1
|
Paulo LM, Liu YC, Castilla-Archilla J, Ramiro-Garcia J, Hughes D, Mahony T, Holohan BC, Wilmes P, O'Flaherty V. Full-scale study on high-rate low-temperature anaerobic digestion of agro-food wastewater: process performances and microbial community. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1239-1249. [PMID: 39215735 DOI: 10.2166/wst.2024.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
The fast-growing global population has led to a substantial increase in food production, which generates large volumes of wastewater during the process. Despite most industrial wastewater being discharged at lower ambient temperatures (<20 °C), majority of the high-rate anaerobic reactors are operated at mesophilic temperatures (>30 °C). High-rate low-temperature anaerobic digestion (LtAD) has proven successful in treating industrial wastewater both at laboratory and pilot scales, boasting efficient organic removal and biogas production. In this study, we demonstrated the feasibility of two full-scale high-rate LtAD bioreactors treating meat processing and dairy wastewater, and the microbial communities in both reactors were examined. Both reactors exhibited rapid start-up, achieving considerable chemical oxygen demand (COD) removal efficiencies (total COD removal >80%) and generating high-quality biogas (CH4% in biogas >75%). Long-term operations (6-12 months) underscored the robustness of LtAD bioreactors even during winter periods (average temperature <12 °C), as evidenced by sustained high COD removal rates (total COD removal >80%). The stable performance was underpinned by a resilient microbial community comprising active acetoclastic methanogens, hydrolytic, and fermentative bacteria. These findings underscore the feasibility of high-rate low-temperature anaerobic wastewater treatment, offering promising solutions to the zero-emission wastewater treatment challenge.
Collapse
Affiliation(s)
- Lara M Paulo
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Galway, H91 TK33, Ireland; Dairy Processing Technology Centre, University of Limerick, Analog Devices Building, Limerick V94 T9PX, Ireland
| | - Yu-Chen Liu
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Galway, H91 TK33, Ireland
| | - Juan Castilla-Archilla
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Galway, H91 TK33, Ireland; Dairy Processing Technology Centre, University of Limerick, Analog Devices Building, Limerick V94 T9PX, Ireland
| | - Javier Ramiro-Garcia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dermot Hughes
- Dairy Processing Technology Centre, University of Limerick, Analog Devices Building, Limerick V94 T9PX, Ireland; NVP Energy, Galway Technology Centre, Mervue Business Park, Galway, Ireland
| | - Thérèse Mahony
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Galway, H91 TK33, Ireland; Dairy Processing Technology Centre, University of Limerick, Analog Devices Building, Limerick V94 T9PX, Ireland
| | - B Conall Holohan
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Galway, H91 TK33, Ireland; NVP Energy, Galway Technology Centre, Mervue Business Park, Galway, Ireland; Department of Microbiology, Huygensgebouw, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Vincent O'Flaherty
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Galway, H91 TK33, Ireland; Dairy Processing Technology Centre, University of Limerick, Analog Devices Building, Limerick V94 T9PX, Ireland E-mail:
| |
Collapse
|
2
|
Prathaban M, Prathiviraj R, Mythili R, Sharmila Devi N, Sobanaa M, Selvin J, Varadharaju C. Integrated bioprocess for carbon dioxide sequestration and methanol production. BIORESOURCE TECHNOLOGY 2024; 404:130847. [PMID: 38810708 DOI: 10.1016/j.biortech.2024.130847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Carbon dioxide (CO2) poses a significant threat, contributing to global warming and climate change. This study focused on isolating efficient CO2-reducing methanogens and methanotrophs for converting methane into methanol. Samples from diverse regions in India were collected and processed, yielding 82 methanogenic and 48 methylotrophic isolates. Methanogenic isolate M11 produced a higher amount of methane, reaching 2.9 mol L-1 on the sixth day of incubation at 35 °C, pH 7.0, and CO2:H2 (80:20) as feeding rates. Under optimized conditions, isolate M11 effectively converted 8.3 mol CO2 to 7.9 mol methane in 24 h. Methylotrophic isolate M31 demonstrated significant soluble methane monooxygenase activity (450 nmol/ml) and produced 0.4 mol methanol in 24 h. 16S rRNA analysis identified Methanobacterium sp. and Methyloceanibacter sp. among the isolates, elucidating their taxonomic diversity. This study offers valuable insights into methanogens' potential in CO2 sequestration and methane conversion to methanol through methanotrophism, a promising sustainable biofuel production.
Collapse
Affiliation(s)
- Munisamy Prathaban
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | | | - Ravichandran Mythili
- Department of Microbiology, Vivekanandha Arts and Science College for Women, Sankagiri, Tamilnadu, India
| | - Natarajan Sharmila Devi
- School of Biosciences, Mar Athanasios College for Advanced Studies, Thiruvalla, Kerala, India
| | - Murugesan Sobanaa
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| | | |
Collapse
|
3
|
Sitthikitpanya N, Ponuansri C, Jomnonkhaow U, Wongfaed N, Reungsang A. Unlocking the potential of sugarcane leaf waste for sustainable methane production: Insights from microbial pre-hydrolysis and reactor optimization. Heliyon 2024; 10:e25787. [PMID: 38356542 PMCID: PMC10865077 DOI: 10.1016/j.heliyon.2024.e25787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Sugarcane leaf waste, a byproduct of the growing global sugar industry, challenges agricultural waste management. This study explores its potential for methane production via anaerobic digestion. A microbial pre-hydrolysis, using lignocellulose-degrading bacteria, enhanced soluble chemical oxygen demand at an optimal initial substrate concentration of 40 g-volatile solid/L. Comparative analysis with untreated and bioaugmented leaves revealed the pre-hydrolyzed leaves achieved the highest methane production rate (MPR) at 14.0 ± 0.5 mL-CH4/L·d, surpassing others by 1.47 and 1.67 times. Two continuous stirred tank reactors were employed to assess the optimal hydraulic retention time (HRT). Results showed a stable methane production with an HRT of 25 days, yielding high MPRs: 88.70 ± 0.63 mL-CH4/L·d from pre-hydrolyzed sugarcane leaves and 82.57 ± 1.22 mL-CH4/L·d from microbial consortium-augmented leaves. A 25-day HRT fosters high microbial diversity with Bacteroidota, Firmicutes, Chloroflexi, and Verrucomicrobiota dominance, indicating favorable conditions. Conversely, a 20-day HRT results in lower diversity due to unfavorable factors like low pH during organic overloading, leading to increased concentrations of volatile fatty acids and lactic acid, with Firmicutes as the predominant phylum. This study highlights sugarcane leaf waste's potential as a valuable resource for sustainable methane production.
Collapse
Affiliation(s)
- Napapat Sitthikitpanya
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaweewan Ponuansri
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Umarin Jomnonkhaow
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nantharat Wongfaed
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand
| |
Collapse
|
4
|
Liu YC, Ramiro-Garcia J, Paulo LM, Maria Braguglia C, Cristina Gagliano M, O'Flaherty V. Psychrophilic and mesophilic anaerobic treatment of synthetic dairy wastewater with long chain fatty acids: Process performances and microbial community dynamics. BIORESOURCE TECHNOLOGY 2023; 380:129124. [PMID: 37127168 DOI: 10.1016/j.biortech.2023.129124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Facilitating the anaerobic degradation of long chain fatty acids (LCFA) is the key to unlock the energy potential of lipids-rich wastewater. In this study, the feasibility of psychrophilic anaerobic treatment of LCFA-containing dairy wastewater was assessed and compared to mesophilic anaerobic treatment. The results showed that psychrophilic treatment at 15 ℃ was feasible for LCFA-containing dairy wastewater, with high removal rates of soluble COD (>90%) and LCFA (∼100%). However, efficient long-term treatment required prior acclimation of the biomass to psychrophilic temperatures. The microbial community analysis revealed that putative syntrophic fatty acid bacteria and Methanocorpusculum played a crucial role in LCFA degradation during both mesophilic and psychrophilic treatments. Additionally, a fungal-bacterial biofilm was found to be important during the psychrophilic treatment. Overall, these findings demonstrate the potential of psychrophilic anaerobic treatment for industrial wastewaters and highlight the importance of understanding the microbial communities involved in the process.
Collapse
Affiliation(s)
- Yu-Chen Liu
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Galway, H91 TK33, Ireland.
| | - Javier Ramiro-Garcia
- Instituto de la Grasa. Consejo Superior de Investigaciones Científicas. Campus Universitario Pablo de Olavide- Ed. 46, Ctra. de Utrera, km. 1, Seville 41013, Spain
| | - Lara M Paulo
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Camilla Maria Braguglia
- Water Research institute, CNR, Area di Ricerca RM1-Montelibretti, Via Salaria km 29.300, 00015 Monterotondo (Roma), Italy
| | - Maria Cristina Gagliano
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, MA 8911 Leeuwarden, the Netherlands
| | - Vincent O'Flaherty
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
5
|
Coelmont T, Van Gaelen P, Smets I. Quantification of hydrolysis activity in a biological wastewater treatment context. Appl Microbiol Biotechnol 2023; 107:2143-2153. [PMID: 36929187 DOI: 10.1007/s00253-023-12465-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
This paper reviews currently available methods for hydrolysis activity monitoring of the most commonly encountered enzyme categories in biological wastewater treatment. While highlighting the relevant methods for protein, lipid, carbohydrate, organic phosphate, and ester hydrolysis, the discussion of their pros and cons is predominantly aimed at revealing the relevance of the to-be-hydrolyzed substrates that are used in the methods. These "substrates" should mimic the proteins, lipids, or other polymers that are present in the wastewater and are in the reviewed methods (i) real substrates (i.e., naturally present in the wastewater), (ii) chromogenic substrates, or (iii) fluorogenic substrates. We conclude that exploiting relevant substrates such as casein or starch, containing fluorophores, has the highest potential for meaningful high throughput hydrolysis quantification and that lipase activity monitoring is still cumbersome. Monitoring the hydrolysis activity in biological wastewater treatment systems is an underdeveloped area. With this review, which aims at providing a condensed and practice-oriented overview, we hope to facilitate the start or continuation of such monitoring. This monitoring will only grow in importance, given the transition from wastewater treatment plants towards water resource recovery facilities. KEY POINTS: • Colorimetric-based methods are vulnerable to sludge matrix interference. • Bonds in p-nitrophenol-based methods are not representative for the targeted substrates. • Direct methods with relevant/real substrates are preferred. • Fluorophore-containing (real) substrates enable high throughput screening.
Collapse
Affiliation(s)
- Toon Coelmont
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F Box 2424, B-3001, Leuven, Belgium
| | - Pieter Van Gaelen
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F Box 2424, B-3001, Leuven, Belgium
| | - Ilse Smets
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F Box 2424, B-3001, Leuven, Belgium.
| |
Collapse
|
6
|
Stimulating Effect of Trichococcus flocculiformis on a Coculture of Syntrophomonas wolfei and Methanospirillum hungatei. Appl Environ Microbiol 2022; 88:e0039122. [PMID: 35699440 PMCID: PMC9275234 DOI: 10.1128/aem.00391-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Syntrophic anaerobic consortia comprised of fatty acid-degrading bacteria and hydrogen/formate-scavenging methanogenic archaea are of central importance for balanced and resilient natural and manufactured ecosystems: anoxic sediments, soils, and wastewater treatment bioreactors. Previously published studies investigated interaction between the syntrophic bi-cultures, but little information is available on the influence of fermentative bacteria on syntrophic fatty acid oxidation, even though fermentative organisms are always present together with syntrophic partners in the above-mentioned ecosystems. Here, we present experimental observations of stimulated butyrate oxidation and methane generation by a coculture of Syntrophomonas wolfei with any of the following methanogens: Methanospirillum hungatei, Methanobrevibacter arboriphilus, or Methanobacterium formicicum due to the addition of a fermentative Trichococcus flocculiformis strain ES5. The addition of T. flocculiformis ES5 to the syntrophic cocultures led to an increase in the rates of butyrate consumption (120%) and volumetric methane production (150%). Scanning electron microscopy of the most positively affected coculture (S. wolfei, M. hungatei, and T. flocculiformis ES5) revealed a tendency of T. flocculiformis ES5 to aggregate with the syntrophic partners. Analysis of coculture’s proteome with or without addition of the fermentative bacterium points to a potential link with signal transducing systems of M. hungatei, as well as activation of additional butyryl coenzyme A dehydrogenase and an electron transfer flavoprotein in S. wolfei. IMPORTANCE Results from the present study open doors to fascinating research on complex microbial cultures in anaerobic environments (of biotechnological and ecological relevance). Such studies of defined mixed populations are critical to understanding the highly intertwined natural and engineered microbial systems and to developing more reliable and trustable metabolic models. By investigating the existing cultured microbial consortia, like the ones described here, we can acquire knowledge on microbial interactions that go beyond “who feeds whom” relations but yet benefit the parties involved. Transfer of signaling compounds and stimulation of gene expression are examples of indirect influence that members of mixed communities can exert on each other. Understanding such microbial relationships will enable development of new sustainable biotechnologies with mixed microbial cocultures and contribute to the general understanding of the complex natural microbial interactions.
Collapse
|
7
|
Holohan BC, Duarte MS, Szabo-Corbacho MA, Cavaleiro AJ, Salvador AF, Pereira MA, Ziels RM, Frijters CTMJ, Pacheco-Ruiz S, Carballa M, Sousa DZ, Stams AJM, O'Flaherty V, van Lier JB, Alves MM. Principles, Advances, and Perspectives of Anaerobic Digestion of Lipids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4749-4775. [PMID: 35357187 DOI: 10.1021/acs.est.1c08722] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Several problems associated with the presence of lipids in wastewater treatment plants are usually overcome by removing them ahead of the biological treatment. However, because of their high energy content, waste lipids are interesting yet challenging pollutants in anaerobic wastewater treatment and codigestion processes. The maximal amount of waste lipids that can be sustainably accommodated, and effectively converted to methane in anaerobic reactors, is limited by several problems including adsorption, sludge flotation, washout, and inhibition. These difficulties can be circumvented by appropriate feeding, mixing, and solids separation strategies, provided by suitable reactor technology and operation. In recent years, membrane bioreactors and flotation-based bioreactors have been developed to treat lipid-rich wastewater. In parallel, the increasing knowledge on the diversity of complex microbial communities in anaerobic sludge, and on interspecies microbial interactions, contributed to extend the knowledge and to understand more precisely the limits and constraints influencing the anaerobic biodegradation of lipids in anaerobic reactors. This critical review discusses the most important principles underpinning the degradation process and recent key discoveries and outlines the current knowledge coupling fundamental and applied aspects. A critical assessment of knowledge gaps in the field is also presented by integrating sectorial perspectives of academic researchers and of prominent developers of anaerobic technology.
Collapse
Affiliation(s)
- B Conall Holohan
- Microbial Ecology Laboratory, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
- NVP Energy Ltd., IDA Technology and Business Park, Mervue, Galway H91 TK33, Ireland
| | - M Salomé Duarte
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - M Alejandra Szabo-Corbacho
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands
| | - Ana J Cavaleiro
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Andreia F Salvador
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - M Alcina Pereira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Ryan M Ziels
- Department of Civil Engineering, The University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z 4, Canada
| | | | - Santiago Pacheco-Ruiz
- Biothane, Veolia Water Technologies, Tanthofdreef 21, 2623 EW Delft, The Netherlands
| | - Marta Carballa
- CRETUS, Department of Chemical Engineering, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Vincent O'Flaherty
- Microbial Ecology Laboratory, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
| | - Jules B van Lier
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands
- Section Sanitary Engineering, CEG Faculty, Delft University of Technology, 2628 CN, Delft, The Netherlands
| | - M Madalena Alves
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| |
Collapse
|
8
|
Aguilar-Muñoz P, Lavergne C, Chamy R, Cabrol L. The biotechnological potential of microbial communities from Antarctic soils and sediments: application to low temperature biogenic methane production. J Biotechnol 2022; 351:38-49. [DOI: 10.1016/j.jbiotec.2022.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
|
9
|
Zieliński M, Zielińska M, Cydzik-Kwiatkowska A, Rusanowska P, Dębowski M. Effect of static magnetic field on microbial community during anaerobic digestion. BIORESOURCE TECHNOLOGY 2021; 323:124600. [PMID: 33373801 DOI: 10.1016/j.biortech.2020.124600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Dairy wastewater is characterized by high concentration of organic compounds and is commonly used for energy production. Methods for enhancement of biogas production include application of magnetizers on the digester to induce static magnetic field (SMF). The study aimed at investigation of Bacteria and Archaea communities during anaerobic digestion of model dairy wastewater exposed to SMF. Magnetic field caused a significant increase in methane production to 373.2 mL/g VS compared to 200.2 mL/g VS in a control reactor and methane content to 56.8% compared to 49.1% in a control reactor. In both reactors, the biomass was dominated by Trichococcus sp. The relative abundance of lactic acid bacteria was of about 10% higher in the reactor exposed to SMF. This higher number of Lactobacillales resulted from a higher acetate production, which additionally caused enhanced growth of Methanosarcinacaea in the reactor exposed to SMF. SMF also stimulated the growth of hydrogenotrophic methanogens.
Collapse
Affiliation(s)
- Marcin Zieliński
- University of Warmia and Mazury in Olsztyn, Department of Environment Engineering, Warszawska 117, 10-720 Olsztyn, Poland
| | - Magdalena Zielińska
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Słoneczna 45G, 10-709 Olsztyn, Poland
| | - Agnieszka Cydzik-Kwiatkowska
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Słoneczna 45G, 10-709 Olsztyn, Poland
| | - Paulina Rusanowska
- University of Warmia and Mazury in Olsztyn, Department of Environment Engineering, Warszawska 117, 10-720 Olsztyn, Poland.
| | - Marcin Dębowski
- University of Warmia and Mazury in Olsztyn, Department of Environment Engineering, Warszawska 117, 10-720 Olsztyn, Poland
| |
Collapse
|
10
|
Ji S, Ma W, Wei Q, Zhang W, Jiang F, Chen J. Integrated ABR and UASB system for dairy wastewater treatment: Engineering design and practice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142267. [PMID: 33370898 DOI: 10.1016/j.scitotenv.2020.142267] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 05/27/2023]
Abstract
This work designed and assessed the engineering performance of dairy wastewater treatment by an integrated system consisting of an anaerobic baffled reactor (ABR) and an upflow anaerobic sludge blanket (UASB). With fats adsorbed and decomposed, proteins were first denatured coagulated into solids in the ABR treatment process, and this process created suitable conditions for sludge retention in the sludge bed of the UASB. As a result, the combined system achieved a substantial reduction in excess sludge from 3 to 5 t/d to 3 t/m, notable biogas generation, and 98% COD removal, while the other pollutants in the effluent met relevant standards. In addition, the system attained an excellent performance in terms of the energy consumption and water treatment agent amount. Two active plants achieved operation costs lower than 0.5 kW h/t, while stable operations under ambient temperature conditions lasted longer than three years. Engineering practices both technically and economically affirmed the potential of the proposed system for dairy wastewater treatment.
Collapse
Affiliation(s)
- Siping Ji
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Wuyi Ma
- Yunnan Lanjie Environmental Science and Technology Co., Ltd., Dali 671000, China
| | - Qianwen Wei
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, China
| | - Weishi Zhang
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Fengzhi Jiang
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, China
| | - Jing Chen
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, China.
| |
Collapse
|
11
|
Paulo LM, Castilla-Archilla J, Ramiro-Garcia J, Escamez-Picón JA, Hughes D, Mahony T, Murray M, Wilmes P, O'Flaherty V. Microbial Community Redundancy and Resilience Underpins High-Rate Anaerobic Treatment of Dairy-Processing Wastewater at Ambient Temperatures. Front Bioeng Biotechnol 2020; 8:192. [PMID: 32232038 PMCID: PMC7082317 DOI: 10.3389/fbioe.2020.00192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/27/2020] [Indexed: 11/25/2022] Open
Abstract
High-rate anaerobic digestion (AD) is a reliable, efficient process to treat wastewaters and is often operated at temperatures exceeding 30°C, involving energy consumption of biogas in temperate regions, where wastewaters are often discharged at variable temperatures generally below 20°C. High-rate ambient temperature AD, without temperature control, is an economically attractive alternative that has been proven to be feasible at laboratory-scale. In this study, an ambient temperature pilot scale anaerobic reactor (2 m3) was employed to treat real dairy wastewater in situ at a milk processing plant, at organic loading rates of 1.3 ± 0.6 to 10.6 ± 3.7 kg COD/m3/day and hydraulic retention times (HRT) ranging from 36 to 6 h. Consistent high levels of COD removal efficiencies, ranging from 50 to 70% for total COD removal and 70 to 84% for soluble COD removal, were achieved during the trial. Within the reactor biomass, stable active archaeal populations were observed, consisting mainly of Methanothrix (previously Methanosaeta) species, which represented up to 47% of the relative abundant active species in the reactor. The decrease in HRT, combined with increases in the loading rate had a clear effect on shaping the structure and composition of the bacterial fraction of the microbial community, however, without affecting reactor performance. On the other hand, perturbances in influent pH had a strong impact, especially when pH went higher than 8.5, inducing shifts in the microbial community composition and, in some cases, affecting negatively the performance of the reactor in terms of COD removal and biogas methane content. For example, the main pH shock led to a drop in the methane content to 15%, COD removals decreased to 0%, while the archaeal population decreased to ~11% both at DNA and cDNA levels. Functional redundancy in the microbial community underpinned stable reactor performance and rapid reactor recovery after perturbations.
Collapse
Affiliation(s)
- Lara M Paulo
- Microbiology, School of Natural Sciences and Ryan Institute, NUI Galway, Galway, Ireland.,Dairy Processing Technology Centre (DPTC), Limerick, Ireland
| | - Juan Castilla-Archilla
- Microbiology, School of Natural Sciences and Ryan Institute, NUI Galway, Galway, Ireland.,Dairy Processing Technology Centre (DPTC), Limerick, Ireland
| | - Javier Ramiro-Garcia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - José Antonio Escamez-Picón
- Microbiology, School of Natural Sciences and Ryan Institute, NUI Galway, Galway, Ireland.,Dairy Processing Technology Centre (DPTC), Limerick, Ireland
| | - Dermot Hughes
- Microbiology, School of Natural Sciences and Ryan Institute, NUI Galway, Galway, Ireland.,NVP Energy Ltd., Galway Technology & Business Centre, Galway, Ireland
| | - Thérèse Mahony
- Microbiology, School of Natural Sciences and Ryan Institute, NUI Galway, Galway, Ireland.,Dairy Processing Technology Centre (DPTC), Limerick, Ireland
| | - Michael Murray
- NVP Energy Ltd., Galway Technology & Business Centre, Galway, Ireland
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Vincent O'Flaherty
- Microbiology, School of Natural Sciences and Ryan Institute, NUI Galway, Galway, Ireland.,Dairy Processing Technology Centre (DPTC), Limerick, Ireland
| |
Collapse
|
12
|
Singh S, Rinta-Kanto JM, Kettunen R, Tolvanen H, Lens P, Collins G, Kokko M, Rintala J. Anaerobic treatment of LCFA-containing synthetic dairy wastewater at 20 °C: Process performance and microbial community dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:960-968. [PMID: 31326818 DOI: 10.1016/j.scitotenv.2019.07.136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Facilitating anaerobic degradation of long-chain fatty acids (LCFA) is key for tapping the high methane production potential of the fats, oil and grease (FOG) content of dairy wastewaters. In this study, the feasibility of using high-rate granular sludge reactors for the treatment of mixed LCFA-containing synthetic dairy wastewater (SDW) was assessed at 20 °C. The effects of the LCFA concentration (33-45% of COD) and organic loading rates (2-3 gCOD/L·d) were determined using three parallel expanded granular sludge bed reactors. For the first time, long term anaerobic treatment of LCFA-containing feed at 20 °C was shown to be feasible and was linked to the microbial community dynamics in high-rate reactors. During a two-month operation, a soluble COD removal of 84-91% and COD to methane conversion of 44-51% was obtained. However, granular sludge flotation and washout occurred after two months in all reactors without volatile fatty acids (VFA) accumulation, emphasizing the need for sludge retention for long-term granular sludge reactor operation with LCFA-containing feed at low ambient temperatures. The temporal shifts in microbial community structure were studied in the high-rate treatment of SDW, and the process disturbances (elevated LCFA loading, LCFA accumulation, and batch operation) were found to decrease the microbial community diversity. The relative abundance of Methanosaeta increased with higher LCFA accumulation in the settled and flotation layer granules in the three reactors, therefore, acetoclastic methanogenesis was found to be crucial for the high-rate treatment of SDW at 20 °C. This study provides an initial understanding of the continuous anaerobic treatment of LCFA-containing industrial wastewaters at low ambient temperatures.
Collapse
Affiliation(s)
- Suniti Singh
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| | | | - Riitta Kettunen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland; Tampere Water, Viinikankatu 42 A, 33800 Tampere, Finland.
| | - Henrik Tolvanen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| | - Piet Lens
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland; UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands.
| | - Gavin Collins
- Microbial Ecophysiology Laboratory, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| | - Marika Kokko
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| | - Jukka Rintala
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| |
Collapse
|
13
|
Nag R, Auer A, Markey BK, Whyte P, Nolan S, O'Flaherty V, Russell L, Bolton D, Fenton O, Richards K, Cummins E. Anaerobic digestion of agricultural manure and biomass - Critical indicators of risk and knowledge gaps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:460-479. [PMID: 31299578 DOI: 10.1016/j.scitotenv.2019.06.512] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) has been identified as a potential green technology to treat food and municipal waste, agricultural residues, including farmyard manure and slurry (FYM&S), to produce biogas. FYM&S and digestate can act as soil conditioners and provide valuable nutrients to plants; however, it may also contain harmful pathogens. This study looks at the critical indicators in determining the microbial inactivation potential of AD and the possible implications for human and environmental health of spreading the resulting digestate on agricultural land. In addition, available strategies for risk assessment in the context of EU and Irish legislation are assessed. Storage time and process parameters (including temperature, pH, organic loading rate, hydraulic retention time), feedstock recipe (carbon-nitrogen ratio) to the AD plant (both mesophilic and thermophilic) were all assessed to significantly influence pathogen inactivation. However, complete inactivation of all pathogens is unlikely. There are limited studies evaluating risks from FYM&S as a feedstock in AD and the spreading of resulting digestate. The lack of process standardisation and varying feedstocks between AD farms means risk must be evaluated on a case by case basis and calls for a more unified risk assessment methodology. In addition, there is a need for the enhancement of AD farm-based modelling techniques and datasets to help in advancing knowledge in this area.
Collapse
Affiliation(s)
- Rajat Nag
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - Agathe Auer
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Bryan K Markey
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Paul Whyte
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Stephen Nolan
- National University of Ireland Galway, School of Natural Sciences, Galway, Ireland
| | - Vincent O'Flaherty
- National University of Ireland Galway, School of Natural Sciences, Galway, Ireland.
| | - Lauren Russell
- TEAGASC, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Declan Bolton
- TEAGASC, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Owen Fenton
- TEAGASC, Environment Research Centre, Johnstown Castle, County Wexford, Ireland.
| | - Karl Richards
- TEAGASC, Environment Research Centre, Johnstown Castle, County Wexford, Ireland.
| | - Enda Cummins
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| |
Collapse
|
14
|
Keating C, Hughes D, Mahony T, Cysneiros D, Ijaz UZ, Smith CJ, O'Flaherty V. Cold adaptation and replicable microbial community development during long-term low-temperature anaerobic digestion treatment of synthetic sewage. FEMS Microbiol Ecol 2018; 94:5004848. [PMID: 29846574 PMCID: PMC5995215 DOI: 10.1093/femsec/fiy095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 11/12/2022] Open
Abstract
The development and activity of a cold-adapting microbial community was monitored during low-temperature anaerobic digestion (LtAD) treatment of wastewater. Two replicate hybrid anaerobic sludge bed-fixed-film reactors treated a synthetic sewage wastewater at 12°C, at organic loading rates of 0.25-1.0 kg chemical oxygen demand (COD) m-3 d-1, over 889 days. The inoculum was obtained from a full-scale anaerobic digestion reactor, which was operated at 37°C. Both LtAD reactors readily degraded the influent with COD removal efficiencies regularly exceeding 78% for both the total and soluble COD fractions. The biomass from both reactors was sampled temporally and tested for activity against hydrolytic and methanogenic substrates at 12°C and 37°C. Data indicated that significantly enhanced low-temperature hydrolytic and methanogenic activity developed in both systems. For example, the hydrolysis rate constant (k) at 12°C had increased 20-30-fold by comparison to the inoculum by day 500. Substrate affinity also increased for hydrolytic substrates at low temperature. Next generation sequencing demonstrated that a shift in a community structure occurred over the trial, involving a 1-log-fold change in 25 SEQS (OTU-free approach) from the inoculum. Microbial community structure changes and process performance were replicable in the LtAD reactors.
Collapse
Affiliation(s)
- C Keating
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland
| | - D Hughes
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland
| | - T Mahony
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland
| | - D Cysneiros
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland
| | - U Z Ijaz
- Infrastructure and Environment, School of Engineering, University of Glasgow, Rankine Building, 79-85 Oakfield Avenue, Glasgow, G12 8LT, UK
| | - C J Smith
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland
| | - V O'Flaherty
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
15
|
Qin X, Wu X, Li L, Li C, Zhang Z, Zhang X. The Advanced Anaerobic Expanded Granular Sludge Bed (AnaEG) Possessed Temporally and Spatially Stable Treatment Performance and Microbial Community in Treating Starch Processing Wastewater. Front Microbiol 2018; 9:589. [PMID: 29643847 PMCID: PMC5882818 DOI: 10.3389/fmicb.2018.00589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/14/2018] [Indexed: 01/08/2023] Open
Abstract
This study implements temporal and spatial appraisals on the operational performance and corresponding microbial community structure of a full-scale advanced anaerobic expanded granular sludge bed (AnaEG) which was used to treat low organic loading starch processing wastewater. Results showed stable treatment efficiency could be maintained with long-term erratic influent quality, and a major reaction zone located at the bottom of the AnaEG, where the main pollutant removal rate was greater than 90%. Remarkably, high-throughput sequencing of 16S rRNA gene amplicons displayed that the predominant members constructed the major part of the overall microbial community and showed highly temporal stability. They were affiliated to Chloroflexi (16.4%), Proteobacteria (14.01%), Firmicutes (8.76%), Bacteroidetes (7.85%), Cloacimonetes (3.21%), Ignavibacteriae (1.80%), Synergistetes (1.11%), Thermotogae (0.98%), and Euryarchaeota (3.18%). This part of microorganism implemented the long-term stable treatment efficiency of the reactor. Simultaneously, an extraordinary spatial homogeneity in the granule physic properties and microbial community structure along the vertical direction was observed within the AnaEG. In conclusion, the microbial community structure and the bioreactor’s performance showed notable spatial and temporal consistency, and the predominant populations guaranteed a long-term favorable treatment performance of the AnaEG. It provides us with a better understanding of the mechanism of this recently proposed anaerobic reactor which was used in low organic loading wastewater treatment.
Collapse
Affiliation(s)
- Xianchao Qin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaogang Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingfang Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chunjie Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenjia Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojun Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Dai YM, Zhang LL, Li Y, Li YQ, Deng XH, Wang TT, Yang F, Tian YQ, Li N, Zhou XM, Liu XF, Li WJ. Characterization of Trichococcus paludicola sp. nov. and Trichococcus alkaliphilus sp. nov., isolated from a high-elevation wetland, by phenotypic and genomic analyses. Int J Syst Evol Microbiol 2017; 68:99-105. [PMID: 29116035 DOI: 10.1099/ijsem.0.002464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two psychrotolerant facultative anaerobes, strains B7-2T and B5T, were isolated from the Zoige Wetland on the Qinghai-Tibetan Plateau. The 16S rRNA gene sequences of strains B7-2T and B5T shared high similarity (>99 %) with those of the type strains of the genus Trichococcus, while their digital DNA-DNA hybridization values with each other (49 %) and with the reference type strains (48-23 %) were lower than 70 %, which suggest that they represent two novel species of the genus Trichococcus. Cells of strains B7-2T and B5T were immotile cocci, grew in the temperature range of 4-37 °C (optimum 25 °C) and were alkaliphilic with optimum growth at pH 9.0. The major components of the cellular fatty acids were C16 : 0, anteiso-C17 : 0 and C18 : 0 for strain B7-2T, and C16 : 0, anteiso-C17 : 0, C18 : 1ω9c and C18 : 0 for strain B5T. The genomic DNA G+C contents were 46.0 and 46.7 mol% for strains B7-2T and B5T, respectively. Based on physiological and genomic characteristics, it is suggested that strains B7-2T and B5T represent two novel species within the genus Trichococcus, for which the names Trichococcus paludicola sp. nov. and Trichococcus alkaliphilus sp. nov. are proposed. The type strains are B7-2T (=DSM 104691T=KCTC 33886T) and B5T (=DSM 104692T=KCTC 33885T), respectively.
Collapse
Affiliation(s)
- Yu-Mei Dai
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan 610041, PR China
| | - Ling-Li Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan 610041, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yan Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan 610041, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yu-Qian Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou 510275, PR China.,Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Xiao-Hui Deng
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan 610041, PR China
| | - Ting-Ting Wang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan 610041, PR China
| | - Feng Yang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan 610041, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yong-Qiang Tian
- Key laboratory of Leather Chemistry and Engineering, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, Sichuan 610051, PR China
| | - Na Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization; Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan 610041, PR China
| | - Xing-Mei Zhou
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization; Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan 610041, PR China
| | - Xiao-Feng Liu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan 610041, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
17
|
Comparative Analysis of Methanogenic Communities in Different Laboratory-Scale Anaerobic Digesters. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:3401272. [PMID: 28074084 PMCID: PMC5198152 DOI: 10.1155/2016/3401272] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 11/17/2022]
Abstract
Comparative analysis of methanogenic archaea compositions and dynamics in 11 laboratory-scale continuous stirred tank reactors fed with different agricultural materials (chicken manure, cattle manure, maize straw, maize silage, distillers grains, and Jatropha press cake) was carried out by analysis of the methyl coenzyme-M reductase α-subunit (mcrA) gene. Various taxa within Methanomicrobiales, Methanobacteriaceae, Methanosarcinaceae, Methanosaetaceae, and Methanomassiliicoccales were detected in the biogas reactors but in different proportions depending on the substrate type utilized as well as various process parameters. Improved coverage and higher taxonomic resolution of methanogens were obtained compared to a previous 16S rRNA gene based study of the same reactors. Some members of the genus Methanoculleus positively correlated with the relative methane content, whereas opposite correlations were found for Methanobacterium. Specific biogas production was found to be significantly correlating with Methanosarcinaceae. Statistical analysis also disclosed that some members of the genus Methanoculleus positively correlated with the ammonia level, whereas the prevalence of Methanocorpusculum, Methanobacterium, and Methanosaeta was negatively correlated with this parameter. These results suggest that the application of methanogenic archaea adapted to specific feedstock might enhance the anaerobic digestion of such waste materials in full-scale biogas reactors.
Collapse
|
18
|
Browne P, Tamaki H, Kyrpides N, Woyke T, Goodwin L, Imachi H, Bräuer S, Yavitt JB, Liu WT, Zinder S, Cadillo-Quiroz H. Genomic composition and dynamics among Methanomicrobiales predict adaptation to contrasting environments. ISME JOURNAL 2016; 11:87-99. [PMID: 27552639 DOI: 10.1038/ismej.2016.104] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/13/2016] [Accepted: 06/22/2016] [Indexed: 11/09/2022]
Abstract
Members of the order Methanomicrobiales are abundant, and sometimes dominant, hydrogenotrophic (H2-CO2 utilizing) methanoarchaea in a broad range of anoxic habitats. Despite their key roles in greenhouse gas emissions and waste conversion to methane, little is known about the physiological and genomic bases for their widespread distribution and abundance. In this study, we compared the genomes of nine diverse Methanomicrobiales strains, examined their pangenomes, reconstructed gene flow and identified genes putatively mediating their success across different habitats. Most strains slowly increased gene content whereas one, Methanocorpusculum labreanum, evidenced genome downsizing. Peat-dwelling Methanomicrobiales showed adaptations centered on improved transport of scarce inorganic nutrients and likely use H+ rather than Na+ transmembrane chemiosmotic gradients during energy conservation. In contrast, other Methanomicrobiales show the potential to concurrently use Na+ and H+ chemiosmotic gradients. Analyses also revealed that the Methanomicrobiales lack a canonical electron bifurcation system (MvhABGD) known to produce low potential electrons in other orders of hydrogenotrophic methanogens. Additional putative differences in anabolic metabolism suggest that the dynamics of interspecies electron transfer from Methanomicrobiales syntrophic partners can also differ considerably. Altogether, these findings suggest profound differences in electron trafficking in the Methanomicrobiales compared with other hydrogenotrophs, and warrant further functional evaluations.
Collapse
Affiliation(s)
- Patrick Browne
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Nikos Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | | | - Hiroyuki Imachi
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Suzanna Bräuer
- Department of Biology, Appalachian State University, Boone, NC, USA
| | - Joseph B Yavitt
- Department of Natural Resources, Cornell University, Ithaca, NY, USA
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stephen Zinder
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Hinsby Cadillo-Quiroz
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.,Swette Center for Environmental Biotechnology at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
19
|
Keating C, Chin JP, Hughes D, Manesiotis P, Cysneiros D, Mahony T, Smith CJ, McGrath JW, O'Flaherty V. Biological Phosphorus Removal During High-Rate, Low-Temperature, Anaerobic Digestion of Wastewater. Front Microbiol 2016; 7:226. [PMID: 26973608 PMCID: PMC4776080 DOI: 10.3389/fmicb.2016.00226] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/12/2016] [Indexed: 12/20/2022] Open
Abstract
We report, for the first time, extensive biologically mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (∼2%) within the sludge bed and fixed-film biofilms. 4′, 6-diamidino-2-phenylindole (DAPI) staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP) granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD) removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4 and 1.5 kg COD m-3 d-1 and hydraulic retention times of 8–24 h, while phosphate removal efficiency ranged from 28 to 78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12°C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina MiSeq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterized polyphosphate accumulating organisms (PAOs) such as Rhodocyclus, Chromatiales, Actinobacter, and Acinetobacter was recorded at low numbers. However, it is unknown as yet if these were responsible for the luxury polyP uptake observed in this system. The possibility of efficient phosphate removal and recovery from wastewater during AD would represent a major advance in the scope for widespread application of anaerobic wastewater treatment technologies.
Collapse
Affiliation(s)
- Ciara Keating
- Microbial Ecology Laboratory, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway Ireland
| | - Jason P Chin
- School of Biological Sciences and the Institute for Global Food Security, The Queen's University of Belfast Belfast, UK
| | - Dermot Hughes
- Microbial Ecology Laboratory, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway Ireland
| | - Panagiotis Manesiotis
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast Belfast, UK
| | - Denise Cysneiros
- Microbial Ecology Laboratory, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway Ireland
| | - Therese Mahony
- Microbial Ecology Laboratory, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway Ireland
| | - Cindy J Smith
- Microbial Ecology Laboratory, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway Ireland
| | - John W McGrath
- School of Biological Sciences and the Institute for Global Food Security, The Queen's University of Belfast Belfast, UK
| | - Vincent O'Flaherty
- Microbial Ecology Laboratory, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway Ireland
| |
Collapse
|
20
|
Karadag D, Koroglu OE, Ozkaya B, Cakmakci M, Heaven S, Banks C, Serna-Maza A. Anaerobic granular reactors for the treatment of dairy wastewater: A review. INT J DAIRY TECHNOL 2015. [DOI: 10.1111/1471-0307.12252] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dogan Karadag
- Department of Environmental Engineering; Faculty of Civil Engineering; Yildiz Technical University; Istanbul Turkey
- Faculty of Engineering and Environment; University of Southampton; Southampton, SO17 1BJ UK
| | - Oguz Emre Koroglu
- Department of Environmental Engineering; Faculty of Civil Engineering; Yildiz Technical University; Istanbul Turkey
| | - Bestami Ozkaya
- Department of Environmental Engineering; Faculty of Civil Engineering; Yildiz Technical University; Istanbul Turkey
| | - Mehmet Cakmakci
- Department of Environmental Engineering; Faculty of Civil Engineering; Yildiz Technical University; Istanbul Turkey
| | - Sonia Heaven
- Faculty of Engineering and Environment; University of Southampton; Southampton, SO17 1BJ UK
| | - Charles Banks
- Faculty of Engineering and Environment; University of Southampton; Southampton, SO17 1BJ UK
| | - Alba Serna-Maza
- Faculty of Engineering and Environment; University of Southampton; Southampton, SO17 1BJ UK
| |
Collapse
|
21
|
Kang W, Chai H, Yang S, Du G, Zhou J, He Q. Influence of organic loading rate on integrated bioreactor treating hypersaline mustard wastewater. Biotechnol Appl Biochem 2015; 63:590-4. [PMID: 25989040 DOI: 10.1002/bab.1396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 05/14/2015] [Indexed: 11/08/2022]
Abstract
Mustard tuber wastewater is characterized by high salinity and high organic content that is potentially detrimental to the biological treatment system and affects the treatment efficiency accordingly. The experiment used the integrated bioreactor to reduce much of the organics in mustard tuber wastewater, and found the influence of organic loading rate on effluent chemical oxygen demand (COD) and phosphate (PO4 (3-) -P). Results showed that under the condition of 10-15 °C, 6 mg/L of dissolved oxygen, the reduction value of COD removal rate in anaerobic and aerobic area was 14.5% and 31.7% when the organic loading rate increased from 2.0 to 4.0 kg COD/m(3) /day. Therefore, an integrated bioreactor should take 2.0 kg COD/m(3) /day organic loading rate in mustard wastewater treatment if the effluent is expected to meet the third level of "Integrated Wastewater Discharge Standard" (GB 8978-1996).
Collapse
Affiliation(s)
- Wei Kang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, People's Republic of China.,National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing, People's Republic of China
| | - Hongxiang Chai
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, People's Republic of China.,National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing, People's Republic of China
| | - Shiwei Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, People's Republic of China.,National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing, People's Republic of China
| | - Guojun Du
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, People's Republic of China.,National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing, People's Republic of China
| | - Jian Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, People's Republic of China.,National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing, People's Republic of China
| | - Qiang He
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, People's Republic of China.,National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
22
|
Primers: Functional Genes and 16S rRNA Genes for Methanogens. SPRINGER PROTOCOLS HANDBOOKS 2015. [DOI: 10.1007/8623_2015_138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
23
|
Bialek K, Cysneiros D, O’Flaherty V. Hydrolysis, acidification and methanogenesis during low-temperature anaerobic digestion of dilute dairy wastewater in an inverted fluidised bioreactor. Appl Microbiol Biotechnol 2014; 98:8737-50. [DOI: 10.1007/s00253-014-5864-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 11/28/2022]
|
24
|
The Influence of Loading Rate and Variable Temperatures on Microbial Communities in Anaerobic Digesters. ENERGIES 2014. [DOI: 10.3390/en7020785] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Characteristics, process parameters, and inner components of anaerobic bioreactors. BIOMED RESEARCH INTERNATIONAL 2014; 2014:841573. [PMID: 24672798 PMCID: PMC3920971 DOI: 10.1155/2014/841573] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 11/17/2022]
Abstract
The anaerobic bioreactor applies the principles of biotechnology and microbiology, and nowadays it has been used widely in the wastewater treatment plants due to their high efficiency, low energy use, and green energy generation. Advantages and disadvantages of anaerobic process were shown, and three main characteristics of anaerobic bioreactor (AB), namely, inhomogeneous system, time instability, and space instability were also discussed in this work. For high efficiency of wastewater treatment, the process parameters of anaerobic digestion, such as temperature, pH, Hydraulic retention time (HRT), Organic Loading Rate (OLR), and sludge retention time (SRT) were introduced to take into account the optimum conditions for living, growth, and multiplication of bacteria. The inner components, which can improve SRT, and even enhance mass transfer, were also explained and have been divided into transverse inner components, longitudinal inner components, and biofilm-packing material. At last, the newly developed special inner components were discussed and found more efficient and productive.
Collapse
|