1
|
Misaka T, Hashimoto Y, Ashikaga R, Ishida T. Chemical shift-encoded MRI with compressed sensing combined with parallel imaging for proton density fat fraction measurement of the lumbar vertebral bone marrow. Medicine (Baltimore) 2024; 103:e37748. [PMID: 38608106 PMCID: PMC11018235 DOI: 10.1097/md.0000000000037748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/07/2024] [Indexed: 04/14/2024] Open
Abstract
We aimed to investigate the accuracy of proton density fat fraction (PDFF) measurement of the lumbar vertebral bone marrow using chemical shift-encoded magnetic resonance imaging (CSE-MRI) with compressed sensing combined with parallel imaging (CSPI). This study recruited a commercially available phantom, and 43 patients. Fully sampled data without CSPI and under-sampled data with CSPI acceleration factors of 2.4, 3.6, and 4.8 were acquired using a 1.5T imaging system. The relationships between PDFF measurements obtained with the no-CSPI acquisition and those obtained with each CSPI acquisition were assessed using Pearson correlation coefficient (r), linear regression analyses, and Bland-Altman analysis. The intra- and inter-observer variabilities of the PDFF measurements were evaluated using the intraclass correlation coefficient. PDFF measurements obtained with all acquisitions showed a significant correlation and strong agreement with the reference PDFF measurement of the phantom. PDFF measurements obtained using CSE-MRI with and without CSPI were positively correlated (all acquisitions: r = 0.99; P < .001). The mean bias was -0.31% to -0.17% with 95% limits of agreement within ±2.02%. The intra- and inter-observer agreements were excellent (intraclass correlation coefficient: 0.988 and 0.981, respectively). A strong agreement and positive correlation were observed between the PDFF measurements obtained using CSE-MRI with and without CSPI. PDFF measurement of the lumbar vertebral bone marrow using CSE-MRI with CSPI can be acquired with a maximum reduction of approximately 75% in the acquisition time compared with a fully sampled acquisition.
Collapse
Affiliation(s)
- Tomofumi Misaka
- Department of Radiology, Kindai University Nara Hospital, Ikoma, Japan
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | | | - Takayuki Ishida
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
2
|
Ornowski J, Dziesinski L, Hess M, Krug R, Fortin M, Torres‐Espin A, Majumdar S, Pedoia V, Bonnheim NB, Bailey JF. Thresholding approaches for estimating paraspinal muscle fat infiltration using T1- and T2-weighted MRI: Comparative analysis using water-fat MRI. JOR Spine 2024; 7:e1301. [PMID: 38222819 PMCID: PMC10782057 DOI: 10.1002/jsp2.1301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/09/2023] [Accepted: 10/31/2023] [Indexed: 01/16/2024] Open
Abstract
Background Paraspinal muscle fat infiltration is associated with spinal degeneration and low back pain, however, quantifying muscle fat using clinical magnetic resonance imaging (MRI) techniques continues to be a challenge. Advanced MRI techniques, including chemical-shift encoding (CSE) based water-fat MRI, enable accurate measurement of muscle fat, but such techniques are not widely available in routine clinical practice. Methods To facilitate assessment of paraspinal muscle fat using clinical imaging, we compared four thresholding approaches for estimating muscle fat fraction (FF) using T1- and T2-weighted images, with measurements from water-fat MRI as the ground truth: Gaussian thresholding, Otsu's method, K-mean clustering, and quadratic discriminant analysis. Pearson's correlation coefficients (r), mean absolute errors, and mean bias errors were calculated for FF estimates from T1- and T2-weighted MRI with water-fat MRI for the lumbar multifidus (MF), erector spinae (ES), quadratus lumborum (QL), and psoas (PS), and for all muscles combined. Results We found that for all muscles combined, FF measurements from T1- and T2-weighted images were strongly positively correlated with measurements from the water-fat images for all thresholding techniques (r = 0.70-0.86, p < 0.0001) and that variations in inter-muscle correlation strength were much greater than variations in inter-method correlation strength. Conclusion We conclude that muscle FF can be quantified using thresholded T1- and T2-weighted MRI images with relatively low bias and absolute error in relation to water-fat MRI, particularly in the MF and ES, and the choice of thresholding technique should depend on the muscle and clinical MRI sequence of interest.
Collapse
Affiliation(s)
- Jessica Ornowski
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Lucas Dziesinski
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Madeline Hess
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Roland Krug
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Maryse Fortin
- Department of Health, Kinesiology, and Applied PhysiologyConcordia UniversityMontrealQuébecCanada
| | - Abel Torres‐Espin
- School of Public Health SciencesFaculty of HealthUniversity of WaterlooWaterlooOntarioCanada
- Department of Physical TherapyUniversity of AlbertaEdmontonAlbertaCanada
- Department of Neurological SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Valentina Pedoia
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Noah B. Bonnheim
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Jeannie F. Bailey
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
3
|
De-Levie TK, Schiffenbauer YS, Druckmann I, Rouach V, Stern N, Binderman I, Nevo U. Quantitative MR Analysis of Changes in the Radius Bone Marrow in Osteoporosis. J Osteoporos 2023; 2023:7861495. [PMID: 38179189 PMCID: PMC10764646 DOI: 10.1155/2023/7861495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Purpose This pilot study aimed to explore the feasibility of scanning the human distal radius bone marrow in vivo to detect osteoporosis-related changes using magnetic resonance and evaluate whether the radius may serve as an accessible probing site for osteoporosis. This may lead in the future to the use of affordable means such as low-field MRI scanners for the monitoring of disease progression. Methods A clinical trial was performed using a 3T MR scanner, including 26 women assigned into three study groups: healthy-premenopausal (n = 7; mean age 48.6 ± 3.5 years), healthy-postmenopausal (n = 10; mean age 54.5 ± 5.6 years), and osteoporotic-postmenopausal (n = 9; mean age 61.3 ± 5.6 years). Marrow fat composition was evaluated using T2 maps, a two-compartment model of T1, and a Dixon pulse sequence. Results The osteoporotic group exhibited higher fat content than the other two groups and lower T2 values than the healthy-premenopausal group. Conclusions Osteoporosis-related changes in the composition of the distal radius bone marrow may be detected in vivo using MRI protocols. The scanning protocols chosen here can later be repeated using low-field MRI scanners, thus offering the potential for early detection and treatment monitoring, using an accessible, affordable means that may be applied in small clinics. This trial is registered with MOH_2018-05-23_002247, NCT03742362.
Collapse
Affiliation(s)
- Tamar K. De-Levie
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Ido Druckmann
- Skeletal Imaging Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Vanessa Rouach
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Naftali Stern
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- The Sagol Center for Epigenetics, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Itzhak Binderman
- Department of Oral Biology, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Uri Nevo
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Smith DR, Caban-Rivera DA, Williams LT, Van Houten EE, Bayly PV, Paulsen KD, McGarry MD, Johnson CL. In vivoestimation of anisotropic mechanical properties of the gastrocnemius during functional loading with MR elastography. Phys Med Biol 2023; 68:10.1088/1361-6560/acb482. [PMID: 36652716 PMCID: PMC9943592 DOI: 10.1088/1361-6560/acb482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Objective.In vivoimaging assessments of skeletal muscle structure and function allow for longitudinal quantification of tissue health. Magnetic resonance elastography (MRE) non-invasively quantifies tissue mechanical properties, allowing for evaluation of skeletal muscle biomechanics in response to loading, creating a better understanding of muscle functional health.Approach. In this study, we analyze the anisotropic mechanical response of calf muscles using MRE with a transversely isotropic, nonlinear inversion algorithm (TI-NLI) to investigate the role of muscle fiber stiffening under load. We estimate anisotropic material parameters including fiber shear stiffness (μ1), substrate shear stiffness (μ2), shear anisotropy (ϕ), and tensile anisotropy (ζ) of the gastrocnemius muscle in response to both passive and active tension.Main results. In passive tension, we found a significant increase inμ1,ϕ,andζwith increasing muscle length. While in active tension, we observed increasingμ2and decreasingϕandζduring active dorsiflexion and plantarflexion-indicating less anisotropy-with greater effects when the muscles act as agonist.Significance. The study demonstrates the ability of this anisotropic MRE method to capture the multifaceted mechanical response of skeletal muscle to tissue loading from muscle lengthening and contraction.
Collapse
Affiliation(s)
- Daniel R. Smith
- Department of Biomedical Engineering, University of Delaware, Newark DE, 19711
- Department of Orthopaedics, Emory University School of Medicine, Atlanta GA, 30307
- Emory Sports Performance and Research Center, Flowery Branch GA, 30542
| | | | - L. Tyler Williams
- Department of Biomedical Engineering, University of Delaware, Newark DE, 19711
| | | | - Phil V. Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis MO
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover NH, 03755
- Dartmouth-Hitchcock Medical Center, Lebanon NH, 03756
| | | | - Curtis L. Johnson
- Department of Biomedical Engineering, University of Delaware, Newark DE, 19711
| |
Collapse
|
5
|
Age and gender differences in vertebral bone marrow adipose tissue and bone mineral density, based on MRI and quantitative CT. Eur J Radiol 2023; 159:110669. [PMID: 36608598 DOI: 10.1016/j.ejrad.2022.110669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate the age and gender differences in vertebral bone marrow adipose tissue (BMAT) and volumetric bone mineral density (vBMD). METHOD A total of 427 healthy adults, including 175 males (41 %) and 252 females (59 %) with an age range of 21-82 years, underwent MRI and quantitative CT examinations of the lumbar spine (L2-L4), and the corresponding BMAT and vBMD values were measured. The age-related progressions of BMAT and vBMD in men and women were evaluated and compared. RESULTS In males, vertebral BMAT rose gradually throughout life, while in females, BMAT increased sharply between 41 and 60 years of age. In participants aged < 40 years, BMAT was greater in males compared to females (p ≤ 0.01), while after the age of 60, BMAT was higher in females (p < 0.05). In males, vBMD decreased gradually with age, while in females, there was a sharp decrease in vBMD after the age of 40 years. At age of 31-40 years, vBMD was higher in females (P < 0.002), while at age > 60 years, vBMD was higher in males (61-70 years, P < 0.01; > 70 years, P = 0.02). CONCLUSIONS We found significant age and gender differences in lumbar BMAT and vBMD. These findings will help to improve our understanding of the interaction between bone marrow fat content and bone mineral density in the ageing process.
Collapse
|
6
|
Berg EA, Huang Z, Wang Y, Baidal JW, Fennoy I, Lavine JE, Zitsman J, Shen W. Magnetic Resonance Imaging to Assess Body Composition Change in Adolescents With Obesity After Sleeve Gastrectomy. J Pediatr Gastroenterol Nutr 2022; 75:761-767. [PMID: 36070531 PMCID: PMC9675718 DOI: 10.1097/mpg.0000000000003607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Metabolic and bariatric surgery is the most effective weight loss treatment for severe obesity. The number of adolescents undergoing sleeve gastrectomy is increasing. We investigated changes in body composition in adolescents undergoing sleeve gastrectomy 12-26 weeks post-operatively using whole-body magnetic resonance imaging (WB-MRI). METHODS This prospective cohort study assessed changes in adipose tissue compartments (ie, visceral, subcutaneous, and intermuscular) and muscle in 18 obese adolescents, ages 14-19, 89% female, with body mass index z -score of 2.6 ± 0.25 (range 2.16-3.2). All underwent WB-MRI 1.5-17 weeks pre-operatively and 12-26 weeks post-operatively. RESULTS Pre- and post-operative WB-MRI showed decreases in all adipose tissue compartments, as well as decreased skeletal muscle and liver fat fraction ( P < 0.0001). The post-operative percentage loss of adipose tissue in subcutaneous, visceral, and intermuscular compartments (89.0%, 5.8%, 5.2%, respectively) was similar to the pre-operative percentages of corresponding adipose tissue compartments (90.5%, 5.0%, 4.5%, respectively). Of note, participants with obstructive sleep apnea had significantly higher pre-operative volume of subcutaneous and intermuscular adipose tissue than participants without obstructive sleep apnea ( P = 0.003). CONCLUSIONS We found, contrary to what is reported to occur in adults, that pre-operative percentage loss of adipose tissue in subcutaneous, visceral, and intermuscular compartments was similar to the post-operative percentage loss of corresponding adipose tissue compartments in adolescents 12-26 weeks after sleeve gastrectomy.
Collapse
Affiliation(s)
- Elizabeth A. Berg
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center
| | - Zixing Huang
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center
| | - Youya Wang
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center
| | - Jennifer Woo Baidal
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center
| | - Ilene Fennoy
- Division of Pediatric Endocrinology, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center
| | - Joel E. Lavine
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center
| | - Jeffrey Zitsman
- Division of Pediatric Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center
| | - Wei Shen
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center
- Columbia Magnetic Resonance Research Center (CMRRC), Columbia University
| |
Collapse
|
7
|
Aparisi Gómez MP, Ayuso Benavent C, Simoni P, Musa Aguiar P, Bazzocchi A, Aparisi F. Imaging of Bone Marrow: From Science to Practice. Semin Musculoskelet Radiol 2022; 26:396-411. [PMID: 36103883 DOI: 10.1055/s-0042-1745803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The study of the bone marrow may pose important challenges, due to its changing features over the life span, metabolic stress, and in cases of disease or treatment. Bone marrow adipocytes serve as storage tissue, but they also have endocrine and paracrine functions, contributing to local and systemic metabolism.Among different techniques, magnetic resonance (MR) has the benefit of imaging bone marrow directly. The use of advanced MR techniques for bone marrow study has rapidly found clinical applications. Beyond the clinical uses, it has opened up pathways to assess and quantify bone marrow components, establishing the groundwork for further study of its implications in physiologic and pathologic conditions.We summarize the features of the bone marrow as an organ, address the different modalities available for its study, with a special focus on MR advanced techniques and their addition to analysis in recent years, and review some of the challenges in interpreting the appearance of bone marrow.
Collapse
Affiliation(s)
- Maria Pilar Aparisi Gómez
- Department of Radiology, Auckland City Hospital, Auckland, New Zealand.,Department of Radiology, IMSKE, Valencia, Spain
| | | | - Paolo Simoni
- Department of Radiology, "Reine Fabiola" Children's University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Paula Musa Aguiar
- Serdil, Clinica de Radiologia e Diagnóstico por Imagem, Porto Alegre - RS, Brazil
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francisco Aparisi
- Department of Radiology, Hospital Vithas Nueve de Octubre, Valencia, Spain
| |
Collapse
|
8
|
Sollmann N, Kirschke JS, Kronthaler S, Boehm C, Dieckmeyer M, Vogele D, Kloth C, Lisson CG, Carballido-Gamio J, Link TM, Karampinos DC, Karupppasamy S, Beer M, Krug R, Baum T. Imaging of the Osteoporotic Spine - Quantitative Approaches in Diagnostics and for the Prediction of the Individual Fracture Risk. ROFO-FORTSCHR RONTG 2022; 194:1088-1099. [PMID: 35545103 DOI: 10.1055/a-1770-4626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Osteoporosis is a highly prevalent systemic skeletal disease that is characterized by low bone mass and microarchitectural bone deterioration. It predisposes to fragility fractures that can occur at various sites of the skeleton, but vertebral fractures (VFs) have been shown to be particularly common. Prevention strategies and timely intervention depend on reliable diagnosis and prediction of the individual fracture risk, and dual-energy X-ray absorptiometry (DXA) has been the reference standard for decades. Yet, DXA has its inherent limitations, and other techniques have shown potential as viable add-on or even stand-alone options. Specifically, three-dimensional (3 D) imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), are playing an increasing role. For CT, recent advances in medical image analysis now allow automatic vertebral segmentation and value extraction from single vertebral bodies using a deep-learning-based architecture that can be implemented in clinical practice. Regarding MRI, a variety of methods have been developed over recent years, including magnetic resonance spectroscopy (MRS) and chemical shift encoding-based water-fat MRI (CSE-MRI) that enable the extraction of a vertebral body's proton density fat fraction (PDFF) as a promising surrogate biomarker of bone health. Yet, imaging data from CT or MRI may be more efficiently used when combined with advanced analysis techniques such as texture analysis (TA; to provide spatially resolved assessments of vertebral body composition) or finite element analysis (FEA; to provide estimates of bone strength) to further improve fracture prediction. However, distinct and experimentally validated diagnostic criteria for osteoporosis based on CT- and MRI-derived measures have not yet been achieved, limiting broad transfer to clinical practice for these novel approaches. KEY POINTS:: · DXA is the reference standard for diagnosis and fracture prediction in osteoporosis, but it has important limitations.. · CT- and MRI-based methods are increasingly used as (opportunistic) approaches.. · For CT, particularly deep-learning-based automatic vertebral segmentation and value extraction seem promising.. · For MRI, multiple techniques including spectroscopy and chemical shift imaging are available to extract fat fractions.. · Texture and finite element analyses can provide additional measures for vertebral body composition and bone strength.. CITATION FORMAT: · Sollmann N, Kirschke JS, Kronthaler S et al. Imaging of the Osteoporotic Spine - Quantitative Approaches in Diagnostics and for the Prediction of the Individual Fracture Risk. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1770-4626.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States.,Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan Stefan Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sophia Kronthaler
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christof Boehm
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniel Vogele
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Christopher Kloth
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | | | - Julio Carballido-Gamio
- Department of Radiology, University of Colorado - Anschutz Medical Campus, Aurora, CO, United States
| | - Thomas Marc Link
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Dimitrios Charalampos Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Subburaj Karupppasamy
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design, Singapore.,Sobey School of Business, Saint Mary's University, Halifax, NS, Canada
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
9
|
Lins CF, Salmon CEG, de Souza LA, Moraes RDS, Silva-Pinto AC, Matos MA, Nogueira-Barbosa MH. Six-point DIXON and Magnetic Resonance Spectroscopy Techniques in Quantifying Bone Marrow Fat in Sickle Cell Disease. Acad Radiol 2022; 29:e73-e81. [PMID: 34257024 DOI: 10.1016/j.acra.2021.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/21/2021] [Accepted: 06/04/2021] [Indexed: 01/30/2023]
Abstract
RATIONALE AND OBJECTIVES To compare bone marrow fat quantification using magnetic resonance spectroscopy (MRS) and six-point DIXON (6PD) techniques in patients with sickle cell disease (SCD) and healthy subjects. MATERIALS AND METHODS Prospective study, with 43 SCD patients (24 homozygous [SS], 19 double heterozygous [SC), and 41 healthy subjects paired by age, weight and sex with SCD patients. All participants underwent magnetic resonance imaging with 6PD and single voxel MRS in the L3 vertebral body. Pearson's correlation, ROC curve, and bland-altman analysis were performed, p-values ≤0.05 were considered statistically significant for all tests. RESULTS Significant linear correlation was found between fat fraction (FF) by 6PD and Total Lipids (TL) (r = 0.932; p < 0.001) and Saturated Lipids (SL) (r = 0.934; p < 0.001), in all subjects. Strong correlations were also identified considering subjects of the SS/SC subgroups. Despite high correlations, no significant difference was observed only between FF and SL in the SS subgroup (Bland-Altman analysis), indicating excellent agreement between the fat estimations in this specific situation. Significant differences were observed in all variables (FF, TL, SL) comparing the SCD and healthy subjects. The ROC curve between SCD and healthy subjects showed the following areas under the curve: FF(0.924) > TL(0.883) > SL(0.892). CONCLUSIONS The comparison between fat quantification by the 6PD with MRS demonstrated an excellent correlation in SCD patients, especially in the SS subgroup, which usually has a higher degree of hemolysis. The diagnostic performance of 6PD and MRS is similar, with advantages of shorter imaging processing time and larger studied area with the 6PD.
Collapse
Affiliation(s)
- Carolina Freitas Lins
- Bahiana School of Medicine and Public Health Salvador, Bahia, Brasil; Clínica Delfin Medicina Diagnóstica, Salvador, Bahia, Brasil; Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto Medical School, USP Ribeirão Preto, Ribeirão Preto, São Paulo, Brasil; Ribeirão Preto Medical School Musculoskeletal Imaging Research Laboratory, São Paulo, Brasil.
| | - Carlos Ernesto Garrido Salmon
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP). São Paulo, Brasil
| | | | | | - Ana Cristina Silva-Pinto
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto Medical School, USP Ribeirão Preto, Ribeirão Preto, São Paulo, Brasil
| | | | - Marcello H Nogueira-Barbosa
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto Medical School, USP Ribeirão Preto, Ribeirão Preto, São Paulo, Brasil; Ribeirão Preto Medical School Musculoskeletal Imaging Research Laboratory, São Paulo, Brasil; Department of Orthopedic Surgery, University of Missouri Health Care, Columbia, Missouri
| |
Collapse
|
10
|
Pei XJ, Lian YF, Yan YC, Jiang T, Liu AJ, Shi QL, Pan ZY. Fat fraction quantification of lumbar spine: comparison of T1-weighted two-point Dixon and single-voxel magnetic resonance spectroscopy in diagnosis of multiple myeloma. ACTA ACUST UNITED AC 2021; 26:492-497. [PMID: 32755881 DOI: 10.5152/dir.2020.19401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE We aimed to investigate the value of T1-weighted two-point Dixon technique and single-voxel magnetic resonance spectroscopy (MRS) in diagnosis of multiple myeloma (MM) through quantifying fat content of vertebral marrow. METHODS A total of 30 MM patients and 30 healthy volunteers underwent T1-weighted two-point Dixon and single-voxel MRS imaging. The fat fraction map (FFM) was reconstructed from the Dixon images using the equation FFM = Lip/In, where Lip represents fat maps and In represents in-phase images. The fat fraction (FF) of MRS was calculated by using the integral area of Lip peak divided by the sum of integral area of Lip peak and water peak. RESULTS FF values measured by the Dixon technique and MRS were significantly decreased in MM patients (45.99%±3.39% and 47.63%±4.38%) compared with healthy controls (64.43%±0.96% and 76.22%±1.91%) (P < 0.001 with both methods). FF values measured by Dixon technique were significantly positively correlated to those measured by MRS in MM (r = 0.837, P < 0.001) and healthy control group (r = 0.735, P < 0.001), respectively. There was no significant difference between area under the curve (AUC) obtained by the Dixon technique (0.878±0.047; range, 0.785 to 0.971; optimal cutoff, 56.35 for healthy controls vs. MM) and MRS (0.883±0.047; range, 0.791 to 0.974; optimal cutoff, 61.00 for healthy controls vs. MM). The ability of Dixon technique to differentiate MM group from healthy controls was equivalent to single-voxel MRS. CONCLUSION Regarding detection of fat contents in vertebral bone, T1-weighted two-point Dixon technique exhibited equivalent performance to single-voxel MRS in the diagnosis of multiple myeloma. Moreover, two-point Dixon is a more convenient and stable technique for assessing bone marrow changes in MM patients than single-voxel MRS.
Collapse
Affiliation(s)
- Xiao-Jiao Pei
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yu-Fei Lian
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yu-Chang Yan
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ai-Jun Liu
- Department of Hematology,Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qing-Lei Shi
- Scientific Clinical Specialist, Siemens Healthcare Ltd., Beijing, China
| | - Zhen-Yu Pan
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Beekman KM, Akkerman EM, Streekstra GJ, Veldhuis‐Vlug AG, Acherman Y, Gerdes VE, den Heijer M, Maas M, Bravenboer N, Bisschop PH. The Effect of Roux-en-Y Gastric Bypass on Bone Marrow Adipose Tissue and Bone Mineral Density in Postmenopausal, Nondiabetic Women. Obesity (Silver Spring) 2021; 29:1120-1127. [PMID: 33951317 PMCID: PMC8359834 DOI: 10.1002/oby.23171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/07/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES This study aimed to determine the effect of bariatric surgery-induced weight loss on bone marrow adipose tissue (BMAT) and bone mineral density (BMD) in postmenopausal, nondiabetic women. METHODS A total of 14 postmenopausal, nondiabetic women with obesity who were scheduled for laparoscopic Roux-en-Y gastric bypass surgery (RYGB) were included in this study. Vertebral bone marrow fat signal fraction was determined by quantitative chemical shift magnetic resonance imaging, and vertebral volumetric BMD (vBMD) was determined by quantitative computed tomography before surgery and 3 and 12 months after surgery. Data were analyzed by linear mixed model. RESULTS Body weight [mean (SD)] decreased after surgery from 108 (13) kg at baseline to 89 (12) kg at 3 months and 74 (11) kg at 12 months (P < 0.001). BMAT decreased after surgery from 51% (8%) at baseline to 50% (8%) at 3 months and 46% (7%) at 12 months (P = 0.004). vBMD decreased after surgery from 101 (26) mg/cm3 at baseline to 94 (28) mg/cm3 at 3 months (P = 0.003) and 94 (28) mg/cm3 at 12 months (P = 0.035). Changes in BMAT and vBMD were not correlated (ρ = -0.10 and P = 0.75). Calcium and vitamin D concentrations did not change after surgery. CONCLUSIONS RYGB decreases both BMAT (after 12 months) and vBMD (both after 3 months and 12 months) in postmenopausal, nondiabetic women. Changes in BMAT and vBMD were not correlated. These findings suggest that BMAT does not contribute to bone loss following RYGB.
Collapse
Affiliation(s)
- Kerensa M. Beekman
- Department of Radiology and Nuclear MedicineAmsterdam Movement SciencesAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
- Department of EndocrinologyAmsterdam Movement SciencesAmsterdam University Medical CenterVrije University, AmsterdamAmsterdamthe Netherlands
| | - Erik M. Akkerman
- Department of Radiology and Nuclear MedicineAmsterdam Movement SciencesAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Geert J. Streekstra
- Department of Radiology and Nuclear MedicineAmsterdam Movement SciencesAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
- Department of Biomedical Engineering and PhysicsAmsterdam Movement SciencesAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Annegreet G. Veldhuis‐Vlug
- Department of Internal MedicineJan van Goyen Medical Center/Onze Lieve Vrouwe GasthuisAmsterdamthe Netherlands
- Department of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
| | - Yair Acherman
- Department of SurgerySpaarne GasthuisHaarlemthe Netherlands
| | - Victor E. Gerdes
- Department of Vascular MedicineAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Martin den Heijer
- Department of EndocrinologyAmsterdam Movement SciencesAmsterdam University Medical CenterVrije University, AmsterdamAmsterdamthe Netherlands
| | - Mario Maas
- Department of Radiology and Nuclear MedicineAmsterdam Movement SciencesAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Nathalie Bravenboer
- Department of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Department of Clinical ChemistryResearch Laboratory Bone and Calcium MetabolismAmsterdam Movement SciencesAmsterdam University Medical CenterVrije University, AmsterdamAmsterdamthe Netherlands
| | - Peter H. Bisschop
- Department of EndocrinologyAmsterdam Movement SciencesAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
12
|
Lins CF, Salmon CEG, de Souza LA, Moraes RDS, Silva-Pinto AC, Matos MA, Nogueira-Barbosa MH. Qualitative and quantitative magnetic resonance imaging evaluation of bone tissue vaso-occlusive events in patients with sickle cell disease. Bone 2021; 148:115961. [PMID: 33866047 DOI: 10.1016/j.bone.2021.115961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/20/2021] [Accepted: 04/11/2021] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To evaluate the association between bone changes due to vaso-occlusive events in sickle cell disease (SCD) revealed by conventional MRI sequences and the fat fraction obtained using a 6-point DIXON technique (FFdix), in an attempt to use quantitative data as a biomarker for bone complications. METHODS Cross-sectional study, with 48 SCD patients, 26-homozygous (HbSS), and 22-compound heterozygous (HbSC). Forty-eight healthy individuals paired by age, weight, and sex with SCD patients. All participants underwent lumbar spine and pelvis MRI. Conventional sequences: bone complications related to vaso-occlusive events-femoral head avascular necrosis, bone infarctions, "H"-shaped vertebrae, bone marrow necrosis. Six-point DIXON technique: quantitative evaluation of the bone marrow at pre-established sites (lumbar vertebrae, sacrum, iliacs, femoral heads, greater femoral trochanters, femoral necks). Pearson's correlation, ROC curve, and binary logistic regression analysis were performed. RESULTS The most frequent findings in the SCD group included femoral head avascular necrosis (75%), bone infarctions (58.3%), "H"-shaped vertebrae (58.3%), and typical imaging findings of bone marrow necrosis (8.3%). Cortical bone thickness in the proximal femoral diaphysis in patients with SCD was moderately negatively correlated with FFdix in lumbar vertebrae, iliacs, femoral necks, and first sacral vertebrae. The ROC curves and odds ratios demonstrated excellent performance of FFdix in all the evaluated anatomical sites and identified patients having bone complications. CONCLUSIONS FFdix could serve as a potential biomarker in SCD because of its association with bone complications secondary to vaso-occlusive events in patients with SCD, especially in femoral heads, femoral necks, and iliacs.
Collapse
Affiliation(s)
- Carolina Freitas Lins
- Bahiana School of Medicine and Public Health (EBMSP), Av. Dom João VI, 275, Brotas, Salvador, Bahia, Brazil; Clínica Delfin Medicina Diagnóstica, Av. Antônio Carlos Magalhães, 442, Pituba, Salvador, Bahia, Brazil; Ribeirão Preto Medical School, USP Ribeirão Preto, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Campus Universitário s/n - Monte Alegre, Ribeirão Preto, SP, Brazil; Ribeirão Preto Medical School Musculoskeletal Imaging Research Laboratory, Brazil.
| | - Carlos Ernesto Garrido Salmon
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - Luana Amorim de Souza
- Bahiana School of Medicine and Public Health (EBMSP), Av. Dom João VI, 275, Brotas, Salvador, Bahia, Brazil
| | - Roberta de Souza Moraes
- Centro Universitário Maurício de Nassau (UNINASSAU), Rua dos Maçons, 364, Pituba, Salvador, Bahia, Brazil
| | - Ana Cristina Silva-Pinto
- Ribeirão Preto Medical School, USP Ribeirão Preto, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Campus Universitário s/n - Monte Alegre, Ribeirão Preto, SP, Brazil
| | - Marcos Almeida Matos
- Bahiana School of Medicine and Public Health (EBMSP), Av. Dom João VI, 275, Brotas, Salvador, Bahia, Brazil
| | - Marcello H Nogueira-Barbosa
- Ribeirão Preto Medical School, USP Ribeirão Preto, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Campus Universitário s/n - Monte Alegre, Ribeirão Preto, SP, Brazil; Ribeirão Preto Medical School Musculoskeletal Imaging Research Laboratory, Brazil; Department of Orthopedic Surgery, University of Missouri Health Care, Columbia, MO, United States
| |
Collapse
|
13
|
Shen W, Chen J, Zhou J, Martin CK, Ravussin E, Redman LM. Effect of 2-year caloric restriction on organ and tissue size in nonobese 21- to 50-year-old adults in a randomized clinical trial: the CALERIE study. Am J Clin Nutr 2021; 114:1295-1303. [PMID: 34159359 PMCID: PMC8645192 DOI: 10.1093/ajcn/nqab205] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Sustained calorie restriction (CR) promises to extend the lifespan. The effect of CR on changes in body mass across tissues and organs is unclear. OBJECTIVES We used whole-body MRI to evaluate the effect of 2 y of CR on changes in body composition. METHODS In an ancillary study of the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE) trial, 43 healthy adults [25-50 y; BMI (kg/m2): 22-28] randomly assigned to 25% CR (n = 28) or ad libitum (AL) eating (n = 15) underwent whole-body MRI at baseline and month 24 to measure adipose tissue in subcutaneous, visceral, and intermuscular depots (SAT, VAT, and IMAT, respectively); skeletal muscle; and organs including brain, liver, spleen, and kidneys but not heart. RESULTS The CR group lost more adipose tissue and lean tissue than controls (P < 0.05). In the CR group, at baseline, total tissue volume comprised 32.1%, 1.9%, and 1.0% of SAT, VAT, and IMAT, respectively. The loss of total tissue volume over 24 mo comprised 68.4%, 7.4%, and 2.2% of SAT, VAT, and IMAT, respectively, demonstrating preferential loss of fat vs. lean tissue. Although there is more muscle loss in CR than AL (P < 0.05), the loss of muscle over 24 mo in the CR group comprised only 17.2% of the loss of total tissue volume. Changes in organ volumes were not different between CR and AL. The degree of CR (% decrease in energy intake vs. baseline) significantly (P < 0.05) affected changes in VAT, IMAT, muscle, and liver volume (standardized regression coefficient ± standard error of estimates: 0.43 ± 0.15 L, 0.40 ± 0.19 L, 0.55 ± 0.17 L, and 0.45 ± 0.18 L, respectively). CONCLUSIONS Twenty-four months of CR (intended, 25%; actual, 13.7%) in young individuals without obesity had effects on body composition, including a preferential loss of adipose tissue, especially VAT, over the loss of muscle and organ tissue. This trial was registered at www.clinicaltrials.gov as NCT02695511.
Collapse
Affiliation(s)
- Wei Shen
- Address correspondence to WS (e-mail: )
| | - Jun Chen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - Jane Zhou
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - Corby K Martin
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | |
Collapse
|
14
|
Lins CF, Salmon CEG, Nogueira-Barbosa MH. Applications of the Dixon technique in the evaluation of the musculoskeletal system. Radiol Bras 2021; 54:33-42. [PMID: 33583975 PMCID: PMC7869722 DOI: 10.1590/0100-3984.2019.0086] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The acquisition of images with suppression of the fat signal is very useful in clinical practice and can be achieved in a variety of sequences. The Dixon technique, unlike other fat suppression techniques, allows the signal of fat to be suppressed in the postprocessing rather than during acquisition, as well as allowing the visualization of maps showing the distribution of water and fat. This review of the Dixon technique aims to illustrate the basic physical principles, to compare the technique with other magnetic resonance imaging sequences for fat suppression or fat quantification, and to describe its applications in the study of diseases of the musculoskeletal system. Many variants of the Dixon technique have been developed, providing more consistent separation of the fat and water signals, as well as allowing correction for many confounding factors. It allows homogeneous fat suppression, being able to be acquired in combination with several other sequences, as well as with different weightings. The technique also makes it possible to obtain images with and without fat suppression from a single acquisition. In addition, the Dixon technique can be used as a quantitative method, allowing the proportion of tissue fat to be determined, and, in more updated versions, can quantify tissue iron.
Collapse
Affiliation(s)
- Carolina Freitas Lins
- Escola Bahiana de Medicina e Saúde Pública, Salvador, BA, Brazil.,Delfin Inteligência Diagnóstica, Salvador, BA, Brazil
| | - Carlos Ernesto Garrido Salmon
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
15
|
Ji X, Huang W, Dong H, Shen Z, Zheng M, Zou D, Shen W, Xia S. Evaluation of bone marrow infiltration in multiple myeloma using whole-body diffusion-weighted imaging and T1-weighted water-fat separation Dixon. Quant Imaging Med Surg 2021; 11:641-651. [PMID: 33532264 DOI: 10.21037/qims-20-289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Multiple myeloma (MM) is a blood cancer caused by the unlimited proliferation of intramedullary plasma cells. The presence of focal lesions (FLs) is presumed to be a more relevant factor for patient outcomes and risk distribution than diffuse bone marrow signal abnormalities. Signal changes in these FLs also have a good correlation with prognosis. As the cell density increased, a lower apparent diffusion coefficient (ADC) value was found with the diffusion-weighted imaging (DWI) sequence. Therefore, whole-body magnetic resonance imaging (MRI) with DWI sequences is sensitive to cell density and viability and may be vital for disease detection and therapy response assessments. However, the correlation between the DWI signal and the degree of bone destruction and the proportion of bone marrow plasma cells (BMPC) was still unclear in patients with MM. Water-fat separation MRI is used mainly for evaluating liver and bone marrow fat quantification, and fat quantification in other diseases. Meanwhile, it is also possible to assess the extent of bone marrow invasion in medullary lesions. This study aimed to investigate the correlation between ADC values from whole-body DWI and water/fat MRI signals from T1-weighted water-fat separation in evaluating bone marrow infiltration in patients with MM. Methods The study included 35 patients with MM who underwent whole-body DWI and T1-weighted water-fat separation Dixon examinations before therapy. The ADC values, normalized fat signal intensity (nMfat), normalized water molecular signal intensity (nMwater), and normalized fat fraction (nFF) of the thoracolumbar spine was measured in FLs and the normal-appearing bone marrow (NABM). The differences in values were compared using the independent-samples t-test. The correlation between ADC values and water-fat MRI signals was estimated using the Pearson or Spearman correlation test. The correlation between the MRI above parameters and proportions of BMPC was also explored. Results Statistically significant differences were found between the mean ADC values in FLs and NABM (0.72 vs. 0.33 mm2/s, P<0.0001). Significantly elevated nMwater values and decreased nMfat and nFF values were observed in FLs; no correlations were found in NABM (P>0.05). The ADC value highly correlated with nMfat and nFF values and moderately with the nMwater value in FLs (r=-0.899, -0.834, 0.642, respectively, P<0.0001). Correlations were also observed between the proportion of BMPC and MRI parameters in MM (r=0.984, 0.716, -0.938, and -0.905, respectively, P<0.05). Conclusions The ADC value combined with water-fat separation parameters could be used for evaluating thoracolumbar bone marrow infiltration in MM. All parameters correlated with the proportion of BMPC, which helped assess the early response in MM therapy.
Collapse
Affiliation(s)
- Xiaodong Ji
- Radiology Department, First Central Clinical College, Tianjin Medical University, Tianjin, China.,Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Huazheng Dong
- Radiology Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Zhiwei Shen
- Philips Healthcare, World Profit Centre, Beijing, China
| | - Meizhu Zheng
- Radiological Department, Third Central Hospital of Tianjin, Tianjin, China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Shuang Xia
- Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
16
|
Aparisi Gómez MP, Ayuso Benavent C, Simoni P, Aparisi F, Guglielmi G, Bazzocchi A. Fat and bone: the multiperspective analysis of a close relationship. Quant Imaging Med Surg 2020; 10:1614-1635. [PMID: 32742956 DOI: 10.21037/qims.2020.01.11] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The study of bone has for many years been focused on the study of its mineralized component, and one of the main objects of study as radiology developed as a medical specialty. The assessment has until recently been almost limited to its role as principal component of the scaffolding of the human body. Bone is a very active tissue, in continuous cross-talk with other organs and systems, with functions that are endocrine and paracrine and that have an important involvement in metabolism, ageing and health in general. Bone is also the continent for the bone marrow, in the form of "yellow marrow" (mainly adipocytes) or "red marrow" (hematopoietic cells and adipocytes). Recently, numerous studies have focused on these adipocytes contained in the bone marrow, often referred to as marrow adipose tissue (MAT). Bone marrow adipocytes do not only work as storage tissue, but are also endocrine and paracrine cells, with the potential to contribute to local bone homeostasis and systemic metabolism. Many metabolic disorders (osteoporosis, obesity, diabetes) have a complex and still not well-established relationship with MAT. The development of imaging methods, in particular the development of cross-sectional imaging has helped us to understand how much more laid beyond our classical way to look at bone. The impact on the mineralized component of bone in some cases (e.g., osteoporosis) is well-established, and has been extensively analyzed and quantified through different radiological methods. The application of advanced magnetic resonance techniques has unlocked the possibility to access the detailed study, characterization and quantification of the bone marrow components in a non-invasive way. In this review, we will address what is the evidence on the physiological role of MAT in normal skeletal health (interaction with the other bone components), during the process of normal aging and in the context of some metabolic disorders, highlighting the role that imaging methods play in helping with quantification and diagnosis.
Collapse
Affiliation(s)
- Maria Pilar Aparisi Gómez
- Department of Radiology, Auckland City Hospital, Auckland, New Zealand.,Department of Radiology, Hospital Vithas Nueve de Octubre, Valencia, Spain
| | | | - Paolo Simoni
- Department of Radiology, "Reine Fabiola" Children's University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Francisco Aparisi
- Department of Radiology, Hospital Vithas Nueve de Octubre, Valencia, Spain
| | - Giuseppe Guglielmi
- Department of Radiology, University of Foggia, Foggia, Italy.,Department of Radiology, Hospital San Giovanni Rotondo, Foggia, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
17
|
Sollmann N, Löffler MT, Kronthaler S, Böhm C, Dieckmeyer M, Ruschke S, Kirschke JS, Carballido-Gamio J, Karampinos DC, Krug R, Baum T. MRI-Based Quantitative Osteoporosis Imaging at the Spine and Femur. J Magn Reson Imaging 2020; 54:12-35. [PMID: 32584496 DOI: 10.1002/jmri.27260] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Osteoporosis is a systemic skeletal disease with a high prevalence worldwide, characterized by low bone mass and microarchitectural deterioration, predisposing an individual to fragility fractures. Dual-energy X-ray absorptiometry (DXA) has been the clinical reference standard for diagnosing osteoporosis and for assessing fracture risk for decades. However, other imaging modalities are of increasing importance to investigate the etiology, treatment, and fracture risk. The purpose of this work is to review the available literature on quantitative magnetic resonance imaging (MRI) methods and related findings in osteoporosis at the spine and proximal femur as the clinically most important fracture sites. Trabecular bone microstructure analysis at the proximal femur based on high-resolution MRI allows for a better prediction of osteoporotic fracture risk than DXA-based bone mineral density (BMD) alone. In the 1990s, T2 * mapping was shown to correlate with the density and orientation of the trabecular bone. Recently, quantitative susceptibility mapping (QSM), which overcomes some of the limitations of T2 * mapping, has been applied for trabecular bone quantifications at the spine, whereas ultrashort echo time (UTE) imaging provides valuable surrogate markers of cortical bone quantity and quality. Magnetic resonance spectroscopy (MRS) and chemical shift encoding-based water-fat MRI (CSE-MRI) enable the quantitative assessment of the nonmineralized bone compartment through extraction of the bone marrow fat fraction (BMFF). Furthermore, CSE-MRI allows for the differentiation of osteoporotic vs. pathologic fractures, which is of high clinical relevance. Lastly, advanced postprocessing and image analysis tools, particularly considering statistical parametric mapping and region-specific BMFF distributions, have high potential to further improve MRI-based fracture risk assessments at the spine and hip. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Maximilian T Löffler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sophia Kronthaler
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christof Böhm
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Julio Carballido-Gamio
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
18
|
Kim D, Kim SK, Lee SJ, Choo HJ, Park JW, Kim KY. Simultaneous Estimation of the Fat Fraction and R₂ * Via T₂ *-Corrected 6-Echo Dixon Volumetric Interpolated Breath-hold Examination Imaging for Osteopenia and Osteoporosis Detection: Correlations with Sex, Age, and Menopause. Korean J Radiol 2020; 20:916-930. [PMID: 31132817 PMCID: PMC6536792 DOI: 10.3348/kjr.2018.0032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/14/2019] [Indexed: 01/18/2023] Open
Abstract
Objective To investigate the relationships of T2*-corrected 6-echo Dixon volumetric interpolated breath-hold examination (VIBE) imaging-based fat fraction (FF) and R2* values with bone mineral density (BMD); determine their associations with sex, age, and menopause; and evaluate the diagnostic performance of the FF and R2* for predicting osteopenia and osteoporosis. Materials and Methods This study included 153 subjects who had undergone magnetic resonance (MR) imaging, including MR spectroscopy (MRS) and T2*-corrected 6-echo Dixon VIBE imaging. The FF and R2* were measured at the L4 vertebra. The male and female groups were divided into two subgroups according to age or menopause. Lin's concordance and Pearson's correlation coefficients, Bland-Altman 95% limits of agreement, and the area under the curve (AUC) were calculated. Results The correlation between the spectroscopic and 6-echo Dixon VIBE imaging-based FF values was statistically significant for both readers (pc = 0.940 [reader 1], 0.908 [reader 2]; both p < 0.001). A small measurement bias was observed for the MRS-based FF for both readers (mean difference = −0.3% [reader 1], 0.1% [reader 2]). We found a moderate negative correlation between BMD and the FF (r = −0.411 [reader 1], −0.436 [reader 2]; both p <0.001) with younger men and premenopausal women showing higher correlations. R2* and BMD were more significantly correlated in women than in men, and the highest correlation was observed in postmenopausal women (r = 0.626 [reader 1], 0.644 [reader 2]; both p < 0.001). For predicting osteopenia and osteoporosis, the FF had a higher AUC in men and R2* had a higher AUC in women. The AUC for predicting osteoporosis was highest with a combination of the FF and R2* in postmenopausal women (AUC = 0.872 [reader 1], 0.867 [reader 2]; both p < 0.001). Conclusion The FF and R2* measured using T2*-corrected 6-echo Dixon VIBE imaging can serve as predictors of osteopenia and osteoporosis. R2* might be useful for predicting osteoporosis, especially in postmenopausal women.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Radiology, Inje University College of Medicine, Busan Paik Hospital, Busan, Korea
| | - Sung Kwan Kim
- Department of Radiology, Inje University College of Medicine, Busan Paik Hospital, Busan, Korea
| | - Sun Joo Lee
- Department of Radiology, Inje University College of Medicine, Busan Paik Hospital, Busan, Korea.
| | - Hye Jung Choo
- Department of Radiology, Inje University College of Medicine, Busan Paik Hospital, Busan, Korea
| | - Jung Won Park
- Department of Radiology, Inje University College of Medicine, Busan Paik Hospital, Busan, Korea
| | - Kun Yung Kim
- Department of Radiology, Chonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
19
|
Cheng X, Li K, Zhang Y, Wang L, Xu L, Liu Y, Duanmu Y, Chen D, Tian W, Blake GM. The accurate relationship between spine bone density and bone marrow in humans. Bone 2020; 134:115312. [PMID: 32145459 DOI: 10.1016/j.bone.2020.115312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 01/11/2023]
Abstract
CONTEXT The accuracy of QCT measurements of lumbar spine trabecular volumetric bone mineral density (vBMD) is decreased due to differences in the amount of bone marrow adipose tissue (BMAT). OBJECTIVE To correct vBMD measurements for differences in marrow composition and investigate the true relationship between vBMD and BMAT. DESIGN Cross-sectional study. SETTING University teaching hospital. PARTICIPANTS Healthy Chinese subjects (233 women, 167 men) aged between 21 and 82 years. MAIN OUTCOME MEASURES vBMD and BMAT were measured using QCT (120 kV) and chemical shift-encoded MRI of the L2-L4 vertebrae. vBMD measurements were standardized to the European Spine Phantom (ESP) and corrected for differences in BMAT. Linear regression was used to analyze BMAT, ESP adjusted vBMD (vBMDESPcorr) and BMAT corrected vBMD (vBMDBMATcorr) against age and corrected vBMD against BMAT. RESULTS BMAT in the L2-L4 vertebral bodies increased with age in both sexes, with a faster rate of change in women compared with men (0.54%/year vs. 0.27%/year, P < 0.0001). After vBMD measurements were corrected for BMAT there were statistically significant changes in the slope of the regression line with age in both sexes (women: -3.00 ± 0.13 vs. -2.57 ± 0.11 mg/cm3/year, P < 0.0001; men: -1.92 ± 0.15 vs. -1.70 ± 0.14 mg/cm3/year, P < 0.0001). When vBMDBMATcorr was plotted against BMAT, vBMD decreased linearly with increasing BMAT in both sexes (women: -3.30 ± 0.18 mg/cm3/%; men: -2.69 ± 0.25 mg/cm3/%, P = 0.048). CONCLUSION Our approach reveals the true relationship between vBMD and BMAT and provides a new tool for studying the interaction between bone and marrow adipose tissue.
Collapse
Affiliation(s)
- Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Kai Li
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yong Zhang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Li Xu
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yandong Liu
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yangyang Duanmu
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Di Chen
- Department of Community Medical Care, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Wei Tian
- Department of Spine Surgery, The Fourth Clinical Medical College of Peking University, Beijing Jishuitan Hospital, Beijing 100035, China.
| | - Glen M Blake
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
20
|
Sollmann N, Zoffl A, Franz D, Syväri J, Dieckmeyer M, Burian E, Klupp E, Hedderich DM, Holzapfel C, Drabsch T, Kirschke JS, Rummeny EJ, Zimmer C, Hauner H, Karampinos DC, Baum T. Regional variation in paraspinal muscle composition using chemical shift encoding-based water-fat MRI. Quant Imaging Med Surg 2020; 10:496-507. [PMID: 32190574 DOI: 10.21037/qims.2020.01.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Paraspinal musculature forms one of the largest muscle compartments of the human body, but evidence for regional variation of its composition and dependency on gender or body mass index (BMI) is scarce. Methods This study applied six-echo chemical shift encoding-based water-fat magnetic resonance imaging (MRI) at 3 Tesla in 76 subjects (24 males and 52 females, age: 40.0±13.7 years, BMI: 25.4±5.6 kg/m2) to evaluate the proton density fat fraction (PDFF) of psoas muscles and erector spinae muscles, with the latter being divided into three segments in relation to levels of spine anatomy (L3-L5, T12-L2, and T9-T11). Results For the psoas muscles and the erector spinae muscles (L3-L5), gender differences in PDFF values were observed (PDFF psoas muscles: males: 5.1%±3.4% vs. females: 6.0%±2.2%, P=0.006; PDFF erector spinae muscles L3-L5: males: 10.7%±7.6% vs. females: 18.2%±6.8%, P<0.001). Furthermore, the PDFF of the erector spinae muscles (L3-L5) showed higher PDFF values when compared to the other segments (PDFF erector spinae muscles L3-L5 vs. T12-L2: P<0.001; PDFF erector spinae muscles L3-L5 vs. T9-T11: P<0.001) and showed to be independent of BMI, which was not the case for the other segments (T12-L2 or T9-T11) or the psoas muscles. When considering age and BMI as control variables, correlations of PDFF between segments of the erector spinae muscles remained significant for both genders. Conclusions This study explored regional variation of paraspinal muscle composition and dependency on gender and BMI, thus offering new insights into muscle physiology. The PDFF of the erector spinae muscles (L3-L5) was independent of BMI, suggesting that this level may be suited for representative paraspinal muscle segmentation and PDFF extraction as a biomarker for muscle alterations in the future.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Agnes Zoffl
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan Syväri
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Egon Burian
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Elisabeth Klupp
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christina Holzapfel
- Institute for Nutritional Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Theresa Drabsch
- Institute for Nutritional Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Hans Hauner
- Institute for Nutritional Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
21
|
Quantifying bone marrow fat using standard T1-weighted magnetic resonance images in children with typical development and in children with cerebral palsy. Sci Rep 2020; 10:4284. [PMID: 32152339 PMCID: PMC7062906 DOI: 10.1038/s41598-019-57030-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 11/09/2019] [Indexed: 11/08/2022] Open
Abstract
Excess bone marrow adiposity may have a negative effect on bone growth and development. The aim of this study was to determine whether a procedure using standard T1-weighted magnetic resonance images provides an accurate estimate of bone marrow fat in children with typical development and in children with mild spastic cerebral palsy (CP; n = 15/group; 4-11 y). Magnetic resonance imaging was used to acquire T1-weighted images. It was also used to acquire fat and water images using an iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) technique. Bone marrow fat volume and fat fraction in the middle-third of the tibia were determined using the standard T1-weighted images (BMFVT1 and BMFFT1, respectively) and the fat and water images (BMFVIDEAL and BMFFIDEAL, respectively). In both groups, BMFVT1 was highly correlated with (both r > 0.99, p < 0.001) and not different from (both p > 0.05) BMFVIDEAL. In both groups, BMFFT1 was moderately correlated with (both r = 0.71, p < 0.01) and not different from (both p > 0.05) BMFFIDEAL. There was no group difference in BMFVT1 or BMFVIDEAL (both p > 0.05). BMFFIDEAL was higher in children with CP (p < 0.05), but there was no group difference in BMFFT1 (p > 0.05). We conclude that a procedure using standard T1-weighted magnetic resonance images can produce estimates of bone marrow fat volume similar to estimates from the IDEAL technique in children. However, it is less sensitive to variation in the bone marrow fat fraction.
Collapse
|
22
|
Sebo ZL, Rendina-Ruedy E, Ables GP, Lindskog DM, Rodeheffer MS, Fazeli PK, Horowitz MC. Bone Marrow Adiposity: Basic and Clinical Implications. Endocr Rev 2019; 40:1187-1206. [PMID: 31127816 PMCID: PMC6686755 DOI: 10.1210/er.2018-00138] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
The presence of adipocytes in mammalian bone marrow (BM) has been recognized histologically for decades, yet, until recently, these cells have received little attention from the research community. Advancements in mouse transgenics and imaging methods, particularly in the last 10 years, have permitted more detailed examinations of marrow adipocytes than ever before and yielded data that show these cells are critical regulators of the BM microenvironment and whole-body metabolism. Indeed, marrow adipocytes are anatomically and functionally separate from brown, beige, and classic white adipocytes. Thus, areas of BM space populated by adipocytes can be considered distinct fat depots and are collectively referred to as marrow adipose tissue (MAT) in this review. In the proceeding text, we focus on the developmental origin and physiologic functions of MAT. We also discuss the signals that cause the accumulation and loss of marrow adipocytes and the ability of these cells to regulate other cell lineages in the BM. Last, we consider roles for MAT in human physiology and disease.
Collapse
Affiliation(s)
- Zachary L Sebo
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut
| | | | - Gene P Ables
- Orentreich Foundation for the Advancement of Science, Cold Spring, New York
| | - Dieter M Lindskog
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Matthew S Rodeheffer
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut
| | - Pouneh K Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
23
|
Degnan AJ, Ho-Fung VM, Ahrens-Nicklas RC, Barrera CA, Serai SD, Wang DJ, Ficicioglu C. Imaging of non-neuronopathic Gaucher disease: recent advances in quantitative imaging and comprehensive assessment of disease involvement. Insights Imaging 2019; 10:70. [PMID: 31289964 PMCID: PMC6616606 DOI: 10.1186/s13244-019-0743-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
Gaucher disease is an inherited metabolic disorder resulting in deficiency of lysosomal enzyme β-glucocerebrosidase causing the accumulation of abnormal macrophages (“Gaucher cells”) within multiple organs, most conspicuously affecting the liver, spleen, and bone marrow. As the most common glycolipid metabolism disorder, it is important for radiologists encountering these patients to be familiar with advances in imaging of organ and bone marrow involvement and understand the role of imaging in clinical decision-making. The recent advent of commercially available, reliable, and reproducible quantitative MRI acquisitions to measure fat fractions prompts revisiting the role of quantitative assessment of bone marrow involvement. This manuscript reviews the diverse imaging manifestations of Gaucher disease and discusses more optimal quantitative approaches to ascertain solid organ and bone marrow involvement with an emphasis on future applications of other quantitative methods including elastography.
Collapse
Affiliation(s)
- Andrew J Degnan
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA. .,Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Victor M Ho-Fung
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.,Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Rebecca C Ahrens-Nicklas
- Division of Human Genetics, The Children's Hospital of Philadelphia, Colket Translational Research Building, 3501 Civic Center Blvd, Floor 9, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Christian A Barrera
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Dah-Jyuu Wang
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Can Ficicioglu
- Division of Human Genetics, The Children's Hospital of Philadelphia, Colket Translational Research Building, 3501 Civic Center Blvd, Floor 9, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104, USA
| |
Collapse
|
24
|
Endo K, Takahata M, Sugimori H, Yamada S, Tadano S, Wang J, Todoh M, Ito YM, Takahashi D, Kudo K, Iwasaki N. Magnetic resonance imaging T1 and T2 mapping provide complementary information on the bone mineral density regarding cancellous bone strength in the femoral head of postmenopausal women with osteoarthritis. Clin Biomech (Bristol, Avon) 2019; 65:13-18. [PMID: 30928786 DOI: 10.1016/j.clinbiomech.2019.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/30/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Since bone mass is not the only determinant of bone strength, there has been increasing interest in incorporating the bone quality into fracture risk assessments. We aimed to examine whether the magnetic resonance imaging (MRI) T1 or T2 mapping value could provide information that is complementary to bone mineral density for more accurate prediction of cancellous bone strength. METHODS Four postmenopausal women with hip osteoarthritis underwent 3.0-T MRI to acquire the T1 and T2 values of the cancellous bone of the femoral head before total hip arthroplasty. After the surgery, the excised femoral head was portioned into multiple cubic cancellous bone specimens with side of 5 mm, and the specimens were then subjected to microcomputed tomography followed by biomechanical testing. FINDINGS The T1 value positively correlated with the yield stress (σy) and collapsed stress (σc). The T2 value did not correlate with the yield stress, but it correlated with the collapsed stress and strength reduction ratio (σc/σy), which reflects the progressive re-fracture risk. Partial correlation coefficient analyses, after adjusting for the bone mineral density, showed a statistically significant correlation between T1 value and yield stress. The use of multiple coefficients of determination by least squares analysis emphasizes the superiority of combining the bone mineral density and the MRI mapping values in predicting the cancellous bone strength compared with the bone mineral density-based prediction alone. INTERPRETATION The MRI T1 and T2 values predict cancellous bone strength including the change in bone quality.
Collapse
Affiliation(s)
- Kaori Endo
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Takahata
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | - Satoshi Yamada
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Shigeru Tadano
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Jeffrey Wang
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Masahiro Todoh
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Yoichi M Ito
- Department of Statistical Science, The Institute of Statistical Mathematics, Tokyo, Japan
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
25
|
Abstract
Bone strength is affected not only by bone mineral density (BMD) and bone microarchitecture but also its microenvironment. Recent studies have focused on the role of marrow adipose tissue (MAT) in the pathogenesis of bone loss. Osteoblasts and adipocytes arise from a common mesenchymal stem cell within bone marrow and many osteoporotic states, including aging, medication use, immobility, over - and undernutrition are associated with increased marrow adiposity. Advancements in imaging technology allow the non-invasive quantification of MAT. This article will review magnetic resonance imaging (MRI)- and computed tomography (CT)-based imaging technologies to assess the amount and composition of MAT. The techniques that will be discussed are anatomic T1-weighted MRI, water-fat imaging, proton MR spectroscopy, single energy CT and dual energy CT. Clinical applications of MRI and CT techniques to determine the role of MAT in patients with obesity, anorexia nervosa, and type 2 diabetes will be reviewed.
Collapse
Affiliation(s)
- Vibha Singhal
- Pediatric Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Miriam A Bredella
- Department of Radiology, Musculoskeletal Imaging and Interventions, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States.
| |
Collapse
|
26
|
Paccou J, Penel G, Chauveau C, Cortet B, Hardouin P. Marrow adiposity and bone: Review of clinical implications. Bone 2019; 118:8-15. [PMID: 29477645 DOI: 10.1016/j.bone.2018.02.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022]
Abstract
There is growing interest in the relationship between bone marrow fat (BMF) and skeletal health. Progress in clinical studies of BMF and skeletal health has been greatly enhanced by recent technical advances in our ability to measure BMF non-invasively. Magnetic resonance imagery (MRI) with or without spectroscopy is currently the standard technique for evaluating BMF content and composition in humans. This review focuses on clinical studies of marrow fat and its relationship with bone. The amount of marrow fat is associated with bone mineral density (BMD). Several studies have reported a significant negative association between marrow fat content and BMD in both healthy and osteoporotic populations. There may also be a relationship between marrow fat and fracture (mostly vertebral fracture), but data are scarce and further studies are needed. Furthermore, a few studies suggest that a lower proportion of unsaturated lipids in vertebral BMF may be associated with reduced BMD and greater prevalence of fracture. Marrow fat might be influenced by metabolic diseases associated with bone loss and fractures, such as diabetes mellitus, obesity and anorexia nervosa. An intriguing aspect of bariatric (weight loss) surgery is that it induces bone loss and fractures, but with different impacts on marrow fat depending on diabetic status. In daily practice, the usefulness for clinicians of assessing marrow fat using MRI is still limited. However, the perspectives are exciting, particularly in terms of improving the diagnosis and management of osteoporosis. Further studies are needed to better understand the regulators involved in the marrow fat-bone relationship and the links between marrow fat, other fat depots and energy metabolism.
Collapse
Affiliation(s)
- Julien Paccou
- Université de Lille, Université Littoral Côte d'Opale, PMOI EA 4490 faculté de chirurgie dentaire, place de Verdun, 59000 Lille, France; Service de rhumatologie, CHRU, 59000 Lille, France.
| | - Guillaume Penel
- Université de Lille, Université Littoral Côte d'Opale, PMOI EA 4490 faculté de chirurgie dentaire, place de Verdun, 59000 Lille, France
| | - Christophe Chauveau
- Univ. Littoral Côte d'Opale, Univ. Lille, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, F-62300 Boulogne-sur-Mer, France
| | - Bernard Cortet
- Université de Lille, Université Littoral Côte d'Opale, PMOI EA 4490 faculté de chirurgie dentaire, place de Verdun, 59000 Lille, France; Service de rhumatologie, CHRU, 59000 Lille, France
| | - Pierre Hardouin
- Univ. Littoral Côte d'Opale, Univ. Lille, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, F-62300 Boulogne-sur-Mer, France
| |
Collapse
|
27
|
Lee SH, Yoo HJ, Yu SM, Hong SH, Choi JY, Chae HD. Fat Quantification in the Vertebral Body: Comparison of Modified Dixon Technique with Single-Voxel Magnetic Resonance Spectroscopy. Korean J Radiol 2018; 20:126-133. [PMID: 30627028 PMCID: PMC6315074 DOI: 10.3348/kjr.2018.0174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/03/2018] [Indexed: 11/15/2022] Open
Abstract
Objective To compare the lumbar vertebral bone marrow fat-signal fractions obtained from six-echo modified Dixon sequence (6-echo m-Dixon) with those from single-voxel magnetic resonance spectroscopy (MRS) in patients with low back pain. Materials and Methods Vertebral bone marrow fat-signal fractions were quantified by 6-echo m-Dixon (repetition time [TR] = 7.2 ms, echo time (TE) = 1.21 ms, echo spacing = 1.1 ms, total imaging time = 50 seconds) and single-voxel MRS measurements in 25 targets (23 normal bone marrows, two focal lesions) from 24 patients. The point-resolved spectroscopy sequence was used for localized single-voxel MRS (TR = 3000 ms, TE = 35 ms, total scan time = 1 minute 42 seconds). A 2 × 2 × 1.5 cm3 voxel was placed within the normal L2 or L3 vertebral body, or other lesions including a compression fracture or metastasis. The bone marrow fat spectrum was characterized on the basis of the magnitude of measurable fat peaks and a priori knowledge of the chemical structure of triglycerides. The imaging-based fat-signal fraction results were then compared to the MRS-based results. Results There was a strong correlation between m-Dixon and MRS-based fat-signal fractions (slope = 0.86, R2 = 0.88, p < 0.001). In Bland-Altman analysis, 92.0% (23/25) of the data points were within the limits of agreement. Bland-Altman plots revealed a slight but systematic error in the m-Dixon based fat-signal fraction, which showed a prevailing overestimation of small fat-signal fractions (< 20%) and underestimation of high fat-signal fractions (> 20%). Conclusion Given its excellent agreement with single-voxel-MRS, 6-echo m-Dixon can be used for visual and quantitative evaluation of vertebral bone marrow fat in daily practice.
Collapse
Affiliation(s)
- Sang Hyup Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Jin Yoo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Man Yu
- Department of Radiological Science, College of Health Science, Gimcheon University, Gimcheon, Korea
| | - Sung Hwan Hong
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Ja-Young Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Dong Chae
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Zhao Y, Huang M, Ding J, Zhang X, Spuhler K, Hu S, Li M, Fan W, Chen L, Zhang X, Li S, Zhou Q, Huang C. Prediction of Abnormal Bone Density and Osteoporosis From Lumbar Spine MR Using Modified Dixon Quant in 257 Subjects With Quantitative Computed Tomography as Reference. J Magn Reson Imaging 2018; 49:390-399. [PMID: 30390360 DOI: 10.1002/jmri.26233] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/05/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Bone marrow fat increases when bone mass decreases, which could be attributed to the fact that adipogenesis competes with osteogenesis. Bone marrow fat has the potential to predict abnormal bone density and osteoporosis. PURPOSE To investigate the predictive value of using vertebral bone marrow fat fraction(BMFF) obtained from modified Dixon(mDixon) Quant in the determination of abnormal bone density and osteoporosis. STUDY TYPE Prospective. POPULATION 257 subjects (age: 20-79 years old; BMI: 16.6-32.9 kg/m2 ;181 females,76 males) without known spinal tumor, history of trauma, dysplasia, spinal surgery or hormone therapy. FIELD STRENGTH/SEQUENCE 3.0T/mDixon. ASSESSMENT BMFF was measured at the L1, L2 and L3 vertebral body on fat fraction maps of the lumbar spine. Bone mineral density (BMD) was obtained using quantitative computed tomography, which served as the reference standard. STATISTICAL TESTS The BMFF between the three groups (normal bone density, osteopenia and osteoporosis) was tested using one-way analysis of variance in SPSS. The correlation and partial correlation of BMFF and BMD were analyzed before and after controlling for age, sex and BMI. Logistic regression analysis using independent training and validation data was conducted to evaluate the performance of predicting abnormal BMD or osteoporosis using BMFF. RESULTS There was a significant difference in vertebral BMFF between the three groups (P < 0.001). Moderate inverse correlation was found between vertebral BMFF and BMD after controlling age, sex and BMI (r = -0.529; P < 0.001). The mean area under the curve, sensitivity, specificity and negative predictive value (NPV) for predicting abnormal bone density were 0.940, 0.877, 0.896, and 0.890, respectively. The corresponding results for predicting subjects with osteoporosis were 0.896, 0.848, 0.853, and 0.969, respectively. DATA CONCLUSION: mDixon Quant is a fast, simple, noninvasive and nonionizing method to access vertebral BMFF and has a high predictive power for identifying abnormal bone density and osteoporosis. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:390-399.
Collapse
Affiliation(s)
- Yinxia Zhao
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, Guangdong, China.,Department of Radiology, Stony Brook Medicine, Stony Brook, New York, USA
| | - Mingqian Huang
- Department of Radiology, Stony Brook Medicine, Stony Brook, New York, USA
| | - Jie Ding
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Xintao Zhang
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, Guangdong, China
| | - Karl Spuhler
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Shaoyong Hu
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, Guangdong, China
| | - Mianwen Li
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, Guangdong, China
| | - Wei Fan
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, Guangdong, China
| | - Lin Chen
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, Guangdong, China
| | - Xiaodong Zhang
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, Guangdong, China
| | - Shaolin Li
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, Guangdong, China
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Orthopaedic Hospital of Guangdong Province), Guangzhou, Guangdong, China
| | - Chuan Huang
- Department of Radiology, Stony Brook Medicine, Stony Brook, New York, USA.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA.,Department of Psychiatry, Stony Brook Medicine, Stony Brook, New York, USA
| |
Collapse
|
29
|
Dahlqvist JR, Fornander F, de Stricker Borch J, Oestergaard ST, Poulsen NS, Vissing J. Disease progression and outcome measures in spinobulbar muscular atrophy. Ann Neurol 2018; 84:754-765. [PMID: 30255951 DOI: 10.1002/ana.25345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Spinal and bulbar muscular atrophy (SBMA) is a slowly progressive disease with weakness of bulbar and extremity muscles. There is no curative treatment for the disease, but several clinical trials have been conducted over the past years. The results from these trials have uncovered a great need to develop quantitative, reliable outcome measures. In this study, we prospectively investigated disease progression over 18 months in 29 patients with genetically confirmed SBMA, using quantitative outcome measures, including Dixon magnetic resonance imaging (MRI). METHODS We used MRI to assess changes in muscle fat content and stationary dynamometry to assess changes in muscle strength. Disease progression was also investigated with the SBMA functional rating scale, bulbar rating scale, 6-minute walk test, and blood samples, among others. RESULTS Mean muscle fat content, muscle strength in knee extensors, handgrip strength, walking distance, and creatinine levels changed significantly. Mean muscle fat content increased by 2 ± 1.25%, and knee extension strength decreased from 83 ± 60 to 76 ± 56Nm, handgrip strength from 31 ± 13 to 29 ± 13kg, walking distance from 362 ± 216 to 336 ± 219m, and creatinine level from 58 ± 21 to 54 ± 20 μmol/l. Functional rating scores did not change. INTERPRETATION The present study demonstrates a slow and steady disease progression in SBMA. Dixon MRI detected increases in muscle fat content in all investigated muscles and is therefore a suitable candidate for an outcome measure in natural history or treatment studies in SBMA. The 6-minute walk test and handgrip strength also seem to be reliable outcome measures for SBMA. Ann Neurol 2018;84:762-773.
Collapse
Affiliation(s)
- Julia R Dahlqvist
- Copenhagen Neuromuscular Center, Section 3342, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Freja Fornander
- Copenhagen Neuromuscular Center, Section 3342, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Josefine de Stricker Borch
- Copenhagen Neuromuscular Center, Section 3342, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sofie T Oestergaard
- Copenhagen Neuromuscular Center, Section 3342, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Nanna S Poulsen
- Copenhagen Neuromuscular Center, Section 3342, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Section 3342, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Balzano RF, Mattera M, Cheng X, Cornacchia S, Guglielmi G. Osteoporosis: what the clinician needs to know? Quant Imaging Med Surg 2018. [PMID: 29541622 DOI: 10.21037/qims.2018.02.05] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Osteoporosis is a common condition and an important cause of disability. For this reason, early detection of the disease and patients at higher risk of bone fractures is compulsory. In the recent years, conventional quantitative methods have been spreading for the diagnosis of osteoporosis; moreover, new improvements in computed tomography (CT) and magnetic resonance imaging (MRI) have been made in this field and imaging findings may correlate to the morphological and structural changes within the bone.
Collapse
Affiliation(s)
- Rosario Francesco Balzano
- Department of Radiology, Università degli Studi di Foggia Scuole di Specializzazione di Area Medica, Viale Luigi Pinto, Foggia, Puglia, Italy
| | - Maria Mattera
- Department of Radiology, Università degli Studi di Foggia Scuole di Specializzazione di Area Medica, Viale Luigi Pinto, Foggia, Puglia, Italy
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | | | - Giuseppe Guglielmi
- Department of Radiology, Università degli Studi di Foggia, Viale Luigi Pinto, Foggia, Puglia, Italy.,Department of Radiology, Ospedale Casa Sollievo della Sofferenza, Viale cappuccini, San Giovanni Rotondo, Italy
| |
Collapse
|
31
|
Longitudinal assessment of marrow fat content using three-point Dixon technique in osteoporotic rabbits. Menopause 2018; 23:1339-1344. [PMID: 27529463 DOI: 10.1097/gme.0000000000000721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE In this longitudinal pilot study, we aimed to investigate the intra-, interobserver, and scan-rescan reproducibility of marrow fat fraction (FF) measurements using three-point Dixon imaging in osteoporotic rabbits: comparison with histopathology. METHODS Twenty female rabbits were randomly assigned to sham-operation and ovariectomy in combination with daily methylprednisolone hemisuccinate groups (n = 10 per group). Marrow FF by three-point Dixon technique and bone density by dual-energy x-ray absorptiometry were assessed at baseline, 6 and 12 weeks after operation. Intra-, inter-reader, and scan-rescan reliability of FF measurements were evaluated using intraclass correlation coefficient (ICC) and Bland-Altman 95% limit of agreement. Histomorphometry was performed to quantify marrow adipocyte parameters. RESULTS Intra- and inter-reader reproducibility of FF measurements was "substantial" (ICC = 0.984 and 0.978, respectively). Although the ICC for scan-rescan reliability was excellent (ICC = 0.962), increased measurement variability was observed using Bland-Altman plot. Relative to the sham-operated rabbits, the adipocytes mean diameter, density, and percent adipocytes area in the osteoporotic rabbits increased by 23.4%, 68.9%, and 117.0%, respectively. Marrow FF was positively correlated with the quantitative parameters of adipocytes, particularly with percent adipocyte area, but inversely associated with bone density. At the relatively early stage, the percentage of bone loss was similar to that of elevated fatty marrow in the osteoporotic rabbits; at the later stage, the change for the latter outweighed that of the former. CONCLUSIONS Results of three-point Dixon technique demonstrated a very reproducible manner within and between observers and acceptable scan-rescan performance in the assessment of marrow fat in rabbits.
Collapse
|
32
|
Li G, Xu Z, Yuan W, Chang S, Chen Y, Calimente H, Hu J. Short- and midterm reproducibility of marrow fat measurements using mDixon imaging in healthy postmenopausal women. Skeletal Radiol 2016; 45:1385-90. [PMID: 27502625 DOI: 10.1007/s00256-016-2448-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/05/2016] [Accepted: 07/26/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE We tested the short- and midterm reproducibility of vertebral marrow fat fraction (FF) measurements using mDixon imaging. MATERIALS AND METHODS Thirty postmenopausal women underwent mDixon scans to obtain L1-4 FF from three slices per vertebra by two independent observers (session 1). Measurements were repeated after 6 weeks (session 2) and 6 months (session 3). The mean FF for three regions of interest per vertebra was calculated. The coefficients of variation (CVs) were calculated for each participant and imaging session, and the intraclass correlation coefficients (ICCs) were calculated to assess interobserver and intersession agreements. RESULTS There were no significant differences in FF measurements among the three slices, imaging sessions or observers. The mean intrasubject CV for FF measurement reproducibility was 1.94 %. The interobserver agreement for the average FF value was excellent (ICC ≥0.945 for each session). The ICC for intersession agreement was excellent (ICC ≥0.955 between sessions). The mean intersession CV was lower within a short-term interval (2.97 %) than within sessions 1 and 3 (4.80 %) or sessions 3 and 2 (4.44 %). The overall mean CV for the reproducibility of FF measured with mDixon imaging over the short- and midterm was 4.09 % (95 % CI, 3.79-4.40 %). CONCLUSION mDixon is a reproducible method for FF quantification over short- and midterm intervals up to 6 months in healthy postmenopausal women. Our results also provide data by which a power analysis can be optimized when designing studies involving the use of FF derived from similar mDixon sequences.
Collapse
Affiliation(s)
- Guanwu Li
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Hongkou District, Shanghai, 200437, China.
| | - Zheng Xu
- Xinzhuang Community Health Center, Shanghai, 201199, China
| | - Wei Yuan
- Department of Spinal Disease Unit, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Shixin Chang
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Hongkou District, Shanghai, 200437, China
| | - Yongsheng Chen
- Department of Radiology, Wayne State University, Detroit, 48202, MI, USA
| | - Horea Calimente
- Department of Radiology, Wayne State University, Detroit, 48202, MI, USA
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, 48202, MI, USA
| |
Collapse
|
33
|
Matcuk GR, Siddiqi I, Cen S, Hagiya A, Isaacson R, Brynes R. Bone marrow cellularity MRI calculation and correlation with bone marrow biopsy. Clin Imaging 2016; 40:392-7. [DOI: 10.1016/j.clinimag.2015.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/15/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
|
34
|
Cordes C, Baum T, Dieckmeyer M, Ruschke S, Diefenbach MN, Hauner H, Kirschke JS, Karampinos DC. MR-Based Assessment of Bone Marrow Fat in Osteoporosis, Diabetes, and Obesity. Front Endocrinol (Lausanne) 2016; 7:74. [PMID: 27445977 PMCID: PMC4921741 DOI: 10.3389/fendo.2016.00074] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022] Open
Abstract
Bone consists of the mineralized component (i.e., cortex and trabeculae) and the non-mineralized component (i.e., bone marrow). Most of the routine clinical bone imaging uses X-ray-based techniques and focuses on the mineralized component. However, bone marrow adiposity has been also shown to have a strong linkage with bone health. Specifically, multiple previous studies have demonstrated a negative association between bone marrow fat fraction (BMFF) and bone mineral density. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are ideal imaging techniques for non-invasively investigating the properties of bone marrow fat. In the present work, we first review the most important MRI and MRS methods for assessing properties of bone marrow fat, including methodologies for measuring BMFF and bone marrow fatty acid composition parameters. Previous MRI and MRS studies measuring BMFF and fat unsaturation in the context of osteoporosis are then reviewed. Finally, previous studies investigating the relationship between bone marrow fat, other fat depots, and bone health in patients with obesity and type 2 diabetes are presented. In summary, MRI and MRS are powerful non-invasive techniques for measuring properties of bone marrow fat in osteoporosis, obesity, and type 2 diabetes and can assist in future studies investigating the pathophysiology of bone changes in the above clinical scenarios.
Collapse
Affiliation(s)
- Christian Cordes
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- *Correspondence: Christian Cordes,
| | - Thomas Baum
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Maximilian N. Diefenbach
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Hans Hauner
- Else Kröner Fresenius Center for Nutritional Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan S. Kirschke
- Section of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
35
|
Limonard EJ, Veldhuis-Vlug AG, van Dussen L, Runge JH, Tanck MW, Endert E, Heijboer AC, Fliers E, Hollak CE, Akkerman EM, Bisschop PH. Short-Term Effect of Estrogen on Human Bone Marrow Fat. J Bone Miner Res 2015; 30:2058-66. [PMID: 25982922 DOI: 10.1002/jbmr.2557] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/30/2015] [Accepted: 05/09/2015] [Indexed: 12/13/2022]
Abstract
Bone marrow fat, an unique component of the bone marrow cavity increases with aging and menopause and is inversely related to bone mass. Sex steroids may be involved in the regulation of bone marrow fat, because men have higher bone marrow fat than women and clinical observations have suggested that the variation in bone marrow fat fraction is greater in premenopausal compared to postmenopausal women and men. We hypothesized that the menstrual cycle and/or estrogen affects the bone marrow fat fraction. First, we measured vertebral bone marrow fat fraction with Dixon Quantitative Chemical Shift MRI (QCSI) twice a week during 1 month in 10 regularly ovulating women. The vertebral bone marrow fat fraction increased 0.02 (95% CI, 0.00 to 0.03) during the follicular phase (p = 0.033), and showed a nonsignificant decrease of 0.02 (95% CI, -0.01 to 0.04) during the luteal phase (p = 0.091). To determine the effect of estrogen on bone marrow fat, we measured vertebral bone marrow fat fraction every week for 6 consecutive weeks in 6 postmenopausal women before, during, and after 2 weeks of oral 17-β estradiol treatment (2 mg/day). Bone marrow fat fraction decreased by 0.05 (95% CI, 0.01 to 0.09) from 0.48 (95% CI, 0.42 to 0.53) to 0.43 (95% CI, 0.34 to 0.51) during 17-β estradiol administration (p < 0.001) and increased again after cessation. During 17-β estradiol administration the bone formation marker procollagen type I N propeptide (P1NP) increased (p = 0.034) and the bone resorption marker C-terminal crosslinking telopeptides of collagen type I (CTx) decreased (p < 0.001). In conclusion, we described the variation in vertebral bone marrow fat fraction among ovulating premenopausal women. And among postmenopausal women, we demonstrated that 17-β estradiol rapidly reduces the marrow fat fraction, suggesting that 17-β estradiol regulates bone marrow fat independent of bone mass.
Collapse
Affiliation(s)
- Eelkje J Limonard
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Annegreet G Veldhuis-Vlug
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Laura van Dussen
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jurgen H Runge
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michael W Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Erik Endert
- Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Annemieke C Heijboer
- VU University Medical Center, Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam, the Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Carla E Hollak
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Erik M Akkerman
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter H Bisschop
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
36
|
Karampinos DC, Ruschke S, Dieckmeyer M, Eggers H, Kooijman H, Rummeny EJ, Bauer JS, Baum T. Modeling of T2* decay in vertebral bone marrow fat quantification. NMR IN BIOMEDICINE 2015; 28:1535-1542. [PMID: 26423583 DOI: 10.1002/nbm.3420] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/29/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
Bone marrow fat fraction mapping using chemical shift encoding-based water-fat separation is becoming a useful tool in investigating the association between bone marrow adiposity and bone health and in assessing cancer treatment-induced bone marrow damage. Vertebral bone marrow is characterized by short T2* relaxation times, which are in general different for the water and fat components and can confound fat quantification. The purpose of the present study is to compare different approaches to T2* correction in chemical shift encoding-based water-fat imaging of vertebral bone marrow using single-voxel MRS as reference. Eight-echo gradient-echo imaging and single-voxel MRS measurements were made on the spine (L3-L5) of 25 healthy volunteers. Different approaches were evaluated for correction of T2* effects: (a) single-T2* correction, (b) dual-T2* correction, (c) T2' correction using the a priori-known T2 from the MRS at each vertebral body and (d) T2' correction using the a priori-known T2 equal to previously measured average values. Dual-T2* correction resulted in noisier imaging fat fraction maps than single-T2* correction or T2' correction using a priori-known T2. Linear regression analysis between imaging and MRS fat fraction showed a slope significantly different from 1 when using single-T2* correction (R(2) = 0.96) or dual-T2* correction (R(2) = 0.87). T2' correction using the a priori-known T2 resulted in a slope not significantly different from 1, an intercept significantly different from 0 (between 2.4% and 3%) and R(2) = 0.96. Therefore, a T2' correction using a priori-known T2 can remove the fat fraction bias induced by the difference in T2* between water and fat components without degrading noise performance in fat fraction mapping of vertebral bone marrow.
Collapse
Affiliation(s)
- Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | | | | | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | - Jan S Bauer
- Section of Neuroradiology, Technische Universität München, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| |
Collapse
|
37
|
Moal B, Bronsard N, Raya JG, Vital JM, Schwab F, Skalli W, Lafage V. Volume and fat infiltration of spino-pelvic musculature in adults with spinal deformity. World J Orthop 2015; 6:727-737. [PMID: 26495250 PMCID: PMC4610915 DOI: 10.5312/wjo.v6.i9.727] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/20/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate fat infiltration and volume of spino-pelvic muscles in adults spinal deformity (ASD) with magnetic resonance imaging (MRI) and 3D reconstructions.
METHODS: Nineteen female ASD patients (mean age 60 ± 13) were included prospectively and consecutively and had T1-weighted Turbo Spin Echo sequence MRIs with Dixon method from the proximal tibia up to T12 vertebra. The Dixon method permitted to evaluate the proportion of fat inside each muscle (fat-water ratio). In order to investigate the accuracy of the Dixon method for estimating fat vs water, the same MRI acquisition was performed on phantoms of four vials composed of different proportion of fat vs water. With Muscl’X software, 3D reconstructions of 17 muscles or group of muscles were obtained identifying the muscle’s contour on a limited number of axial images [Deformation of parametric specific objects (DPSO) Method]. Musclar volume (Vmuscle), infiltrated fat volume (Vfat) and percentage of fat infiltration [Pfat, calculated as follow: Pfat = 100 × (Vfat/Vmuscle)] were characterized by extensor or flexor function respectively for the spine, hip and knee and theirs relationship with demographic data were investigated.
RESULTS: Phantom acquisition demonstrated a non linear relation between Dixon fat-water ratio and the real fat-water ratio. In order to correct the Dixon fat-water ratio, the non linear relation was approximated with a polynomial function of degree three using the phantom acquisition. On average, Pfat was 13.3% ± 5.3%. Muscles from the spinal extensor group had a Pfat significantly greater than the other muscles groups, and the largest variability (Pfat = 31.9% ± 13.8%, P < 0.001). Muscles from the hip extensor group ranked 2nd in terms of Pfat (14% ± 8%), and were significantly greater than those of the knee extensor (P = 0.030). Muscles from the knee extensor group demonstrated the least Pfat (12% ± 8%). They were also the only group with a significant correlation between Vmuscle and Pfat (r = -0.741, P < 0.001), however this correlation was lacking in the other groups. No correlation was found between the Vmuscle total and age or body mass index. Except for the spine flexors, Pfat was correlated with age. Vmuscle and Vfat distributions demonstrated that muscular degeneration impacted the spinal extensors most.
CONCLUSION: Mechanisms of fat infiltration are not similar among the muscle groups. Degeneration impacted the spinal and hip extensors most, key muscles of the sagittal alignment.
Collapse
|
38
|
Cohen A, Shen W, Dempster DW, Zhou H, Recker RR, Lappe JM, Kepley A, Kamanda-Kosseh M, Bucovsky M, Stein EM, Nickolas TL, Shane E. Marrow adiposity assessed on transiliac crest biopsy samples correlates with noninvasive measurement of marrow adiposity by proton magnetic resonance spectroscopy ((1)H-MRS) at the spine but not the femur. Osteoporos Int 2015; 26:2471-8. [PMID: 25986383 PMCID: PMC5206911 DOI: 10.1007/s00198-015-3161-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/29/2015] [Indexed: 01/29/2023]
Abstract
UNLABELLED Measurement of marrow fat (MF) is important to the study of bone fragility. We measured MF on iliac biopsies and by spine/hip magnetic resonance spectroscopy in the same subjects. Noninvasively assessed spine MF and histomorphometrically assessed MF correlated well. MF quantity and relationships with bone volume differed by measurement site. INTRODUCTION Excess marrow fat has been implicated in the pathogenesis of osteoporosis in several populations. In the bone marrow, adipocytes and osteoblasts share a common precursor and are reciprocally regulated. In addition, adipocytes may secrete toxic fatty acids and adipokines that adversely affect osteoblasts. Measurement of marrow fat is important to the study of mechanisms of bone fragility. Marrow fat can be quantified on bone biopsy samples by histomorphometry and noninvasively by proton magnetic resonance spectroscopy ((1)H-MRS). In this study, we evaluate relationships between marrow fat assessed using both methods in the same subjects for the first time. METHODS Sixteen premenopausal women, nine with idiopathic osteoporosis and seven normal controls, had marrow fat measured at the iliac crest by bone biopsy and at the lumbar spine (L3) and proximal femur by (1)H-MRS. RESULTS At L3, fat fraction by (1)H-MRS correlated directly and significantly with marrow fat variables on iliac crest biopsies (r = 0.5-0.8). In contrast, there were no significant correlations between fat fraction at the femur and marrow fat on biopsies. Marrow fat quantity (%) was greater at the femur than at L3 and the iliac crest and correlated inversely with total hip and femoral neck BMD by DXA. CONCLUSIONS In summary, measurement of marrow fat in transiliac crest biopsies correlates with marrow fat at the spine but not the proximal femur by (1)H-MRS. There were site-specific differences in marrow fat quantity and in the relationships between marrow fat and bone volume.
Collapse
Affiliation(s)
- A Cohen
- Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8-864, 630 West 168th Street, New York, NY, 10032, USA.
| | - W Shen
- Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8-864, 630 West 168th Street, New York, NY, 10032, USA
| | | | - H Zhou
- Helen Hayes Hospital, West Haverstraw, NY, USA
| | | | - J M Lappe
- Creighton University, Omaha, NE, USA
| | - A Kepley
- Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8-864, 630 West 168th Street, New York, NY, 10032, USA
| | - M Kamanda-Kosseh
- Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8-864, 630 West 168th Street, New York, NY, 10032, USA
| | - M Bucovsky
- Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8-864, 630 West 168th Street, New York, NY, 10032, USA
| | - E M Stein
- Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8-864, 630 West 168th Street, New York, NY, 10032, USA
| | - T L Nickolas
- Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8-864, 630 West 168th Street, New York, NY, 10032, USA
| | - E Shane
- Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8-864, 630 West 168th Street, New York, NY, 10032, USA
| |
Collapse
|
39
|
Paccou J, Hardouin P, Cotten A, Penel G, Cortet B. The Role of Bone Marrow Fat in Skeletal Health: Usefulness and Perspectives for Clinicians. J Clin Endocrinol Metab 2015; 100:3613-21. [PMID: 26244490 DOI: 10.1210/jc.2015-2338] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CONTEXT There is growing interest in the relationship between bone marrow fat (BMF), bone mineral density (BMD), and fractures. Moreover, BMF might be influenced by metabolic diseases associated with bone loss and fractures, such as type 2 diabetes mellitus (T2DM), anorexia nervosa (AN), and obesity. METHODS The primary-source literature for this review was acquired using a PubMed search for articles published between January 2000 and April 2015. Search terms included BMF, BMD, fractures, T2DM, AN, and obesity. The titles and abstracts of all articles were reviewed for relevant subjects. RESULTS Magnetic resonance imaging, with or without spectroscopy, was used to noninvasively quantify BMF in humans. A negative relationship was found between BMD and BMF in both healthy and osteopenic/osteoporotic populations. Data are lacking on the relationship between BMF and fractures. Studies in populations of individuals with metabolic diseases such as T2DM, AN, and obesity have shown BMF abnormalities. CONCLUSIONS We conclude that most human data demonstrate an inverse relationship between BMF and BMD, but data on the relationship with fractures are inconsistent and need further study. In daily practice, the usefulness for clinicians of assessing BMF using magnetic resonance imaging is still limited. However, the perspectives are exciting, particularly in terms of improving the diagnosis and management of osteoporosis.
Collapse
Affiliation(s)
- Julien Paccou
- Université de Lille (J.P., A.C., G.P., B.C.), Faculté de Chirurgie Dentaire, Place de Verdun, 59000 Lille, France; Service de Rhumatologie (J.P., B.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France; Université du Littoral Côte (P.H.), 62327 Boulogne-sur-Mer, France; and Service d'Imagerie Musculo-Squelettique (A.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France
| | - Pierre Hardouin
- Université de Lille (J.P., A.C., G.P., B.C.), Faculté de Chirurgie Dentaire, Place de Verdun, 59000 Lille, France; Service de Rhumatologie (J.P., B.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France; Université du Littoral Côte (P.H.), 62327 Boulogne-sur-Mer, France; and Service d'Imagerie Musculo-Squelettique (A.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France
| | - Anne Cotten
- Université de Lille (J.P., A.C., G.P., B.C.), Faculté de Chirurgie Dentaire, Place de Verdun, 59000 Lille, France; Service de Rhumatologie (J.P., B.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France; Université du Littoral Côte (P.H.), 62327 Boulogne-sur-Mer, France; and Service d'Imagerie Musculo-Squelettique (A.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France
| | - Guillaume Penel
- Université de Lille (J.P., A.C., G.P., B.C.), Faculté de Chirurgie Dentaire, Place de Verdun, 59000 Lille, France; Service de Rhumatologie (J.P., B.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France; Université du Littoral Côte (P.H.), 62327 Boulogne-sur-Mer, France; and Service d'Imagerie Musculo-Squelettique (A.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France
| | - Bernard Cortet
- Université de Lille (J.P., A.C., G.P., B.C.), Faculté de Chirurgie Dentaire, Place de Verdun, 59000 Lille, France; Service de Rhumatologie (J.P., B.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France; Université du Littoral Côte (P.H.), 62327 Boulogne-sur-Mer, France; and Service d'Imagerie Musculo-Squelettique (A.C.), Centre Hospitalier Régional Universitaire, 59000 Lille, France
| |
Collapse
|
40
|
Quantification of Bone Marrow Involvement in Treated Gaucher Disease With Proton MR Spectroscopy: Correlation With Bone Marrow MRI Scores and Clinical Status. AJR Am J Roentgenol 2015; 204:1296-302. [PMID: 26001241 DOI: 10.2214/ajr.14.13563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The objective of our study was to use proton MR spectroscopy (MRS) to quantitatively evaluate bone marrow infiltration by measuring the fat fraction (FF) and to compare the FF with semiquantitative bone marrow MRI scores and clinical status in children treated for type 1 Gaucher disease (GD). SUBJECTS AND METHODS Over a 2-year period, we prospectively evaluated 10 treated GD patients (six males, four females; median age, 15.1 years) and 10 healthy age-matched control subjects (five males, five females; median age, 15.3 years) using 3-T proton MRS of L5 and the femoral neck. Water and lipid AUCs were measured to calculate the FF. Two blinded pediatric musculoskeletal radiologists performed a semiquantitative analysis of the conventional MR images using the bone marrow burden score and modified Spanish MRI score. We evaluated symptoms, spleen and liver volumes, platelet levels, hemoglobin levels, and bone complications. RESULTS In the femur, the FF was higher in the control subjects (median, 0.71) than the GD patients (0.54) (p = 0.02). In L5, the difference in FF--higher FF in control subjects (0.37) than in GD patients (0.26)--was not significant (p = 0.16). In both groups and both regions, the FF increased with patient age (p < 0.02). Semiquantitative scores showed no differences between control subjects and treated GD patients (p > 0.11). Eight of 10 GD patients were asymptomatic and two had chronic bone pain. The median age of patients at symptom onset was 4.0 years, the median age of patients at the initiation of enzyme replacement therapy was 4.3 years, and the median treatment duration was 10.2 years. Hemoglobin level, platelet count, and liver volume at MRI were normal. Mean pretreatment spleen volume (15.4-fold above normal) decreased to 2.8-fold above normal at the time of MRI (p = 0.01). CONCLUSION Proton MRS detected FF differences that were undetectable using conventional MRI; for that reason, proton MRS can be used to optimize treatment of GD patients.
Collapse
|
41
|
Moorthi RN, Fadel W, Eckert GJ, Ponsler-Sipes K, Moe SM, Lin C. Bone marrow fat is increased in chronic kidney disease by magnetic resonance spectroscopy. Osteoporos Int 2015; 26:1801-7. [PMID: 25701052 PMCID: PMC4582653 DOI: 10.1007/s00198-015-3064-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/02/2015] [Indexed: 11/30/2022]
Abstract
UNLABELLED In aging, the bone marrow fills with fat and this may lead to higher fracture risk. We show that a bone marrow fat measurement by magnetic resonance spectroscopy (MRS), a newer technique not previously studied in chronic kidney disease (CKD), is useful and reproducible. CKD patients have significantly higher bone marrow fat than healthy adults. INTRODUCTION Renal osteodystrophy leads to increased morbidity and mortality in patients with CKD. Traditional bone biopsy histomorphometry is used to study abnormalities in CKD, but the bone marrow, the source of osteoblasts, has not been well characterized in patients with CKD. METHODS To determine the repeatability of bone marrow fat fraction assessment by MRS and water-fat imaging (WFI) at four sites in patients with CKD, testing was performed to determine the coefficients of reproducibility and intraclass coefficients (ICCs). We further determined if this noninvasive technique could be used to determine if there are differences in the percent bone marrow fat in patients with CKD compared to matched controls using paired t tests. RESULTS The mean age of subjects with CKD was 59.8 ± 7.2 years, and the mean eGFR was 24 ± 8 ml/min. MRS showed good reproducibility at all sites in subjects with CKD and controls, with a coefficient of reproducibilities ranging from 2.4 to 13 %. MRS and WFI assessment of bone marrow fat showed moderate to strong agreement (ICC 0.6-0.7) at the lumbar spine, with poorer agreement at the iliac crest and no agreement at the tibia. The mean percent bone marrow fat at L2-L4 was 13.8 % (95 % CI 8.3-19.7) higher in CKD versus controls (p < 0.05). CONCLUSIONS MRS is a useful and reproducible technique to study bone marrow fat in CKD. Patients with CKD have significantly higher bone marrow fat than healthy adults; the relationship with bone changes requires further analyses.
Collapse
Affiliation(s)
- R N Moorthi
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - W Fadel
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Richard M. Fairbanks School of Public Health, Indianapolis, IN, 46202, USA
| | - G J Eckert
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Richard M. Fairbanks School of Public Health, Indianapolis, IN, 46202, USA
| | - K Ponsler-Sipes
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - S M Moe
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, 46202, USA
| | - C Lin
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
42
|
Abstract
OBJECTIVE Icariin prevents bone loss by stimulating new bone formation and by inhibiting bone resorption. However, less is known about how icariin affects marrow adiposity. This lack of information is a vital problem, as the degree of marrow adipogenesis may be an alternative indicator of the severity of osteoporosis in relation to the degree of osteogenesis and osteoblastogenesis. To explore this question, we tested the effects of icariin on bone mineral density (BMD) and marrow fat content in a rat model of postmenopausal osteoporosis. METHODS Thirty-six 3-month-old female Sprague-Dawley rats were randomly assigned to one of the following treatment groups: sham operation, ovariectomized controls, and ovariectomized rats treated orally with either 17β-estradiol or icariin for 12 weeks. BMD and marrow fat fraction were dynamically measured on weeks 0, 6, and 12. After 12 weeks of treatment, serum 17β-estradiol and bone biomarker levels were measured, and marrow adipocytes were quantitatively evaluated by histopathology. RESULTS Ovariectomized controls experienced a marked increase in fat fraction over time, with increases of 40% between weeks 0 and 6 and 69.4% between weeks 6 and 12 (P < 0.001). Marrow adiposity in ovariectomized controls was dramatically higher than that in sham rats on week 6; however, a reduction in BMD was detected in ovariectomized rats on week 12 (P < 0.001). Ovariectomized rats had levels of serum alkaline phosphatase and serum C-terminal telopeptide of type I collagen that were 49.4% and 67.2% higher, respectively, than those of sham rats (P < 0.001). The density, size, and volume of marrow adipocytes in ovariectomized controls were 57.3%, 29.5%, and 163% higher, respectively, than those in sham rats. Early icariin treatment decreased bone biomarker levels, inhibited bone degeneration, and restored marrow fat infiltration and adipocyte parameters to the levels observed in sham rats. Overall, the osteoprotective effect of icariin was comparable with that of 17β-estradiol; however, icariin did not produce uterine estrogenicity. CONCLUSIONS Early icariin treatment restores marrow adiposity in the estrogen-deficient rat model.
Collapse
|
43
|
Dieckmeyer M, Ruschke S, Cordes C, Yap SP, Kooijman H, Hauner H, Rummeny EJ, Bauer JS, Baum T, Karampinos DC. The need for T₂ correction on MRS-based vertebral bone marrow fat quantification: implications for bone marrow fat fraction age dependence. NMR IN BIOMEDICINE 2015; 28:432-9. [PMID: 25683154 DOI: 10.1002/nbm.3267] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 05/26/2023]
Abstract
Vertebral bone marrow fat quantification using single-voxel MRS is confounded by overlapping water-fat peaks and the difference in T2 relaxation time between water and fat components. The purposes of the present study were: (i) to determine the proton density fat fraction (PDFF) of vertebral bone marrow using single-voxel multi-TE MRS, addressing these confounding effects; and (ii) to investigate the implications of these corrections with respect to the age dependence of the PDFF. Single-voxel MRS was performed in the L5 vertebral body of 86 subjects (54 women and 32 men). To reliably extract the water peak from the overlying fat peaks, the mean bone marrow fat spectrum was characterized based on the area of measurable fat peaks and an a priori knowledge of the chemical triglyceride structure. MRS measurements were performed at multiple TEs. The T2 -weighted fat fraction was calculated at each TE. In addition, a T2 correction was performed to obtain the PDFF and the T2 value of water (T2w ) was calculated. The implications of the T2 correction were investigated by studying the age dependence of the T2 -weighted fat fractions and the PDFF. Compared with the PDFF, all T2 -weighted fat fractions significantly overestimated the fat fraction. Compared with the age dependence of the PDFF, the age dependence of the T2 -weighted fat fraction showed an increased slope and intercept as TE increased for women and a strongly increased intercept as TE increased for men. For women, a negative association between the T2 value of bone marrow water and PDFF was found. Single-voxel MRS-based vertebral bone marrow fat quantification should be based on a multi-TE MRS measurement to minimize confounding effects on PDFF determination, and also to allow the simultaneous calculation of T2w , which might be considered as an additional parameter sensitive to the composition of the water compartment.
Collapse
Affiliation(s)
- Michael Dieckmeyer
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
With growing interest in the connection between fat and bone, there has been increased investigation of the relationship with marrow fat in particular. Clinical research has been facilitated by the development of non-invasive methods to measure bone marrow fat content and composition. Studies in different populations using different measurement techniques have established that higher marrow fat is associated with lower bone density and prevalent vertebral fracture. The degree of unsaturation in marrow fat may also affect bone health. Although other fat depots tend to be strongly correlated, marrow fat has a distinct pattern, suggesting separate mechanisms of control. Longitudinal studies are limited, but are crucial to understand the direct and indirect roles of marrow fat as an influence on skeletal health. With greater appreciation of the links between bone and energy metabolism, there has been growing interest in understanding the relationship between marrow fat and bone. It is well established that levels of marrow fat are higher in older adults with osteoporosis, defined by either low bone density or vertebral fracture. However, the reasons for and implications of this association are not clear. This review focuses on clinical studies of marrow fat and its relationship to bone.
Collapse
Affiliation(s)
- Ann V. Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- *Correspondence: Ann V. Schwartz, Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th Street, Box 0560, San Francisco, CA 94143, USA e-mail:
| |
Collapse
|
45
|
|