1
|
Tang M, Burgess JT, Fisher M, Boucher D, Bolderson E, Gandhi NS, O'Byrne KJ, Richard DJ, Suraweera A. Targeting the COMMD4-H2B protein complex in lung cancer. Br J Cancer 2023; 129:2014-2024. [PMID: 37914802 PMCID: PMC10703884 DOI: 10.1038/s41416-023-02476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Lung cancer is the biggest cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for 85-90% of all lung cancers. Identification of novel therapeutic targets are required as drug resistance impairs chemotherapy effectiveness. COMMD4 is a potential NSCLC therapeutic target. The aims of this study were to investigate the COMMD4-H2B binding pose and develop a short H2B peptide that disrupts the COMMD4-H2B interaction and mimics COMMD4 siRNA depletion. METHODS Molecular modelling, in vitro binding and site-directed mutagenesis were used to identify the COMMD4-H2B binding pose and develop a H2B peptide to inhibit the COMMD4-H2B interaction. Cell viability, DNA repair and mitotic catastrophe assays were performed to determine whether this peptide can specially kill NSCLC cells. RESULTS Based on the COMMD4-H2B binding pose, we have identified a H2B peptide that inhibits COMMD4-H2B by directly binding to COMMD4 on its H2B binding binding site, both in vitro and in vivo. Treatment of NSCLC cell lines with this peptide resulted in increased sensitivity to ionising radiation, increased DNA double-strand breaks and induction of mitotic catastrophe in NSCLC cell lines. CONCLUSIONS Our data shows that COMMD4-H2B represents a novel potential NSCLC therapeutic target.
Collapse
Affiliation(s)
- Ming Tang
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Joshua T Burgess
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Mark Fisher
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Didier Boucher
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Emma Bolderson
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Neha S Gandhi
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Kenneth J O'Byrne
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| | - Derek J Richard
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| | - Amila Suraweera
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
2
|
You G, Zhou C, Wang L, Liu Z, Fang H, Yao X, Zhang X. COMMD proteins function and their regulating roles in tumors. Front Oncol 2023; 13:1067234. [PMID: 36776284 PMCID: PMC9910083 DOI: 10.3389/fonc.2023.1067234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
The COMMD proteins are a highly conserved protein family with ten members that play a crucial role in a variety of biological activities, including copper metabolism, endosomal sorting, ion transport, and other processes. Recent research have demonstrated that the COMMD proteins are closely associated with a wide range of disorders, such as hepatitis, myocardial ischemia, cerebral ischemia, HIV infection, and cancer. Among these, the role of COMMD proteins in tumors has been thoroughly explored; they promote or inhibit cancers such as lung cancer, liver cancer, gastric cancer, and prostate cancer. COMMD proteins can influence tumor proliferation, invasion, metastasis, and tumor angiogenesis, which are strongly related to the prognosis of tumors and are possible therapeutic targets for treating tumors. In terms of molecular mechanism, COMMD proteins in tumor cells regulate the oncogenes of NF-κB, HIF, c-MYC, and others, and are related to signaling pathways including apoptosis, autophagy, and ferroptosis. For the clinical diagnosis and therapy of malignancies, additional research into the involvement of COMMD proteins in cancer is beneficial.
Collapse
Affiliation(s)
- Guangqiang You
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China
| | - Chen Zhou
- Department of General Affairs, First Hospital of Jilin University (the Eastern Division), Jilin University, Changchun, China
| | - Lei Wang
- Department of Pediatric Neurology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zefeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China
| | - He Fang
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiaoxao Yao
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China,*Correspondence: Xiaoxao Yao, ; Xuewen Zhang,
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China,*Correspondence: Xiaoxao Yao, ; Xuewen Zhang,
| |
Collapse
|
3
|
Abstract
Spontaneous tumors in dogs share several environmental, epidemiologic, biologic, clinical and molecular features with a wide variety of human cancers, making this companion animal an attractive model. Nuclear factor kappa B (NF-kB) transcription factor overactivation is common in several human cancers, and there is evidence that similar signaling aberrations also occur in canine cancers including lymphoma, leukemia, hemangiosarcoma, mammary cancer, melanoma, glioma, and prostate cancer. This review provides an overview of NF-kB signaling biology, both in health and in cancer development. It also summarizes available evidence of aberrant NF-kB signaling in canine cancer, and reviews antineoplastic compounds that have been shown to inhibit NF-kB activity used in various types of canine cancers. Available data suggest that dogs may be an excellent model for human cancers that have overactivation of NF-kB.
Collapse
|
4
|
Gomez Rodriguez Y, Oliva Arguelles B, Riera-Romo M, Fernandez-De-Cossio J, Garay HE, Fernandez Masso J, Guerra Vallespi M. Synergic effect of anticancer peptide CIGB-552 and Cisplatin in lung cancer models. Mol Biol Rep 2022; 49:3197-3212. [DOI: 10.1007/s11033-022-07152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022]
|
5
|
Han J, Jing Y, Han F, Sun P. Comprehensive analysis of expression, prognosis and immune infiltration for TIMPs in glioblastoma. BMC Neurol 2021; 21:447. [PMID: 34781885 PMCID: PMC8591954 DOI: 10.1186/s12883-021-02477-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background Tissue inhibitors of metalloproteinase (TIMP) family proteins are peptidases involved in extracellular matrix (ECM) degradation. Various diseases are related to TIMPs, and the primary reason is that TIMPs can indirectly regulate remodelling of the ECM and cell signalling by regulating matrix metalloproteinase (MMP) activity. However, the link between TIMPs and glioblastoma (GBM) is unclear. Objective This study aimed to explore the role of TIMP expression and immune infiltration in GBM. Methods Oncomine, GEPIA, OSgbm, LinkedOmics, STRING, GeneMANIA, Enrichr, and TIMER were used to conduct differential expression, prognosis, and immune infiltration analyses of TIMPs in GBM. Results All members of the TIMP family had significantly higher expression levels in GBM. High TIMP3 expression correlated with better overall survival (OS) and disease-specific survival (DSS) in GBM patients. TIMP4 was associated with a long OS in GBM patients. We found a positive relationship between TIMP3 and TIMP4, identifying gene sets with similar or opposite expression directions to those in GBM patients. TIMPs and associated genes are mainly associated with extracellular matrix organization and involve proteoglycan pathways in cancer. The expression levels of TIMPs in GBM correlate with the infiltration of various immune cells, including CD4+ T cells, macrophages, neutrophils, B cells, CD8+ T cells, and dendritic cells. Conclusions Our study inspires new ideas for the role of TIMPs in GBM and provides new directions for multiple treatment modalities, including immunotherapy, in GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02477-1.
Collapse
Affiliation(s)
- Jinkun Han
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yajun Jing
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fubing Han
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Sun
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Wang X, He S, Zheng X, Huang S, Chen H, Chen H, Luo W, Guo Z, He X, Zhao Q. Transcriptional analysis of the expression, prognostic value and immune infiltration activities of the COMMD protein family in hepatocellular carcinoma. BMC Cancer 2021; 21:1001. [PMID: 34493238 PMCID: PMC8424899 DOI: 10.1186/s12885-021-08699-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The copper metabolism MURR1 domain (COMMD) protein family involved in tumor development and progression in several types of human cancer, but little is known about the function of COMMD proteins in hepatocellular carcinoma (HCC). METHODS The ONCOMINE and the UALCAN databases were used to evaluate the expression of COMMD1-10 in HCC and the association of this family with individual cancer stage and tumor grade. Kaplan-Meier (K-M) Plotter and Cox analysis hint the prognostic value of COMMDs. A network comprising 50 most similar genes and COMMD1-10 was constructed with the STRING database. Gene set enrichment analysis (GSEA) was performed using LinkedOmics database. The correlations between COMMD expression and the presence of immune infiltrating cells were also analyzed by the tumor immune estimation resource (TIMER) database. GSE14520 dataset and 80 HCC patients were used to validated the expression and survival value of COMMD3. Human HCC cell lines were also used for validating the function of COMMD3. RESULTS The expression of all COMMD family members showed higher expression in HCC tissues than that in normal tissues, and is associated with clinical cancer stage and pathological tumor grade. In HCC patients, the transcriptional levels of COMMD1/4 are positively correlated with overall survival (OS), while those of COMMD2/3/7/8/9 are negatively correlated with OS. Multivariate analysis indicated that a high level of COMMD3 mRNA is an independent prognostic factor for shorter OS in HCC patients. However, the subset of patients with grade 3 HCC, K-M survival curves revealed that high COMMD3/5/7/8/9 expression and low COMMD4/10 expression were associated with shorter OS. In addition, the expression of COMMD2/3/10 was associated with tumor-induced immune response activation and immune infiltration in HCC. The expression of COMMD3 from GSE14520 dataset and 80 patients are both higher in tumor than that in normal tissue, and a higher level of COMMD3 mRNA is associated with shorter OS. Knockdown of COMMD3 inhibits human HCC cell lines proliferation in vitro. CONCLUSIONS Our study indicates that COMMD3 is an independent prognostic biomarker for the survival of HCC patients. COMMD3 supports the proliferation of HCC cells and contributes to the poor OS in HCC patients.
Collapse
Affiliation(s)
- Xiaobo Wang
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, NO.58 Zhongshan Road, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China.,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, 510080, China
| | - Shujiao He
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, NO.58 Zhongshan Road, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China.,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, 510080, China
| | - Xin Zheng
- Department of Orthopaedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Honghui Chen
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, NO.58 Zhongshan Road, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China.,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, 510080, China
| | - Huadi Chen
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, NO.58 Zhongshan Road, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China.,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, 510080, China
| | - Weixin Luo
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, NO.58 Zhongshan Road, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China.,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, 510080, China
| | - Zhiyong Guo
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, NO.58 Zhongshan Road, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China. .,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, 510080, China.
| | - Xiaoshun He
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, NO.58 Zhongshan Road, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China. .,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, 510080, China.
| | - Qiang Zhao
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, NO.58 Zhongshan Road, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China. .,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Vallespi MG, Mestre B, Marrero MA, Uranga R, Rey D, Lugiollo M, Betancourt M, Silva K, Corrales D, Lamadrid Y, Rodriguez Y, Maceo A, Chaviano PP, Lemos G, Cabrales A, Freyre FM, Santana H, Garay HE, Oliva B, Fernandez JR. A first-in-class, first-in-human, phase I trial of CIGB-552, a synthetic peptide targeting COMMD1 to inhibit the oncogenic activity of NF-κB in patients with advanced solid tumors. Int J Cancer 2021; 149:1313-1321. [PMID: 34019700 DOI: 10.1002/ijc.33695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/05/2021] [Accepted: 04/29/2021] [Indexed: 11/06/2022]
Abstract
CIGB-552 is a synthetic peptide that interacts with COMMD1 and upregulates its protein levels. The objectives of this phase I study were safety, pharmacokinetic profile, evaluation of the lymphocytes CD4+ and CD8+ and preliminary activity in patients with advanced tumors. A 3 + 3 dose-escalation design with seven dose levels was implemented. Patients were included until a grade 3 related adverse event occurred and the maximum tolerated dose was reached. The patients received subcutaneous administration of CIGB-552 three times per week for 2 weeks. Single-dose plasma pharmacokinetics was characterized at two dose levels, and tumor responses were classified by RECIST 1.1. Twenty-four patients received CIGB-552. Dose-limiting toxicity was associated with a transient grade 3 pruritic maculopapular rash at a dose of 7.0 mg. The maximum tolerated dose was defined as 4.7 mg. Ten patients were assessable for immunological status. Seven patients had significant changes in the ratio CD4/CD8 in response to CIGB-552 treatment; three patients did not modify the immunological status. Stable disease was observed in five patients, including two metastatic soft sarcomas. We conclude that CIGB-552 at dose 4.7 mg was well tolerated with no significant adverse events and appeared to provide some clinical benefits.
Collapse
Affiliation(s)
| | - Braulio Mestre
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Maria A Marrero
- National Coordinating Center for Clinical Trials (CENCEC), Havana, Cuba
| | - Rolando Uranga
- National Coordinating Center for Clinical Trials (CENCEC), Havana, Cuba
| | - Diana Rey
- National Coordinating Center for Clinical Trials (CENCEC), Havana, Cuba
| | - Martha Lugiollo
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Mircea Betancourt
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Kirenia Silva
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Danay Corrales
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Yanet Lamadrid
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Yamilka Rodriguez
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Anaelys Maceo
- National Coordinating Center for Clinical Trials (CENCEC), Havana, Cuba
| | - Pedro P Chaviano
- National Coordinating Center for Clinical Trials (CENCEC), Havana, Cuba
| | - Gilda Lemos
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Ania Cabrales
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Freya M Freyre
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Hector Santana
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Hilda E Garay
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Brizaida Oliva
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Julio R Fernandez
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| |
Collapse
|
8
|
Campion CG, Verissimo T, Cossette S, Tremblay J. Does Subtelomeric Position of COMMD5 Influence Cancer Progression? Front Oncol 2021; 11:642130. [PMID: 33768002 PMCID: PMC7985453 DOI: 10.3389/fonc.2021.642130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/01/2021] [Indexed: 01/04/2023] Open
Abstract
The COMMD proteins are a family of ten pleiotropic factors which are widely conserved throughout evolution and are involved in the regulation of many cellular and physiological processes. COMMD proteins are mainly expressed in adult tissue and their downregulation has been correlated with tumor progression and poor prognosis in cancer. Among this family, COMMD5 emerged as a versatile modulator of tumor progression. Its expression can range from being downregulated to highly up regulated in a variety of cancer types. Accordingly, two opposing functions could be proposed for COMMD5 in cancer. Our studies supported a role for COMMD5 in the establishment and maintenance of the epithelial cell phenotype, suggesting a tumor suppressor function. However, genetic alterations leading to amplification of COMMD5 proteins have also been observed in various types of cancer, suggesting an oncogenic function. Interestingly, COMMD5 is the only member of this family that is located at the extreme end of chromosome 8, near its telomere. Here, we review some data concerning expression and role of COMMD5 and propose a novel rationale for the potential link between the subtelomeric position of COMMD5 on chromosome 8 and its contrasting functions in cancer.
Collapse
Affiliation(s)
- Carole G Campion
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Thomas Verissimo
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Suzanne Cossette
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Johanne Tremblay
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
9
|
Suraweera A, Duijf PHG, Jekimovs C, Schrobback K, Liu C, Adams MN, O’Byrne KJ, Richard DJ. COMMD1, from the Repair of DNA Double Strand Breaks, to a Novel Anti-Cancer Therapeutic Target. Cancers (Basel) 2021; 13:830. [PMID: 33669398 PMCID: PMC7920454 DOI: 10.3390/cancers13040830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer has the highest incidence and mortality among all cancers, with non-small cell lung cancer (NSCLC) accounting for 85-90% of all lung cancers. Here we investigated the function of COMMD1 in the repair of DNA double strand breaks (DSBs) and as a prognostic and therapeutic target in NSCLC. COMMD1 function in DSB repair was investigated using reporter assays in COMMD1-siRNA-depleted cells. The role of COMMD1 in NSCLC was investigated using bioinformatic analysis, qRT-PCR and immunoblotting of control and NSCLC cells, tissue microarrays, cell viability and cell cycle experiments. DNA repair assays demonstrated that COMMD1 is required for the efficient repair of DSBs and reporter assays showed that COMMD1 functions in both non-homologous-end-joining and homologous recombination. Bioinformatic analysis showed that COMMD1 is upregulated in NSCLC, with high levels of COMMD1 associated with poor patient prognosis. COMMD1 mRNA and protein were upregulated across a panel of NSCLC cell lines and siRNA-mediated depletion of COMMD1 decreased cell proliferation and reduced cell viability of NSCLC, with enhanced death after exposure to DNA damaging-agents. Bioinformatic analyses demonstrated that COMMD1 levels positively correlate with the gene ontology DNA repair gene set enrichment signature in NSCLC. Taken together, COMMD1 functions in DSB repair, is a prognostic maker in NSCLC and is potentially a novel anti-cancer therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Amila Suraweera
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| | - Pascal H. G. Duijf
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Centre for Data Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia
| | - Christian Jekimovs
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
| | - Karsten Schrobback
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
| | - Cheng Liu
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia;
- Envoi Specialist Pathologists, 5/38 Bishop Street, Kelvin Grove, QLD 4059, Australia
| | - Mark N. Adams
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| | - Kenneth J. O’Byrne
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| | - Derek J. Richard
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology (QUT), 37 Kent Street, Woolloongabba, QLD 4102, Australia; (P.H.G.D.); (C.J.); (K.S.); (M.N.A.); (K.J.O.)
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
10
|
The Anticancer Peptide CIGB-552 Exerts Anti-Inflammatory and Anti-Angiogenic Effects through COMMD1. Molecules 2020; 26:molecules26010152. [PMID: 33396282 PMCID: PMC7795859 DOI: 10.3390/molecules26010152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
CIGB-552 is a synthetic anti-tumor peptide capable of reducing tumor size and increasing the lifespan of tumor-bearing mice. Part of its anti-cancer effects consists of inducing apoptosis, modulating NF-kB signaling pathway, and the angiogenesis process. Although one of its major mediators, the COMMD1 protein, has been identified, the mechanism by which CIGB-552 exerts such effects remains elusive. In the present study, we show the role of COMMD1 in CIGB-552 mechanism of action by generating the COMMD1 knock-out from the human lung cancer cell line NCI-H460. A microarray was performed to analyze both wild-type and KO cell lines with regard to CIGB-552 treatment. Additionally, different signaling pathways were studied in both cell lines to validate the results. Furthermore, the interaction between CIGB-552 and COMMD1 was analyzed by confocal microscopy. By signaling pathway analysis we found that genes involved in cell proliferation and apoptosis, oncogenic transformation, angiogenesis and inflammatory response are potentially regulated by the treatment with CIGB-552. We then demonstrated that CIGB-552 is capable of modulating NF-kB in both 2D and 3D cell culture models. Finally, we show that the ability of CIGB-552 to negatively modulate NF-kB and HIF-1 pathways is impaired in the COMMD1 knock-out NCI-H460 cell line, confirming that COMMD1 is essential for the peptide mechanism of action.
Collapse
|
11
|
Oliva Arguelles B, Riera-Romo M, Guerra Vallespi M. Antitumour peptide based on a protein derived from the horseshoe crab: CIGB-552 a promising candidate for cancer therapy. Br J Pharmacol 2020; 177:3625-3634. [PMID: 32436254 DOI: 10.1111/bph.15132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/11/2020] [Accepted: 05/04/2020] [Indexed: 01/18/2023] Open
Abstract
Peptide-based cancer therapy has been of great interest due to the unique advantages of peptides, such as their low MW, the ability to specifically target tumour cells, easily available and low toxicity in normal tissues. Therefore, identifying and synthesizing novel peptides could provide a promising option for cancer patients. The antitumour second generation peptide, CIGB-552 has been developed as a candidate for cancer therapy. Proteomic and genomic studies have identified the intracellular protein COMMD1 as the specific target of CIGB-552. This peptide penetrates to the inside tumour cells to induce the proteasomal degradation of RelA, causing the termination of NF-κB signalling. The antitumour activity of CIGB-552 has been validated in vitro in different human cancer cell lines, as well as in vivo in syngeneic and xenograft tumour mouse models and in dogs with different types of cancers. The aim of this review is to present and discuss the experimental data obtained on the action of CIGB-552, including its mechanism of action and its therapeutic potential in human chronic diseases. This peptide is already in phase I clinical trials as antineoplastic drug and has also possible application for other inflammatory and metabolic conditions.
Collapse
Affiliation(s)
- Brizaida Oliva Arguelles
- Pharmaceutical Department, Laboratory of Tumor Biology, Centre for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Mario Riera-Romo
- Pharmacology Department, Institute of Marine Sciences, Havana, Cuba
| | - Maribel Guerra Vallespi
- Pharmaceutical Department, Laboratory of Tumor Biology, Centre for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
12
|
Yang M, Huang W, Sun Y, Liang H, Chen M, Wu X, Wang X, Zhang L, Cheng X, Fan Y, Pan H, Chen L, Guan J. Prognosis and modulation mechanisms of COMMD6 in human tumours based on expression profiling and comprehensive bioinformatics analysis. Br J Cancer 2019; 121:699-709. [PMID: 31523056 PMCID: PMC6889128 DOI: 10.1038/s41416-019-0571-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Background The Copper Metabolism MURR1 (COMM) domain family has been reported to play important roles in tumorigenesis. As a prototype for the COMMD family, the expression pattern and biological function of COMMD6 in human tumours remain unknown. Methods COMMD6 expression in BALB/c mice and human tissues was examined using real-time PCR and immunohistochemistry. Kaplan–Meier analysis was applied to evaluate the prognosis of COMMD6 in tumours. Competing endogenous RNA (ceRNA) and transcriptional regulation network were constructed based on differentially expressed mRNAs, microRNAs and long non-coding RNAs from the cancer genome atlas database. GO and KEGG enrichment analysis were used to explore the bioinformatics implication. Results COMMD6 expression was widely observed in BALB/c mice and human tissues, which predicted prognosis of cancer patients. Furthermore, we shed light on the underlying tumour promoting role and mechanism of COMMD6 by constructing a TEX41-miR-340-COMMD6 ceRNA network in head and neck squamous cell carcinoma and miR-218-CDX1-COMMD6 transcriptional network in cholangiocarcinoma. In addition, COMMD6 may modulate the ubiquitination and degradation of NF-κB subunits and regulate ribonucleoprotein and spliceosome complex biogenesis in tumours. Conclusions This study may help to elucidate the functions and mechanisms of COMMD6 in human tumours, providing a potential biomarker for tumour prevention and therapy.
Collapse
Affiliation(s)
- Mi Yang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Weiqiang Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Yaling Sun
- Department of Radiation Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou, China
| | - Huazhen Liang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Min Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Xixi Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Longshan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Xiaoya Cheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Yao Fan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Hua Pan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Longhua Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China.
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou, China.
| |
Collapse
|
13
|
Generation of stable reporter breast and lung cancer cell lines for NF-κB activation studies. J Biotechnol 2019; 301:79-87. [DOI: 10.1016/j.jbiotec.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/16/2019] [Accepted: 05/26/2019] [Indexed: 01/09/2023]
|
14
|
Lugo JM, Tafalla C, Oliva A, Pons T, Oliva B, Aquilino C, Morales R, Estrada MP. Evidence for antimicrobial and anticancer activity of pituitary adenylate cyclase-activating polypeptide (PACAP) from North African catfish (Clarias gariepinus): Its potential use as novel therapeutic agent in fish and humans. FISH & SHELLFISH IMMUNOLOGY 2019; 86:559-570. [PMID: 30481557 DOI: 10.1016/j.fsi.2018.11.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a regulatory neuropeptide that belongs to the secretin/glucagon superfamily, of which some members have shown antimicrobial activities. Contrasting to mammals, published studies on the action of PACAP in non-mammalian vertebrate immune system remain scarce. Some of our recent studies added this peptide to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in teleost fish. Regulation of PACAP and expression of its receptor genes has been demonstrated during an immune response mounted against acute bacterial infection in fish, though the direct effect of PACAP against fish pathogenic bacteria has never been addressed. Current work provides evidence of antimicrobial activity of Clarias gariepinus PACAP against a wide spectrum of Gram-negative and Gram-positive bacteria and fungi of interest for human medicine and aquaculture, in which computational prediction studies supported the putative PACAP therapeutic activity. Results also indicated that catfish PACAP not only exhibits inhibitory effects on pathogen growth, but also affects the proliferation of human non-small cell lung cancer cell line H460 in a dose-dependent manner. The observed cytotoxic activity of catfish PACAP against human tumor cells and pathogenic microorganisms, but not healthy fish and mammalian erythrocytes support a potential physiological role of this neuropeptide in selective microbial and cancer cell killing. All together, our findings extend the mechanisms by which PACAP could contribute to immune responses, and open up new avenues for future therapeutic application of this bioactive neuropeptide.
Collapse
Affiliation(s)
- Juana Maria Lugo
- Animal Biotechnology Department, Aquatic Biotechnology Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba; Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - Ayme Oliva
- Animal Biotechnology Department, Veterinary Clinical Research Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba
| | - Tirso Pons
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Brizaida Oliva
- Pharmaceutical Department. Laboratory of Cancer Biology. Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba
| | - Carolina Aquilino
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - Reynold Morales
- Animal Biotechnology Department, Aquatic Biotechnology Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Aquatic Biotechnology Group, Center for Genetic Engineering and Biotechnology, Havana, 10600, Cuba.
| |
Collapse
|
15
|
Zheng L, You N, Huang X, Gu H, Wu K, Mi N, Li J. COMMD7 Regulates NF-κB Signaling Pathway in Hepatocellular Carcinoma Stem-like Cells. MOLECULAR THERAPY-ONCOLYTICS 2018; 12:112-123. [PMID: 30719501 PMCID: PMC6350112 DOI: 10.1016/j.omto.2018.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/07/2018] [Indexed: 12/26/2022]
Abstract
Previous studies showed that the COpper Metabolism gene MURR1 Domain (COMMD) family of proteins was abnormally expressed in hepatocellular carcinoma (HCC). This study aimed to explore the roles of COMMD1 and COMMD7 in regulating nuclear factor κB (NF-κB) signaling in HCC stem cells (HCSCs). In vivo, the expression of COMMD7 and COMMD1 was determined in 35 pairs of HCC cancer tissues and adjacent tissues, and the effect of COMMD7 silencing on xenograft tumor growth was evaluated. In vitro, the effects of COMMD7 silencing and COMMD1 overexpression on HCSC function were assessed. Results found that the expression levels of COMMD7 were higher, whereas COMMD1 levels were lower in HCC tissues and HCSCs. COMMD7 silencing or COMMD1 overexpression inhibited cell proliferation, migration, and invasion through suppression of NF-κB p65. Furthermore, COMMD7 positively regulated NF-κB by upregulating protein inhibitor for activated stat 4 (PIAS4). This study demonstrates that COMMD7 has a dual regulatory role in the NF-κB signaling pathway in Nanog+ HCSCs.
Collapse
Affiliation(s)
- Lu Zheng
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, PLA, Chongqing, China
| | - Nan You
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, PLA, Chongqing, China
| | - Xiaobing Huang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, PLA, Chongqing, China
| | - Huiying Gu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, PLA, Chongqing, China
| | - Ke Wu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, PLA, Chongqing, China
| | - Na Mi
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, PLA, Chongqing, China
| | - Jing Li
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, PLA, Chongqing, China
| |
Collapse
|
16
|
Astrada S, Fernández Massó JR, Vallespí MG, Bollati-Fogolín M. Cell Penetrating Capacity and Internalization Mechanisms Used by the Synthetic Peptide CIGB-552 and Its Relationship with Tumor Cell Line Sensitivity. Molecules 2018; 23:molecules23040801. [PMID: 29601540 PMCID: PMC6017325 DOI: 10.3390/molecules23040801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 01/23/2023] Open
Abstract
CIGB-552 is a twenty-amino-acid novel synthetic peptide that has proven to be effective in reducing tumor size and increasing lifespan in tumor-bearing mice. Such capability is conferred by its cell-penetrating peptide character, which allows it to enter cells and elicit a pro-apoptotic effect through its major mediator, COMMD1 protein. Cell-penetrating peptides are able to use different internalization mechanisms, such as endocytosis or direct transduction through the plasma membrane. Although CIGB-552 cytotoxicity has been evaluated in several non-tumor- and tumor-derived cell lines, no data regarding the relationship between cell line sensitivity, cell penetrating capacity, the internalization mechanisms involved, COMMD1 expression levels, or its subcellular localization has yet been produced. Here, we present the results obtained from a comparative analysis of CIGB-552 sensitivity, internalization capacity and the mechanisms involved in three human tumor-derived cell lines from different origins: mammary gland, colon and lung (MCF-7, HT-29 and H460, respectively). Furthermore, cell surface markers relevant for internalization processes such as phosphatidylserine, as well as CIGB-552 target COMMD1 expression/localization, were also evaluated. We found that both endocytosis and transduction are involved in CIGB-552 internalization in the three cell lines evaluated. However, CIGB-552 incorporation efficiency and contribution of each mechanism is cell-line dependent. Finally, sensitivity was directly correlated with high internalization capacity in those cell lines where endocytosis had a major contribution on CIGB-552 internalization.
Collapse
Affiliation(s)
- Soledad Astrada
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay.
| | - Julio Raúl Fernández Massó
- Department of Genomic, Center for Genetic Engineering and Biotechnology, Cubanacan, P.O. Box 6162, Havana 10600, Cuba.
| | - Maribel G Vallespí
- Pharmaceutical Department, Center for Genetic Engineering and Biotechnology, Cubanacan, P.O. Box 6162, Havana 10600, Cuba.
| | | |
Collapse
|
17
|
Astrada S, Gomez Y, Barrera E, Obal G, Pritsch O, Pantano S, Vallespí MG, Bollati-Fogolín M. Comparative analysis reveals amino acids critical for anticancer activity of peptide CIGB-552. J Pept Sci 2017; 22:711-722. [PMID: 27933724 DOI: 10.1002/psc.2934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 12/29/2022]
Abstract
Because of resistance development by cancer cells against current anticancer drugs, there is a considerable interest in developing novel antitumor agents. We have previously demonstrated that CIGB-552, a novel cell-penetrating synthetic peptide, was effective in reducing tumor size and increasing lifespan in tumor-bearing mice. Studies of protein-peptide interactions have shown that COMMD1 protein is a major mediator of CIGB-552 antitumor activity. Furthermore, a typical serine-protease degradation pattern for CIGB-552 in BALB/c mice serum was identified, yielding peptides which differ from CIGB-552 in size and physical properties. In the present study, we show the results obtained from a comparative analysis between CIGB-552 and its main metabolites regarding physicochemical properties, cellular internalization, and their capability to elicit apoptosis in MCF-7 cells. None of the analyzed metabolites proved to be as effective as CIGB-552 in promoting apoptosis in MCF-7. Taking into account these results, it seemed important to examine their cell-penetrating capacity and interaction with COMMD1. We show that internalization, a lipid binding-dependent process, is impaired as well as metabolite-COMMD1 interaction, key component of the apoptotic mechanism. Altogether, our results suggest that features conferred by the amino acid sequence are decisive for CIGB-552 biological activity, turning it into the minimal functional unit. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Soledad Astrada
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Yolanda Gomez
- Pharmaceutical Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Exequiel Barrera
- Biomolecular Simulations, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Gonzalo Obal
- Protein Biophysics Unit, Institut Pasteur Montevideo, Montevideo, Uruguay.,Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, 11800, Montevideo, Uruguay
| | - Otto Pritsch
- Protein Biophysics Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Sergio Pantano
- Biomolecular Simulations, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Maribel G Vallespí
- Pharmaceutical Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | |
Collapse
|
18
|
Fedoseienko A, Wieringa HW, Wisman GBA, Duiker E, Reyners AKL, Hofker MH, van der Zee AGJ, van de Sluis B, van Vugt MATM. Nuclear COMMD1 Is Associated with Cisplatin Sensitivity in Ovarian Cancer. PLoS One 2016; 11:e0165385. [PMID: 27788210 PMCID: PMC5082896 DOI: 10.1371/journal.pone.0165385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/11/2016] [Indexed: 01/18/2023] Open
Abstract
Copper metabolism MURR1 domain 1 (COMMD1) protein is a multifunctional protein, and its expression has been correlated with patients’ survival in different types of cancer. In vitro studies revealed that COMMD1 plays a role in sensitizing cancer cell lines to cisplatin, however, the mechanism and its role in platinum sensitivity in cancer has yet to be established. We evaluated the role of COMMD1 in cisplatin sensitivity in A2780 ovarian cancer cells and the relation between COMMD1 expression and response to platinum-based therapy in advanced stage high-grade serous ovarian cancer (HGSOC) patients. We found that elevation of nuclear COMMD1 expression sensitized A2780 ovarian cancer cells to cisplatin-mediated cytotoxicity. This was accompanied by a more effective G2/M checkpoint, and decreased protein expression of the DNA repair gene BRCA1, and the apoptosis inhibitor BCL2. Furthermore, COMMD1 expression was immunohistochemically analyzed in two tissue micro-arrays (TMAs), representing a historical cohort and a randomized clinical trial-based cohort of advanced stage HGSOC tumor specimens. Expression of COMMD1 was observed in all ovarian cancer samples, however, specifically nuclear expression of COMMD1 was only observed in a subset of ovarian cancers. In our historical cohort, nuclear COMMD1 expression was associated with an improved response to chemotherapy (OR = 0.167; P = 0.038), although this association could not be confirmed in the second cohort, likely due to sample size. Taken together, these results suggest that nuclear expression of COMMD1 sensitize ovarian cancer to cisplatin, possibly by modulating the G2/M checkpoint and through controlling expression of genes involved in DNA repair and apoptosis.
Collapse
Affiliation(s)
- Alina Fedoseienko
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hylke W. Wieringa
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Gynecological Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G. Bea A. Wisman
- Department of Gynecological Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Evelien Duiker
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anna K. L. Reyners
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marten H. Hofker
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ate G. J. van der Zee
- Department of Gynecological Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart van de Sluis
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail: (BvdS); (MATMvV)
| | - Marcel A. T. M. van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail: (BvdS); (MATMvV)
| |
Collapse
|
19
|
Esposito E, Napolitano G, Pescatore A, Calculli G, Incoronato MR, Leonardi A, Ursini MV. COMMD7 as a novel NEMO interacting protein involved in the termination of NF-κB signaling. J Cell Physiol 2016; 231:152-61. [PMID: 26060140 DOI: 10.1002/jcp.25066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/05/2015] [Indexed: 11/08/2022]
Abstract
NEMO/IKKγ is the regulatory subunit of the IκB Kinase (IKK) complex, required for the activation of the NF-κB pathway, which is involved in a variety of key processes, including immunity, inflammation, differentiation, and cell survival. Termination of NF-κB activity on specific -κB responsive genes, which is crucial for the resolution of inflammatory responses, can be achieved by direct degradation of the chromatin-bound NF-κB subunit RelA/p65, a process mediated by a protein complex that contains Copper Metabolism Murr1 Domain 1 (COMMD1). In this study, we identify COMMD7, another member of the COMMDs protein family, as a novel NEMO-interacting protein. We show that COMMD7 exerts an inhibitory effect on NF-κB activation upon TNFα stimulation. COMMD7 interacts with COMMD1 and together they cooperate to down-regulate NF-κB activity. Accordingly, termination of TNFα-induced NF-κB activity on the -κB responsive gene, Icam1, is defective in cells silenced for COMMD7 expression. Furthermore, this impairment is not greatly increased when we silence the expression of both COMMD7 and COMMD1 indicating that the two proteins participate in the same pathway of termination of TNFα-induced NF-κB activity. Importantly, we have demonstrated that COMMD7's binding to NEMO does not interfere with the binding to the IKKs, and that the disruption of the IKK complex through the use of the NBP competitor impairs the termination of NF-κB activity. We propose that an intact IKK complex is required for the termination of NF-κB-dependent transcription and that COMMD7 acts as a scaffold in the IKK-mediated NF-κB termination.
Collapse
Affiliation(s)
- Elio Esposito
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy
| | - Gennaro Napolitano
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy
| | - Alessandra Pescatore
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy
| | - Giuseppe Calculli
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy
| | | | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, "Federico II" University of Naples, via S. Pansini 5, Naples, Italy
| | - Matilde Valeria Ursini
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy.,IRCCS SDN, Via E. Gianturco 113, Naples, Italy
| |
Collapse
|
20
|
Proteomic Study to Survey the CIGB-552 Antitumor Effect. BIOMED RESEARCH INTERNATIONAL 2015; 2015:124082. [PMID: 26576414 PMCID: PMC4630370 DOI: 10.1155/2015/124082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/26/2015] [Indexed: 11/17/2022]
Abstract
CIGB-552 is a cell-penetrating peptide that exerts in vitro and in vivo antitumor effect on cancer cells. In the present work, the mechanism involved in such anticancer activity was studied using chemical proteomics and expression-based proteomics in culture cancer cell lines. CIGB-552 interacts with at least 55 proteins, as determined by chemical proteomics. A temporal differential proteomics based on iTRAQ quantification method was performed to identify CIGB-552 modulated proteins. The proteomic profile includes 72 differentially expressed proteins in response to CIGB-552 treatment. Proteins related to cell proliferation and apoptosis were identified by both approaches. In line with previous findings, proteomic data revealed that CIGB-552 triggers the inhibition of NF-κB signaling pathway. Furthermore, proteins related to cell invasion were differentially modulated by CIGB-552 treatment suggesting new potentialities of CIGB-552 as anticancer agent. Overall, the current study contributes to a better understanding of the antitumor action mechanism of CIGB-552.
Collapse
|
21
|
Núñez de Villavicencio-Díaz T, Ramos Gómez Y, Oliva Argüelles B, Fernández Masso JR, Rodríguez-Ulloa A, Cruz García Y, Guirola-Cruz O, Perez-Riverol Y, Javier González L, Tiscornia I, Victoria S, Bollati-Fogolín M, Besada Pérez V, Guerra Vallespi M. Comparative proteomics analysis of the antitumor effect of CIGB-552 peptide in HT-29 colon adenocarcinoma cells. J Proteomics 2015; 126:163-71. [DOI: 10.1016/j.jprot.2015.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/06/2015] [Accepted: 05/19/2015] [Indexed: 10/25/2022]
|
22
|
Vallespí MG, Pimentel G, Cabrales-Rico A, Garza J, Oliva B, Mendoza O, Gomez Y, Basaco T, Sánchez I, Calderón C, Rodriguez JC, Markelova MR, Fichtner I, Astrada S, Bollati-Fogolín M, Garay HE, Reyes O. Antitumor efficacy, pharmacokinetic and biodistribution studies of the anticancer peptide CIGB-552 in mouse models. J Pept Sci 2014; 20:850-9. [DOI: 10.1002/psc.2676] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/02/2014] [Accepted: 06/12/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Maribel G. Vallespí
- Pharmaceutical Department; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Havana 10600 Cuba
| | - Gilmara Pimentel
- Deparment of Nuclear Medicine; Institute of Oncology and Radiobiology; 29 and F Street Vedado Havana Cuba
| | - Ania Cabrales-Rico
- Synthetic Peptide Group, Chemistry-Physics Department; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Havana 10600 Cuba
| | - Julio Garza
- Deparment of Nuclear Medicine; Institute of Oncology and Radiobiology; 29 and F Street Vedado Havana Cuba
| | - Brizaida Oliva
- Pharmaceutical Department; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Havana 10600 Cuba
| | - Osmani Mendoza
- Pharmaceutical Department; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Havana 10600 Cuba
| | - Yolanda Gomez
- Pharmaceutical Department; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Havana 10600 Cuba
| | - Tais Basaco
- Deparment of Nuclear Medicine; Institute of Oncology and Radiobiology; 29 and F Street Vedado Havana Cuba
| | - Iraida Sánchez
- Deparment of Nuclear Medicine; Institute of Oncology and Radiobiology; 29 and F Street Vedado Havana Cuba
| | - Carlos Calderón
- Deparment of Nuclear Medicine; Institute of Oncology and Radiobiology; 29 and F Street Vedado Havana Cuba
| | - Juan C. Rodriguez
- Deparment of Nuclear Medicine; Institute of Oncology and Radiobiology; 29 and F Street Vedado Havana Cuba
| | - Maria Rivera Markelova
- Experimental Pharmacology & Oncology; Berlin-Buch GmbH; Robert-Rössle-Str.10 D-13122 Berlin Germany
| | - Iduna Fichtner
- Experimental Pharmacology & Oncology; Berlin-Buch GmbH; Robert-Rössle-Str.10 D-13122 Berlin Germany
| | - Soledad Astrada
- Cell Biology Unit; Institut Pasteur of Montevideo; Mataojo 2020 Montevideo 11400 Uruguay
| | | | - Hilda E. Garay
- Synthetic Peptide Group, Chemistry-Physics Department; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Havana 10600 Cuba
| | - Osvaldo Reyes
- Synthetic Peptide Group, Chemistry-Physics Department; Center for Genetic Engineering and Biotechnology; P.O. Box 6162 Havana 10600 Cuba
| |
Collapse
|
23
|
Kobayashi H. Imprinting genes associated with endometriosis. EXCLI JOURNAL 2014; 13:252-64. [PMID: 26417259 PMCID: PMC4464490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 02/19/2014] [Indexed: 11/30/2022]
Abstract
PURPOSE Much work has been carried out to investigate the genetic and epigenetic basis of endometriosis and proposed that endometriosis has been described as an epigenetic disease. The purpose of this study was to extract the imprinting genes that are associated with endometriosis development. METHODS The information on the imprinting genes can be accessed publicly from a web-based interface at http://www.geneimprint.com/site/genes-by-species. RESULTS In the current version, the database contains 150 human imprinted genes derived from the literature. We searched gene functions and their roles in particular biological processes or events, such as development and pathogenesis of endometriosis. From the genomic imprinting database, we picked 10 genes that were highly associated with female reproduction; prominent among them were paternally expressed genes (DIRAS3, BMP8B, CYP1B1, ZFAT, IGF2, MIMT1, or MIR296) and maternally expressed genes (DVL1, FGFRL1, or CDKN1C). These imprinted genes may be associated with reproductive biology such as endometriosis, pregnancy loss, decidualization process and preeclampsia. DISCUSSION This study supports the possibility that aberrant epigenetic dysregulation of specific imprinting genes may contribute to endometriosis predisposition.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| |
Collapse
|