1
|
Noonan AM, Malakoutian M, Dehghan-Hamani I, Lewis S, Street J, Oxland TR, Brown SHM. Paraspinal muscle fibre structural and contractile characteristics demonstrate distinct irregularities in patients with spinal degeneration and deformity. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:4605-4618. [PMID: 39397176 DOI: 10.1007/s00586-024-08509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Paraspinal and spinopelvic muscular dysfunction are hypothesized to be a causative factor for spinal degeneration and deformity; however, our fundamental understanding of paraspinal muscle (dys)function remains limited. METHODS Twelve surgical patients with spinal degeneration were recruited and categorized into group DEG (four patients) with no sagittal imbalance and no usage of compensatory mechanisms; group DEG-COMP (four patients) with no sagittal imbalance through use of compensatory mechanisms; and group DEG-COMP-UNBAL (four patients) with sagittal imbalance despite use of compensatory mechanisms. From each patient, four biopsies were collected from right and left multifidus (MULT) and longissimus (LONG) for single fibre contractile and structural measurements. RESULTS Eight of 48 (17%) biopsies did not exhibit any contractile properties. Specific force was not different between groups for the MULT (p = 0.47) but was greater in group DEG compared to group DEG-COMP-UNBAL for the LONG (p = 0.02). Force sarcomere-length properties were unusually variable both within and amongst patients in all groups. Thin filament (actin) lengths were in general shorter and more variable than published norms for human muscle. CONCLUSION This study is the first to show a heightened intrinsic contractile muscle disorder (i.e. impaired specific force generation) in patients with spinal degeneration who are sagittally imbalanced (compared to patients without deformity). Additionally, there are clear indications that patients with spinal degeneration (all groups) have intrinsic force sarcomere-length properties that are dysregulated. This provides important insight into the pathophysiology of muscle weakness in this patient group.
Collapse
Affiliation(s)
- Alex M Noonan
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Masoud Malakoutian
- Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
- ICORD, University of British Columbia, Vancouver, Canada
| | - Iraj Dehghan-Hamani
- Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
- ICORD, University of British Columbia, Vancouver, Canada
| | - Stephen Lewis
- Divisions of Neurosurgery and Orthopedic Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - John Street
- Department of Orthopaedics, University of British Columbia, Vancouver, Canada
| | - Thomas R Oxland
- Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
- ICORD, University of British Columbia, Vancouver, Canada
- Department of Orthopaedics, University of British Columbia, Vancouver, Canada
| | - Stephen H M Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
2
|
Sawano S, Mizunoya W. History and development of staining methods for skeletal muscle fiber types. Histol Histopathol 2022; 37:493-503. [PMID: 35043970 DOI: 10.14670/hh-18-422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The contractile and metabolic properties of skeletal muscles depend on the composition of muscle fibers. There are two major fiber types: type 1 and type 2. Type 2 fibers are further subdivided into type 2A, 2X, and 2B fibers. Muscle fiber type composition is an important property that affects sports performance and metabolic ability in humans, and meat quality in domestic animals. In this review, we summarize the history of muscle fiber type classification based on various staining methods for skeletal muscle sections. The history illustrates the development of an experimental method to detect myosin heavy chain (MyHC) proteins, which are the most common marker molecules for muscle fiber type. Metabolic enzymes, such as nicotinamide adenine dinucleotide-tetrazolium reductase and succinate dehydrogenase are also described for histochemical staining combined with myosin ATPase staining. We found an improvement in the quality of antibodies used for immunostaining of MyHC, from polyclonal antibodies to monoclonal antibodies (mAbs) and then to mAbs produced by synthetic peptides as antigens. We believe that the information presented herein will assist researchers in selecting optimal staining methods, dependent on the experimental conditions and purposes.
Collapse
Affiliation(s)
- Shoko Sawano
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara, Japan.
| | - Wataru Mizunoya
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan.
| |
Collapse
|
3
|
Holmes M, Taylor AB. The influence of jaw-muscle fibre-type phenotypes on estimating maximum muscle and bite forces in primates. Interface Focus 2021; 11:20210009. [PMID: 34938437 PMCID: PMC8361599 DOI: 10.1098/rsfs.2021.0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Numerous anthropological studies have been aimed at estimating jaw-adductor muscle forces, which, in turn, are used to estimate bite force. While primate jaw adductors show considerable intra- and intermuscular heterogeneity in fibre types, studies generally model jaw-muscle forces by treating the jaw adductors as either homogeneously slow or homogeneously fast muscles. Here, we provide a novel extension of such studies by integrating fibre architecture, fibre types and fibre-specific tensions to estimate maximum muscle forces in the masseter and temporalis of five anthropoid primates: Sapajus apella (N = 3), Cercocebus atys (N = 4), Macaca fascicularis (N = 3), Gorilla gorilla (N = 1) and Pan troglodytes (N = 2). We calculated maximum muscle forces by proportionally adjusting muscle physiological cross-sectional areas by their fibre types and associated specific tensions. Our results show that the jaw adductors of our sample ubiquitously express MHC α-cardiac, which has low specific tension, and hybrid fibres. We find that treating the jaw adductors as either homogeneously slow or fast muscles potentially overestimates average maximum muscle forces by as much as approximately 44%. Including fibre types and their specific tensions is thus likely to improve jaw-muscle and bite force estimates in primates.
Collapse
Affiliation(s)
- Megan Holmes
- Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC, USA
| | | |
Collapse
|
4
|
Vitucci D, Imperlini E, Arcone R, Alfieri A, Canciello A, Russomando L, Martone D, Cola A, Labruna G, Orrù S, Tafuri D, Mancini A, Buono P. Serum from differently exercised subjects induces myogenic differentiation in LHCN-M2 human myoblasts. J Sports Sci 2017; 36:1630-1639. [PMID: 29160161 DOI: 10.1080/02640414.2017.1407232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Myogenesis is the formation of muscle tissue from muscle precursor cells. Physical exercise induces satellite cell activation in muscle. Currently, C2C12 murine myoblast cells are used to study myogenic differentiation. Herein, we evaluated whether human LHCN-M2 myoblasts can differentiate into mature myotubes and express early (myotube formation, creatine kinase activity and myogenin) and late (MyHC-β) muscle-specific markers when cultured in differentiation medium (DM) for 2, 4 and 7 days. We demonstrate that treatment of LHCN-M2 cells with DM supplemented with 0.5% serum from long-term (3 years) differently exercised subjects for 4 days induced myotube formation and significantly increased the early (creatine kinase activity and myogenin) and late (MyHC-β expression) differentiation markers versus cells treated with serum from untrained subjects. Interestingly, serum from aerobic exercised subjects (swimming) had a greater positive effect on late-differentiation marker (MyHC-β) expression than serum from anaerobic (body building) or from mixed exercised (soccer and volleyball) subjects. Moreover, p62and anti-apoptotic Bcl-2 protein expression was lower in LHCN-M2 cells cultured with human sera from differently exercised subjectst han in cells cultured with DM. In conclusion, LHCN-M2 human myoblasts represent a species-specific system with which to study human myogenic differentiation induced by serum from differently exercised subjects.
Collapse
Affiliation(s)
| | | | - R Arcone
- b Dipartimento di Scienze Motorie e del Benessere , Università Parthenope , Naples , Italy.,c CEINGE-Biotecnologie Avanzate , Naples , Italy
| | - A Alfieri
- b Dipartimento di Scienze Motorie e del Benessere , Università Parthenope , Naples , Italy.,c CEINGE-Biotecnologie Avanzate , Naples , Italy
| | - A Canciello
- d Facoltà di Bioscienze e Tecnologie Agro-Alimentari e Ambientali , Università di Teramo , Teramo , Italy
| | - L Russomando
- b Dipartimento di Scienze Motorie e del Benessere , Università Parthenope , Naples , Italy
| | - D Martone
- b Dipartimento di Scienze Motorie e del Benessere , Università Parthenope , Naples , Italy
| | - A Cola
- e Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Naples , Italy
| | | | - S Orrù
- a IRCCS SDN , Naples , Italy.,b Dipartimento di Scienze Motorie e del Benessere , Università Parthenope , Naples , Italy.,c CEINGE-Biotecnologie Avanzate , Naples , Italy
| | - D Tafuri
- b Dipartimento di Scienze Motorie e del Benessere , Università Parthenope , Naples , Italy
| | - A Mancini
- b Dipartimento di Scienze Motorie e del Benessere , Università Parthenope , Naples , Italy.,c CEINGE-Biotecnologie Avanzate , Naples , Italy
| | - P Buono
- a IRCCS SDN , Naples , Italy.,b Dipartimento di Scienze Motorie e del Benessere , Università Parthenope , Naples , Italy.,c CEINGE-Biotecnologie Avanzate , Naples , Italy
| |
Collapse
|
5
|
Di Filippo ES, Mancinelli R, Marrone M, Doria C, Verratti V, Toniolo L, Dantas JL, Fulle S, Pietrangelo T. Neuromuscular electrical stimulation improves skeletal muscle regeneration through satellite cell fusion with myofibers in healthy elderly subjects. J Appl Physiol (1985) 2017; 123:501-512. [DOI: 10.1152/japplphysiol.00855.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to determine whether neuromuscular electrical stimulation (NMES) affects skeletal muscle regeneration through a reduction of oxidative status in satellite cells of healthy elderly subjects. Satellite cells from the vastus lateralis skeletal muscle of 12 healthy elderly subjects before and after 8 wk of NMES were allowed to proliferate to provide myogenic populations of adult stem cells [myogenic precursor cells (MPCs)]. These MPCs were then investigated in terms of their proliferation, their basal cytoplasmic free Ca2+concentrations, and their expression of myogenic regulatory factors ( PAX3, PAX7, MYF5, MYOD, and MYOG) and micro-RNAs (miR-1, miR-133a/b, and miR-206). The oxidative status of these MPCs was evaluated through superoxide anion production and superoxide dismutase and glutathione peroxidase activities. On dissected single skeletal myofibers, the nuclei were counted to determine the myonuclear density, the fiber phenotype, cross-sectional area, and tension developed. The MPCs obtained after NMES showed increased proliferation rates along with increased cytoplasmic free Ca2+concentrations and gene expression of MYOD and MYOG on MPCs. Muscle-specific miR-1, miR-133a/b, and miR-206 were upregulated. This NMES significantly reduced superoxide anion production, along with a trend to reduction of superoxide dismutase activity. The NMES-dependent stimulation of muscle regeneration enhanced satellite cell fusion with mature skeletal fibers. NMES improved the regenerative capacity of skeletal muscle in elderly subjects. Accordingly, the skeletal muscle strength and mobility of NMES-stimulated elderly subjects significantly improved. NMES may thus be further considered for clinical or ageing populations.NEW & NOTEWORTHY The neuromuscular electrical stimulation (NMES) effect on skeletal muscle regeneration was assessed in healthy elderly subjects for the first time. NMES improved the regenerative capacity of skeletal muscle through increased myogenic precursor cell proliferation and fusion with mature myofibers. The increased cytoplasmic free Ca2+concentration along with MYOD, MYOG, and micro-RNA upregulation could be related to reduced O2·−production, which, in turn, favors myogenic regeneration. Accordingly, the skeletal muscle strength of NMES-stimulated lower limbs of healthy elderly subjects improved along with their mobility.
Collapse
Affiliation(s)
- Ester Sara Di Filippo
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Italy
| | - Rosa Mancinelli
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Italy
- Laboratory of Functional Evaluation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
| | - Mariangela Marrone
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Italy
| | - Christian Doria
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Italy
- Laboratory of Functional Evaluation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
| | - Vittore Verratti
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Laboratory of Functional Evaluation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
| | - Luana Toniolo
- Interuniversity Institute of Myology, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - José Luiz Dantas
- Laboratory of Functional Evaluation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Italy
- Laboratory of Functional Evaluation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
| | - Tiziana Pietrangelo
- Department of Neuroscience Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Italy
- Laboratory of Functional Evaluation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy; and
| |
Collapse
|
6
|
Effect of lifelong football training on the expression of muscle molecular markers involved in healthy longevity. Eur J Appl Physiol 2017; 117:721-730. [PMID: 28251397 DOI: 10.1007/s00421-017-3562-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/03/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE We investigated whether lifelong football training affects the expression of healthy longevity-related muscle molecular markers. METHODS Biopsies were collected from the vastus lateralis muscle of 10 lifelong football-trained men (68.2 ± 3.0 years) and of 10 active untrained healthy men (66.7 ± 1.3 years). Gene and protein expression was measured by RTqPCR on RNA and by western blotting on protein extracts from muscle biopsies, respectively. RESULTS The expression of AMPKα1/α2, NAMPT, TFAM and PGC1α, which are markers of oxidative metabolism, and MyHC β isoform expression was higher in the muscle of football-trained men vs untrained men. Also citrate synthase activity was higher in trained than in untrained men (109.3 ± 9.2 vs 75.1 ± 9.2 mU/mg). These findings were associated with a healthier body composition in trained than in untrained men [body weight: 78.2 ± 6.5 vs 91.2 ± 11.2 kg; body mass index BMI: 24.4 ± 1.6 vs 28.8 ± 4.0 kg m-2; fat%: 22.6 ± 8.0 vs 31.4 ± 5.0%)] and with a higher maximal oxygen uptake (VO2max: 34.7 ± 3.8 vs 27.3 ± 4.0 ml/min/kg). Also the expression of proteins involved in DNA repair and in senescence suppression (Erk1/2, Akt and FoxM1) was higher in trained than in untrained men. At BMI- and age-adjusted multiple linear regression analysis, fat percentage was independently associated with Akt protein expression, and VO2max was independently associated with TFAM mRNA and with Erk1/2 protein expression. CONCLUSIONS Lifelong football training increases the expression of key markers involved in muscle oxidative metabolism, and in the DNA repair and senescence suppression pathways, thus providing the molecular basis for healthy longevity.
Collapse
|
7
|
Moro T, Tinsley G, Bianco A, Marcolin G, Pacelli QF, Battaglia G, Palma A, Gentil P, Neri M, Paoli A. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J Transl Med 2016; 14:290. [PMID: 27737674 PMCID: PMC5064803 DOI: 10.1186/s12967-016-1044-0] [Citation(s) in RCA: 440] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 10/03/2016] [Indexed: 01/10/2023] Open
Abstract
Background Intermittent fasting (IF) is an increasingly popular dietary approach used for weight loss and overall health. While there is an increasing body of evidence demonstrating beneficial effects of IF on blood lipids and other health outcomes in the overweight and obese, limited data are available about the effect of IF in athletes. Thus, the present study sought to investigate the effects of a modified IF protocol (i.e. time-restricted feeding) during resistance training in healthy resistance-trained males. Methods Thirty-four resistance-trained males were randomly assigned to time-restricted feeding (TRF) or normal diet group (ND). TRF subjects consumed 100 % of their energy needs in an 8-h period of time each day, with their caloric intake divided into three meals consumed at 1 p.m., 4 p.m., and 8 p.m. The remaining 16 h per 24-h period made up the fasting period. Subjects in the ND group consumed 100 % of their energy needs divided into three meals consumed at 8 a.m., 1 p.m., and 8 p.m. Groups were matched for kilocalories consumed and macronutrient distribution (TRF 2826 ± 412.3 kcal/day, carbohydrates 53.2 ± 1.4 %, fat 24.7 ± 3.1 %, protein 22.1 ± 2.6 %, ND 3007 ± 444.7 kcal/day, carbohydrates 54.7 ± 2.2 %, fat 23.9 ± 3.5 %, protein 21.4 ± 1.8). Subjects were tested before and after 8 weeks of the assigned diet and standardized resistance training program. Fat mass and fat-free mass were assessed by dual-energy x-ray absorptiometry and muscle area of the thigh and arm were measured using an anthropometric system. Total and free testosterone, insulin-like growth factor 1, blood glucose, insulin, adiponectin, leptin, triiodothyronine, thyroid stimulating hormone, interleukin-6, interleukin-1β, tumor necrosis factor α, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides were measured. Bench press and leg press maximal strength, resting energy expenditure, and respiratory ratio were also tested. Results After 8 weeks, the 2 Way ANOVA (Time * Diet interaction) showed a decrease in fat mass in TRF compared to ND (p = 0.0448), while fat-free mass, muscle area of the arm and thigh, and maximal strength were maintained in both groups. Testosterone and insulin-like growth factor 1 decreased significantly in TRF, with no changes in ND (p = 0.0476; p = 0.0397). Adiponectin increased (p = 0.0000) in TRF while total leptin decreased (p = 0.0001), although not when adjusted for fat mass. Triiodothyronine decreased in TRF, but no significant changes were detected in thyroid-stimulating hormone, total cholesterol, high-density lipoprotein, low-density lipoprotein, or triglycerides. Resting energy expenditure was unchanged, but a significant decrease in respiratory ratio was observed in the TRF group. Conclusions Our results suggest that an intermittent fasting program in which all calories are consumed in an 8-h window each day, in conjunction with resistance training, could improve some health-related biomarkers, decrease fat mass, and maintain muscle mass in resistance-trained males.
Collapse
Affiliation(s)
- Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Grant Tinsley
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Giuseppe Marcolin
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | | | - Giuseppe Battaglia
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Paulo Gentil
- College of Physical Education and Dance, Federal University of Goias, Goiania, Brazil
| | - Marco Neri
- Italian Fitness Federation, Ravenna, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padua, Italy.
| |
Collapse
|
8
|
Paoli A, Pacelli QF, Cancellara P, Toniolo L, Moro T, Canato M, Miotti D, Neri M, Morra A, Quadrelli M, Reggiani C. Protein Supplementation Does Not Further Increase Latissimus Dorsi Muscle Fiber Hypertrophy after Eight Weeks of Resistance Training in Novice Subjects, but Partially Counteracts the Fast-to-Slow Muscle Fiber Transition. Nutrients 2016; 8:nu8060331. [PMID: 27258300 PMCID: PMC4924172 DOI: 10.3390/nu8060331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 11/18/2022] Open
Abstract
The response to resistance training and protein supplementation in the latissimus dorsi muscle (LDM) has never been investigated. We investigated the effects of resistance training (RT) and protein supplementation on muscle mass, strength, and fiber characteristics of the LDM. Eighteen healthy young subjects were randomly assigned to a progressive eight-week RT program with a normal protein diet (NP) or high protein diet (HP) (NP 0.85 vs. HP 1.8 g of protein·kg−1·day−1). One repetition maximum tests, magnetic resonance imaging for cross-sectional muscle area (CSA), body composition, and single muscle fibers mechanical and phenotype characteristics were measured. RT induced a significant gain in strength (+17%, p < 0.0001), whole muscle CSA (p = 0.024), and single muscle fibers CSA (p < 0.05) of LDM in all subjects. Fiber isometric force increased in proportion to CSA (+22%, p < 0.005) and thus no change in specific tension occurred. A significant transition from 2X to 2A myosin expression was induced by training. The protein supplementation showed no significant effects on all measured outcomes except for a smaller reduction of 2X myosin expression. Our results suggest that in LDM protein supplementation does not further enhance RT-induced muscle fiber hypertrophy nor influence mechanic muscle fiber characteristics but partially counteracts the fast-to-slow fiber shift.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy.
| | - Quirico F Pacelli
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy.
| | - Pasqua Cancellara
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy.
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy.
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy.
| | - Marta Canato
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy.
| | | | - Marco Neri
- AIFeM (Italian Medicine and Fitness Federation), Ravenna 48121, Italy.
| | - Aldo Morra
- Euganea Medica, Diagnostic Centre, Via Colombo 13, Albignasego (Padova) 35020, Italy.
| | - Marco Quadrelli
- Euganea Medica, Diagnostic Centre, Via Colombo 13, Albignasego (Padova) 35020, Italy.
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy.
| |
Collapse
|
9
|
Comparative Meta-Analysis of Transcriptomics Data during Cellular Senescence and In Vivo Tissue Ageing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:732914. [PMID: 25977747 PMCID: PMC4419258 DOI: 10.1155/2015/732914] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Several studies have employed DNA microarrays to identify gene expression signatures that mark human ageing; yet the features underlying this complicated phenomenon remain elusive. We thus conducted a bioinformatics meta-analysis on transcriptomics data from human cell- and biopsy-based microarrays experiments studying cellular senescence or in vivo tissue ageing, respectively. We report that coregulated genes in the postmitotic muscle and nervous tissues are classified into pathways involved in cancer, focal adhesion, actin cytoskeleton, MAPK signalling, and metabolism regulation. Genes that are differentially regulated during cellular senescence refer to pathways involved in neurodegeneration, focal adhesion, actin cytoskeleton, proteasome, cell cycle, DNA replication, and oxidative phosphorylation. Finally, we revealed genes and pathways (referring to cancer, Huntington's disease, MAPK signalling, focal adhesion, actin cytoskeleton, oxidative phosphorylation, and metabolic signalling) that are coregulated during cellular senescence and in vivo tissue ageing. The molecular commonalities between cellular senescence and tissue ageing are also highlighted by the fact that pathways that were overrepresented exclusively in the biopsy- or cell-based datasets are modules either of the same reference pathway (e.g., metabolism) or of closely interrelated pathways (e.g., thyroid cancer and melanoma). Our reported meta-analysis has revealed novel age-related genes, setting thus the basis for more detailed future functional studies.
Collapse
|
10
|
Miller MS, Bedrin NG, Ades PA, Palmer BM, Toth MJ. Molecular determinants of force production in human skeletal muscle fibers: effects of myosin isoform expression and cross-sectional area. Am J Physiol Cell Physiol 2015; 308:C473-84. [PMID: 25567808 DOI: 10.1152/ajpcell.00158.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Skeletal muscle contractile performance is governed by the properties of its constituent fibers, which are, in turn, determined by the molecular interactions of the myofilament proteins. To define the molecular determinants of contractile function in humans, we measured myofilament mechanics during maximal Ca(2+)-activated and passive isometric conditions in single muscle fibers with homogenous (I and IIA) and mixed (I/IIA and IIA/X) myosin heavy chain (MHC) isoforms from healthy, young adult male (n = 5) and female (n = 7) volunteers. Fibers containing only MHC II isoforms (IIA and IIA/X) produced higher maximal Ca(2+)-activated forces over the range of cross-sectional areas (CSAs) examined than MHC I fibers, resulting in higher (24-42%) specific forces. The number and/or stiffness of the strongly bound myosin-actin cross bridges increased in the higher force-producing MHC II isoforms and, in all isoforms, better predicted force than CSA. In men and women, cross-bridge kinetics, in terms of myosin attachment time and rate of myosin force production, were independent of CSA, although women had faster (7-15%) kinetics. The relative proportion of cross bridges and/or their stiffness was reduced as fiber size increased, causing a decline in specific force. Results from our examination of molecular mechanisms across the range of physiological CSAs explain the variation in specific force among the different fiber types in human skeletal muscle, which may have relevance to understanding how various physiological and pathophysiological conditions modulate single-fiber and whole muscle contractility.
Collapse
Affiliation(s)
- Mark S Miller
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont; Department of Kinesiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Nicholas G Bedrin
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont
| | - Philip A Ades
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Bradley M Palmer
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont
| | - Michael J Toth
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont; Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont; and
| |
Collapse
|
11
|
Mendias CL, Roche SM, Harning JA, Davis ME, Lynch EB, Sibilsky Enselman ER, Jacobson JA, Claflin DR, Calve S, Bedi A. Reduced muscle fiber force production and disrupted myofibril architecture in patients with chronic rotator cuff tears. J Shoulder Elbow Surg 2015; 24:111-9. [PMID: 25193488 DOI: 10.1016/j.jse.2014.06.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/28/2014] [Accepted: 06/09/2014] [Indexed: 02/01/2023]
Abstract
BACKGROUND A persistent atrophy of muscle fibers and an accumulation of fat, collectively referred to as fatty degeneration, commonly occur in patients with chronic rotator cuff tears. The etiology of fatty degeneration and function of the residual rotator cuff musculature have not been well characterized in humans. We hypothesized that muscles from patients with chronic rotator cuff tears have reduced muscle fiber force production, disordered myofibrils, and an accumulation of fat vacuoles. METHODS The contractility of muscle fibers from biopsy specimens of supraspinatus muscles of 13 patients with chronic full-thickness posterosuperior rotator cuff tears was measured and compared with data from healthy vastus lateralis muscle fibers. Correlations between muscle fiber contractility, American Shoulder and Elbow Surgeons (ASES) scores, and tear size were analyzed. Histology and electron microscopy were also performed. RESULTS Torn supraspinatus muscles had a 30% reduction in maximum isometric force production and a 29% reduction in normalized force compared with controls. Normalized supraspinatus fiber force positively correlated with ASES score and negatively correlated with tear size. Disordered sarcomeres were noted, along with an accumulation of lipid-laden macrophages in the extracellular matrix surrounding supraspinatus muscle fibers. CONCLUSIONS Patients with chronic supraspinatus tears have significant reductions in muscle fiber force production. Force production also correlates with ASES scores and tear size. The structural and functional muscle dysfunction of the residual muscle fibers is independent of the additional area taken up by fibrotic tissue. This work may help establish future therapies to restore muscle function after the repair of chronically torn rotator cuff muscles.
Collapse
Affiliation(s)
- Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Stuart M Roche
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Julie A Harning
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Max E Davis
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Evan B Lynch
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Jon A Jacobson
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dennis R Claflin
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Surgery, Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sarah Calve
- School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Asheesh Bedi
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Lomax M, Tasker L, Bostanci O. An electromyographic evaluation of dual role breathing and upper body muscles in response to front crawl swimming. Scand J Med Sci Sports 2014; 25:e472-8. [DOI: 10.1111/sms.12354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2014] [Indexed: 11/29/2022]
Affiliation(s)
- M. Lomax
- Department of Sports and Exercise Science; University of Portsmouth; Hampshire UK
| | - L. Tasker
- School of Sport and Exercise; University of Gloucestershire; Gloucester UK
| | - O. Bostanci
- Department of Physical Education and Sports; University of Ondokuz Mayis; Samsun Turkey
| |
Collapse
|
13
|
Pihut M, Szuta M, Ferendiuk E, Zeńczak-Więckiewicz D. Differential diagnostics of pain in the course of trigeminal neuralgia and temporomandibular joint dysfunction. BIOMED RESEARCH INTERNATIONAL 2014; 2014:563786. [PMID: 24995309 PMCID: PMC4065756 DOI: 10.1155/2014/563786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/20/2014] [Indexed: 11/29/2022]
Abstract
Chronic oral and facial pain syndromes are an indication for intervention of physicians of numerous medical specialties, while the complex nature of these complaints warrants interdisciplinary diagnostic and therapeutic approach. Oftentimes, lack of proper differentiation of pain associated with pathological changes of the surrounding tissues, neurogenic pain, vascular pain, or radiating pain from idiopathic facial pain leads to improper treatment. The objective of the paper is to provide detailed characterization of pain developing in the natural history of trigeminal neuralgia and temporomandibular joint dysfunction, with particular focus on similarities accounting for the difficulties in diagnosis and treatment as well as on differences between both types of pain. It might seem that trigeminal neuralgia can be easily differentiated from temporomandibular joint dysfunction due to the acute, piercing, and stabbing nature of neuralgic pain occurring at a single facial location to spread along the course of the nerve on one side, sometimes a dozen or so times a day, without forewarning periods. Both forms differ significantly in the character and intensity of pain. The exact analysis of the nature, intensity, and duration of pain may be crucial for the differential diagnostics of the disorders of our interest.
Collapse
Affiliation(s)
- M. Pihut
- Department of Dental Prosthetics, Consulting Room of Temporomandibular Joint Dysfunctions, Medical College, Jagiellonian University, 4 Montelupich Street, 31-155 Krakow, Poland
| | - M. Szuta
- Cranio-Maxillofacial Surgery, Medical College, Jagiellonian University, 1 Zlotej Jesieni Street, 31-826 Krakow, Poland
| | - E. Ferendiuk
- Department of Dental Prosthetics, Consulting Room of Temporomandibular Joint Dysfunctions, Medical College, Jagiellonian University, 4 Montelupich Street, 31-155 Krakow, Poland
| | - D. Zeńczak-Więckiewicz
- Department of Dental Surgery, Wroclaw Medical University, 26 Krakowska Street, 50-425 Wroclaw, Poland
| |
Collapse
|