; 17:80. [PMID: 27846814 PMCID: PMC5111290 DOI: 10.1186/s12881-016-0341-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/01/2016] [Indexed: 12/12/2022]
Abstract
Background The gene PPARGC1A, in particular the Gly482Ser variant (rs8192678), had been proposed to be subject to natural selection, particularly in recent progenitors of extant Polynesian populations. Reasons include high levels of population differentiation and increased frequencies of the derived type 2 diabetes (T2D) risk 482Ser allele, and association with body mass index (BMI) in a small Tongan population. However, no direct statistical tests for selection have been applied. Methods Using a range of Polynesian populations (Tongan, Māori, Samoan) we re-examined evidence for association between Gly482Ser with T2D and BMI as well as gout. Using also Asian, European, and African 1000 Genome Project samples a range of statistical tests for selection (FST, integrated haplotype score (iHS), cross population extended haplotype homozygosity (XP-EHH), Tajima’s D and Fay and Wu’s H) were conducted on the PPARGC1A locus. Results No statistically significant evidence for association between Gly482Ser and any of BMI, T2D or gout was found. Population differentiation (FST) was smallest between Asian and Pacific populations (New Zealand Māori ≤ 0.35, Samoan ≤ 0.20). When compared to European (New Zealand Māori ≤ 0.40, Samoan ≤ 0.25) or African populations (New Zealand Māori ≤ 0.80, Samoan ≤ 0.66) this differentiation was larger. We did not find any strong evidence for departure from neutral evolution at this locus when applying any of the other statistical tests for selection. However, using the same analytical methods, we found evidence for selection in specific populations at previously identified loci, indicating that lack of selection was the most likely explanation for the lack of evidence of selection in PPARGC1A. Conclusion We conclude that there is no compelling evidence for selection at this locus, and that this gene should not be considered a candidate thrifty gene locus in Pacific populations. High levels of population differentiation at this locus and the reported absence of the derived 482Ser allele in some Melanesian populations, can alternatively be explained by multiple out-of-Africa migrations by ancestral progenitors, and subsequent genetic drift during colonisation of Polynesia. Intermediate 482Ser allele frequencies in extant Western Polynesian populations could therefore be due to recent admixture with Melanesian progenitors. Electronic supplementary material The online version of this article (doi:10.1186/s12881-016-0341-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Murray Cadzow
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Virtual Institute of Statistical Genetics (www.visg.co.nz), Dunedin, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Virtual Institute of Statistical Genetics (www.visg.co.nz), Dunedin, New Zealand
| | - James Boocock
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Virtual Institute of Statistical Genetics (www.visg.co.nz), Dunedin, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Virtual Institute of Statistical Genetics (www.visg.co.nz), Dunedin, New Zealand
| | - Peter M Visscher
- Virtual Institute of Statistical Genetics (www.visg.co.nz), Dunedin, New Zealand.,The Queensland Brain Institute, University of Queensland, Brisbane, Australia.,University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute (TRI), Brisbane, Australia
| | - Phillip L Wilcox
- Department of Biochemistry, University of Otago, Dunedin, New Zealand. .,Virtual Institute of Statistical Genetics (www.visg.co.nz), Dunedin, New Zealand. .,formerly Scion (New Zealand Forest Research Institute Ltd), 49 Sala Street, Rotorua, New Zealand. .,Department of Mathematics and Statistics, University of Otago, Science III Building, 730 Cumberland St, Dunedin, 9016, New Zealand.
| |
Collapse
|
33
|
MYD88 and functionally related genes are associated with multiple infections in a model population of Kenyan village dogs. Mol Biol Rep 2016; 43:1451-1463. [PMID: 27655108 DOI: 10.1007/s11033-016-4078-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 09/09/2016] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to seek associations between immunity-related molecular markers and endemic infections in a model population of African village dogs from Northern Kenya with no veterinary care and no selective breeding. A population of village dogs from Northern Kenya composed of three sub-populations from three different areas (84, 50 and 55 dogs) was studied. Canine distemper virus (CDV), Hepatozoon canis, Microfilariae (Acantocheilonema dracunculoides, Acantocheilonema reconditum) and Neospora caninum were the pathogens studied. The presence of antibodies (CDV, Neospora), light microscopy (Hepatozoon) and diagnostic PCR (Microfilariae) were the methods used for diagnosing infection. Genes involved in innate immune mechanisms, NOS3, IL6, TLR1, TLR2, TLR4, TLR7, TLR9, LY96, MYD88, and three major histocompatibility genes class II genes were selected as candidates. Single nucleotide polymorphism (SNP) markers were detected by Sanger sequencing, next generation sequencing and PCR-RFLP. The Fisher´s exact test for additive and non-additive models was used for association analyses. Three SNPs within the MYD88 gene and one TLR4 SNP marker were associated with more than one infection. Combined genotypes and further markers identified by next generation sequencing confirmed associations observed for individual genes. The genes associated with infection and their combinations in specific genotypes match well our knowledge on their biological role and on the role of the relevant biological pathways, respectively. Associations with multiple infections observed between the MYD88 and TLR4 genes suggest their involvement in the mechanisms of anti-infectious defenses in dogs.
Collapse
|
34
|
Vatsiou AI, Bazin E, Gaggiotti OE. Changes in selective pressures associated with human population expansion may explain metabolic and immune related pathways enriched for signatures of positive selection. BMC Genomics 2016; 17:504. [PMID: 27444955 PMCID: PMC4955149 DOI: 10.1186/s12864-016-2783-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022] Open
Abstract
Background The study of local adaptation processes is a very important research topic in the field of population genomics. There is a particular interest in the study of human populations because they underwent a process of rapid spatial expansion and faced important environmental changes that translated into changes in selective pressures. New mutations may have been selected for in the new environment and previously existing genetic variants may have become detrimental. Immune related genes may have been released from the selective pressure exerted by pathogens in the ancestral environment and new variants may have been positively selected due to pathogens present in the newly colonized habitat. Also, variants that had a selective advantage in past environments may have become deleterious in the modern world due to external stimuli including climatic, dietary and behavioral changes, which could explain the high prevalence of some polygenic diseases such as diabetes and obesity. Results We performed an enrichment analysis to identify gene sets enriched for signals of positive selection in humans. We used two genome scan methods, XPCLR and iHS to detect selection using a dense coverage of SNP markers combined with two gene set enrichment approaches. We identified immune related gene sets that could be involved in the protection against pathogens especially in the African population. We also identified the glycolysis & gluconeogenesis gene set, related to metabolism, which supports the thrifty genotype hypothesis invoked to explain the current high prevalence of diseases such as diabetes and obesity. Extending our analysis to the gene level, we found signals for 23 candidate genes linked to metabolic syndrome, 13 of which are new candidates for positive selection. Conclusions Our study provides a list of genes and gene sets associated with immunity and metabolic syndrome that are enriched for signals of positive selection in three human populations (Europeans, Africans and Asians). Our results highlight differences in the relative importance of pathogens as drivers of local adaptation in different continents and provide new insights into the evolution and high incidence of metabolic syndrome in modern human populations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2783-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra I Vatsiou
- Laboratoire d'Écologie Alpine (LECA), Univesrity Joseph Fourier, 2233 Rue de la Piscine, 38041, Grenoble, Cedex 9, France. .,Scottish Oceans Institute, East Sands, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK. .,Oh no sequences! Research group, Era7Bioinformatics, Plaza de Campo Verde, 3, 18001, Granada, Spain.
| | - Eric Bazin
- Laboratoire d'Écologie Alpine (LECA), Univesrity Joseph Fourier, 2233 Rue de la Piscine, 38041, Grenoble, Cedex 9, France
| | - Oscar E Gaggiotti
- Laboratoire d'Écologie Alpine (LECA), Univesrity Joseph Fourier, 2233 Rue de la Piscine, 38041, Grenoble, Cedex 9, France.,Scottish Oceans Institute, East Sands, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK
| |
Collapse
|
35
|
Ghirotto S, Tassi F, Barbujani G, Pattini L, Hayward C, Vollenweider P, Bochud M, Rampoldi L, Devuyst O. The Uromodulin Gene Locus Shows Evidence of Pathogen Adaptation through Human Evolution. J Am Soc Nephrol 2016; 27:2983-2996. [PMID: 26966016 DOI: 10.1681/asn.2015070830] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/30/2016] [Indexed: 12/15/2022] Open
Abstract
Common variants in the UMOD gene encoding uromodulin, associated with risk of hypertension and CKD in the general population, increase UMOD expression and urinary excretion of uromodulin, causing salt-sensitive hypertension and renal lesions. To determine the effect of selective pressure on variant frequency, we investigated the allelic frequency of the lead UMOD variant rs4293393 in 156 human populations, in eight ancient human genomes, and in primate genomes. The T allele of rs4293393, associated with CKD risk, has high frequency in most modern populations and was the one detected in primate genomes. In contrast, we identified only the derived, C allele in Denisovan and Neanderthal genomes. The distribution of the UMOD ancestral allele did not follow the ancestral susceptibility model observed for variants associated with salt-sensitive hypertension. Instead, the global frequencies of the UMOD alleles significantly correlated with pathogen diversity (bacteria, helminths) and prevalence of antibiotic-resistant urinary tract infections (UTIs). The inverse correlation found between urinary levels of uromodulin and markers of UTIs in the general population substantiates the link between UMOD variants and protection against UTIs. These data strongly suggest that the UMOD ancestral allele, driving higher urinary excretion of uromodulin, has been kept at a high frequency because of its protective effect against UTIs.
Collapse
Affiliation(s)
- Silvia Ghirotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesca Tassi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Guido Barbujani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Linda Pattini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Caroline Hayward
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Vollenweider
- Department of Internal Medicine, Institute of Social and Preventive Medicine, Lausanne University Hospital Center, Lausanne, Switzerland
| | - Murielle Bochud
- Department of Internal Medicine, Institute of Social and Preventive Medicine, Lausanne University Hospital Center, Lausanne, Switzerland
| | - Luca Rampoldi
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy; and
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Lindenau JDR, Salzano FM, Hurtado AM, Hill KR, Petzl-Erler ML, Tsuneto LT, Hutz MH. Variability of innate immune system genes in Native American populations-relationship with history and epidemiology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 159:722-8. [PMID: 26667372 DOI: 10.1002/ajpa.22917] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/27/2015] [Accepted: 11/23/2015] [Indexed: 01/04/2023]
Abstract
OBJECTIVES The immune system of a host, defending him/her against invading pathogens, has two main subsystems: innate immunity and acquired immunity. There are several evidences showing that Native American populations are immunologically different from non-Native populations. Our aim was to describe the variability of innate immune system genes in Native American populations. MATERIALS AND METHODS We investigated heterozygozities and patterns of population differentiation (FST ) of 14 polymorphisms related to the innate immune response in five Native American populations (Aché, Guarani-Kaiowá, Guarani-Ñandeva, Kaingang, and Xavante) and the results were compared with the three major world population data (YRI, CEU, and CHB) available at the 1,000 genomes database. RESULTS Mean heterozygosities ranged between 0.241 ± 0.057 (Aché) and 0.343 ± 0.033 (Kaingang), but no significant differences were observed (Friedman test, P = 0.197). Mean heterozygosities were also not significantly different when Amerindians were pooled and compared with the 1000 genomes populations (Friedman test, P = 0.506). When the Native American populations were grouped as Amerindians, a significantly higher FST value (0.194) was observed between the Amerindian and African populations. The Ewens-Watterson neutrality test showed that these markers are not under strong selective pressure. DISCUSSION Native American populations present similar levels of heterozygosity as those of other continents, but are different from Africans in the frequency of polymorphisms of innate immune genes. This higher differentiation is probably due to demographic processes that occurred during the out-of-Africa event.
Collapse
Affiliation(s)
- Juliana Dal-Ri Lindenau
- Departamento De Genética, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Francisco Mauro Salzano
- Departamento De Genética, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Ana Magdalena Hurtado
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287-2402
| | - Kim R Hill
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287-2402
| | | | - Luiza Tamie Tsuneto
- Departamento De Análises Clínicas, Universidade Estadual De Maringá, Maringá, PR, Brazil
| | - Mara Helena Hutz
- Departamento De Genética, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
37
|
Dobrynin P, Liu S, Tamazian G, Xiong Z, Yurchenko AA, Krasheninnikova K, Kliver S, Schmidt-Küntzel A, Koepfli KP, Johnson W, Kuderna LFK, García-Pérez R, Manuel MD, Godinez R, Komissarov A, Makunin A, Brukhin V, Qiu W, Zhou L, Li F, Yi J, Driscoll C, Antunes A, Oleksyk TK, Eizirik E, Perelman P, Roelke M, Wildt D, Diekhans M, Marques-Bonet T, Marker L, Bhak J, Wang J, Zhang G, O'Brien SJ. Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biol 2015; 16:277. [PMID: 26653294 PMCID: PMC4676127 DOI: 10.1186/s13059-015-0837-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/17/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Patterns of genetic and genomic variance are informative in inferring population history for human, model species and endangered populations. RESULTS Here the genome sequence of wild-born African cheetahs reveals extreme genomic depletion in SNV incidence, SNV density, SNVs of coding genes, MHC class I and II genes, and mitochondrial DNA SNVs. Cheetah genomes are on average 95 % homozygous compared to the genomes of the outbred domestic cat (24.08 % homozygous), Virunga Mountain Gorilla (78.12 %), inbred Abyssinian cat (62.63 %), Tasmanian devil, domestic dog and other mammalian species. Demographic estimators impute two ancestral population bottlenecks: one >100,000 years ago coincident with cheetah migrations out of the Americas and into Eurasia and Africa, and a second 11,084-12,589 years ago in Africa coincident with late Pleistocene large mammal extinctions. MHC class I gene loss and dramatic reduction in functional diversity of MHC genes would explain why cheetahs ablate skin graft rejection among unrelated individuals. Significant excess of non-synonymous mutations in AKAP4 (p<0.02), a gene mediating spermatozoon development, indicates cheetah fixation of five function-damaging amino acid variants distinct from AKAP4 homologues of other Felidae or mammals; AKAP4 dysfunction may cause the cheetah's extremely high (>80 %) pleiomorphic sperm. CONCLUSIONS The study provides an unprecedented genomic perspective for the rare cheetah, with potential relevance to the species' natural history, physiological adaptations and unique reproductive disposition.
Collapse
Affiliation(s)
- Pavel Dobrynin
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia.
| | - Shiping Liu
- National Genbank, BGI-Shenzhen, Shenzhen, 518083, China. .,State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Gaik Tamazian
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia.
| | - Zijun Xiong
- National Genbank, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Andrey A Yurchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia.
| | - Ksenia Krasheninnikova
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia.
| | - Sergey Kliver
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia.
| | - Anne Schmidt-Küntzel
- Life Technologies Conservation Genetics Laboratory, Cheetah Conservation Fund, Otjiwarongo, Otjiwarongo, 9000, Namibia.
| | - Klaus-Peter Koepfli
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia. .,National Zoological Park, Smithsonian Conservation Biology Institute, Washington DC, 20007, USA.
| | - Warren Johnson
- National Zoological Park, Smithsonian Conservation Biology Institute, Washington DC, 20007, USA.
| | - Lukas F K Kuderna
- Institut de Biologia Evolutiva (CSIC/UPF), Dr. Aiguader, 88, Barcelona, 08003, Spain.
| | - Raquel García-Pérez
- Institut de Biologia Evolutiva (CSIC/UPF), Dr. Aiguader, 88, Barcelona, 08003, Spain.
| | - Marc de Manuel
- Institut de Biologia Evolutiva (CSIC/UPF), Dr. Aiguader, 88, Barcelona, 08003, Spain.
| | - Ricardo Godinez
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, 02138, Massachusetts, USA.
| | - Aleksey Komissarov
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia.
| | - Alexey Makunin
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia. .,Institute of Molecular and Cellular Biology of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Vladimir Brukhin
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia.
| | - Weilin Qiu
- National Genbank, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Long Zhou
- National Genbank, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Fang Li
- National Genbank, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Jian Yi
- National Genbank, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Carlos Driscoll
- Laboratory of Neurogenetics, NIAAA, 5625 Fishers Lane, Rockville, 20852, Maryland, USA.
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas, 177, Porto, 4050-123, Portugal. .,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto, 4169-007, Portugal.
| | - Taras K Oleksyk
- Biology Department, University of Puerto-Rico at Mayaguez, Mayaguez, Puerto Rico.
| | - Eduardo Eizirik
- PUCRS, Faculdade de Biociencias, Laboratorio de Biología Genómica e Molecular, Porto Alegre, 90619-900, Brazil.
| | - Polina Perelman
- Institute of Molecular and Cellular Biology of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Melody Roelke
- Laboratory of Animal Sciences Progras, Leídos Biomedical Research Inc., Frederick National Laboratory, Frederick, 21702, Maryland, USA.
| | - David Wildt
- National Zoological Park, Smithsonian Conservation Biology Institute, Washington DC, 20007, USA.
| | - Mark Diekhans
- Center for Biomolecular Science and Engineering, University of California, Santa-Cruz, USA.
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (CSIC/UPF), Dr. Aiguader, 88, Barcelona, 08003, Spain. .,Centro Nacional de Analisis Genomics (CNAG), Baldiri Reixach 4, Barcelona, 08013, Spain. .,State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Laurie Marker
- Cheetah Conservation Fund, Otjiwarongo, Otjiwarongo, 9000, Namibia.
| | - Jong Bhak
- Biomedical Engineering Department, UNIST, Ulsan National Institute of Science and Technology, Ulsan, Korea.
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, 518083, China. .,Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, 2200, Denmark. .,Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, 21589, Saudi Arabia. .,Macau University of Science and Technology, Taipa, 999078, Macau, China.
| | - Guojie Zhang
- National Genbank, BGI-Shenzhen, Shenzhen, 518083, China. .,Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, DK-2100, Denmark.
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 41A Sredniy Avenue, St. Petersburg, 199004, Russia. .,Oceanographic Center, Nova Southeastern University Ft Lauderdale, 8000 N. Ocean Drive, Ft Lauderdale, 33004, Florida, USA.
| |
Collapse
|
38
|
Ramos PS, Shedlock AM, Langefeld CD. Genetics of autoimmune diseases: insights from population genetics. J Hum Genet 2015; 60:657-64. [PMID: 26223182 PMCID: PMC4660050 DOI: 10.1038/jhg.2015.94] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/12/2015] [Accepted: 06/19/2015] [Indexed: 12/14/2022]
Abstract
Human genetic diversity is the result of population genetic forces. This genetic variation influences disease risk and contributes to health disparities. Autoimmune diseases (ADs) are a family of complex heterogeneous disorders with similar underlying mechanisms characterized by immune responses against self. Collectively, ADs are common, exhibit gender and ethnic disparities, and increasing incidence. As natural selection is an important influence on human genetic variation, and immune function genes are enriched for signals of positive selection, it is thought that the prevalence of AD risk alleles seen in different population is partially the result of differing selective pressures (for example, due to pathogens). With the advent of high-throughput technologies, new analytical methodologies and large-scale projects, evidence for the role of natural selection in contributing to the heritable component of ADs keeps growing. This review summarizes the genetic regions associated with susceptibility to different ADs and concomitant evidence for selection, including known agents of selection exerting selective pressure in these regions. Examples of specific adaptive variants with phenotypic effects are included as an evidence of natural selection increasing AD susceptibility. Many of the complexities of gene effects in different ADs can be explained by population genetics phenomena. Integrating AD susceptibility studies with population genetics to investigate how natural selection has contributed to genetic variation that influences disease risk will help to identify functional variants and elucidate biological mechanisms. As such, the study of population genetics in human population holds untapped potential for elucidating the genetic causes of human disease and more rapidly focusing to personalized medicine.
Collapse
Affiliation(s)
- Paula S Ramos
- Division of Rheumatology and Immunology, Department of Medicine, and Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Andrew M Shedlock
- Department of Biology, College of Charleston, Charleston, SC, USA
- Hollings Marine Laboratory Center for Marine Biomedicine and College of Graduate Studies, Medical University of South Carolina, Charleston, SC, USA
| | - Carl D Langefeld
- Division of Public Health Sciences, Department of Biostatistical Sciences; and Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
39
|
Contrasted patterns of variation and evolutionary convergence at the antiviral OAS1 gene in old world primates. Immunogenetics 2015; 67:487-99. [PMID: 26156123 PMCID: PMC4809017 DOI: 10.1007/s00251-015-0855-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/24/2015] [Indexed: 11/13/2022]
Abstract
The oligoadenylate synthetase 1 (OAS1) enzyme acts as an innate sensor of viral infection and plays a major role in the defense against a wide diversity of viruses. Polymorphisms at OAS1 have been shown to correlate with differential susceptibility to several infections of great public health significance, including hepatitis C virus, SARS coronavirus, and West Nile virus. Population genetics analyses in hominoids have revealed interesting evolutionary patterns. In Central African chimpanzee, OAS1 has evolved under long-term balancing selection, resulting in the persistence of polymorphisms since the origin of hominoids, whereas human populations have acquired and retained OAS1 alleles from Neanderthal and Denisovan origin. We decided to further investigate the evolution of OAS1 in primates by characterizing intra-specific variation in four species commonly used as models in infectious disease research: the rhesus macaque, the cynomolgus macaque, the olive baboon, and the Guinea baboon. In baboons, OAS1 harbors a very low level of variation. In contrast, OAS1 in macaques exhibits a level of polymorphism far greater than the genomic average, which is consistent with the action of balancing selection. The region of the enzyme that directly interacts with viral RNA, the RNA-binding domain, contains a number of polymorphisms likely to affect the RNA-binding affinity of OAS1. This strongly suggests that pathogen-driven balancing selection acting on the RNA-binding domain of OAS1 is maintaining variation at this locus. Interestingly, we found that a number of polymorphisms involved in RNA-binding were shared between macaques and chimpanzees. This represents an unusual case of convergent polymorphism.
Collapse
|
40
|
Lindenau JD, Salzano FM, Guimarães LSP, Callegari-Jacques SM, Hurtado AM, Hill KR, Petzl-Erler ML, Tsuneto LT, Hutz MH. Distribution patterns of variability for 18 immune system genes in Amerindians - relationship with history and epidemiology. ACTA ACUST UNITED AC 2013; 82:177-85. [DOI: 10.1111/tan.12183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/25/2013] [Accepted: 07/17/2013] [Indexed: 12/22/2022]
Affiliation(s)
- J. D. Lindenau
- Departamento de Genética; Universidade Federal do Rio Grande do Sul; Porto Alegre; Brazil
| | - F. M. Salzano
- Departamento de Genética; Universidade Federal do Rio Grande do Sul; Porto Alegre; Brazil
| | - L. S. P. Guimarães
- Unidade de Epidemiologia e Estatística; Hospital de Clínicas de Porto Alegre; Porto Alegre; Brazil
| | | | - A. M. Hurtado
- School of Human Evolution & Social Change; Arizona State University; Tempe; AZ; USA
| | - K. R. Hill
- School of Human Evolution & Social Change; Arizona State University; Tempe; AZ; USA
| | - M. L. Petzl-Erler
- Departamento de Genética; Universidade Federal do Paraná; Curitiba; Brazil
| | - L. T. Tsuneto
- Departamento de Análises Clínicas; Universidade Estadual de Maringá; Maringá; Brazil
| | - M. H. Hutz
- Departamento de Genética; Universidade Federal do Rio Grande do Sul; Porto Alegre; Brazil
| |
Collapse
|