1
|
Halim RA, Halim H, Hussain RHM, Aazmi S, Khan NA, Siddiqui R, Anuar TS. Assessment of in vitro dynamics of pathogenic environmental Acanthamoeba T4 and T9 genotypes isolated from three recreational lakes in Klang Valley, Malaysia over the HaCaT cell monolayer. JOURNAL OF WATER AND HEALTH 2024; 22:2289-2303. [PMID: 39733356 DOI: 10.2166/wh.2024.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/26/2024] [Indexed: 12/31/2024]
Abstract
Free-living amoebae of the genus Acanthamoeba are causative agents of keratitis and amoebic encephalitis. They are widely found in various ecological environments. Therefore, the present study brings results that can help to better understand the genotypes of the environmental isolates and their pathogenicity. This study procured 26 Acanthamoeba isolates from three recreational lakes in 2022. Polymerase chain reaction amplification was performed on positive Acanthamoeba samples. The thermotolerance, osmotolerance, and cytopathogenicity in human keratinocyte (HaCaT) cells of the samples were also evaluated. The phylogenetic analysis demonstrated that 12 isolates were of genotype T4, two (T9), six (T17), four (T8), and one each from T5 and T11. The thermo- and osmotolerance assays indicated that eight Acanthamoeba samples were potentially pathogenic. Two T4 and one T9 genotype also recorded 33-, 42-, and 133-kDa serine-type proteases, respectively. The HaCaT cell monolayer revealed that three T4 and one T9 samples achieved cytopathic effects within the 50-100% range, hence significantly cytotoxic. The lactate dehydrogenase secretion results demonstrated that three (T4) and one (T9) sample exhibited exceptional toxicity (over 40%) compared to the other samples. The responses of Acanthamoeba members with similar genotypes to pathogenicity indicator assays varied considerably, rendering correlation of pathogenicity with specific genotypes challenging.
Collapse
Affiliation(s)
- Rohaya Abdul Halim
- Centre for Medical Laboratory Technology Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Malaysia
| | - Hasseri Halim
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Malaysia
| | - Rosnani Hanim Mohd Hussain
- Centre for Medical Laboratory Technology Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Malaysia
| | - Shafiq Aazmi
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; Microbiome Health and Environment (MiHeaRT), Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul, Turkey; School of Science, College of Science and Engineering, University of Derby, Derby, United Kingdom
| | - Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, Istanbul, Turkey; Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Tengku Shahrul Anuar
- Centre for Medical Laboratory Technology Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Malaysia; Microbiome Health and Environment (MiHeaRT), Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia E-mail:
| |
Collapse
|
2
|
Rodríguez-Expósito RL, Sifaoui I, Salazar-Villatoro L, Bethencourt-Estrella CJ, Fernández JJ, Díaz-Marrero AR, Sutak R, Omaña-Molina M, Piñero JE, Lorenzo-Morales J. Staurosporine as a Potential Treatment for Acanthamoeba Keratitis Using Mouse Cornea as an Ex Vivo Model. Mar Drugs 2024; 22:423. [PMID: 39330304 PMCID: PMC11433162 DOI: 10.3390/md22090423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Acanthamoeba is a ubiquitous genus of amoebae that can trigger a severe and progressive ocular disease known as Acanthamoeba Keratitis (AK). Furthermore, current treatment protocols are based on the combination of different compounds that are not fully effective. Therefore, an urgent need to find new compounds to treat Acanthamoeba infections is clear. In the present study, we evaluated staurosporine as a potential treatment for Acanthamoeba keratitis using mouse cornea as an ex vivo model, and a comparative proteomic analysis was conducted to elucidate a mechanism of action. The obtained results indicate that staurosporine altered the conformation of actin and tubulin in treated trophozoites of A. castellanii. In addition, proteomic analysis of treated trophozoites revealed that this molecule induced overexpression and a downregulation of proteins related to key functions for Acanthamoeba infection pathways. Additionally, the ex vivo assay used validated this model for the study of the pathogenesis and therapies of AK. Finally, staurosporine eliminated the entire amoebic population and prevented the adhesion and infection of amoebae to the epithelium of treated mouse corneas.
Collapse
Affiliation(s)
- Rubén L. Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (R.L.R.-E.); (I.S.); (C.J.B.-E.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (R.L.R.-E.); (I.S.); (C.J.B.-E.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Lizbeth Salazar-Villatoro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico;
| | - Carlos J. Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (R.L.R.-E.); (I.S.); (C.J.B.-E.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - José J. Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), 38203 San Cristóbal de La Laguna, Tenerife, Spain; (J.J.F.); (A.R.D.-M.)
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), 38203 San Cristóbal de La Laguna, Tenerife, Spain
| | - Ana R. Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), 38203 San Cristóbal de La Laguna, Tenerife, Spain; (J.J.F.); (A.R.D.-M.)
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), 38203 San Cristóbal de La Laguna, Tenerife, Spain
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Prague, Czech Republic;
| | - Maritza Omaña-Molina
- Facultad de Estudios Superiores Iztacala, Medicina, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (R.L.R.-E.); (I.S.); (C.J.B.-E.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (R.L.R.-E.); (I.S.); (C.J.B.-E.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| |
Collapse
|
3
|
Medeiros EG, Valente MR, Honorato L, Ferreira MDS, Mendoza SR, Gonçalves DDS, Martins Alcântara L, Gomes KX, Pinto MR, Nakayasu ES, Clair G, da Rocha IFM, dos Reis FCG, Rodrigues ML, Alves LR, Nimrichter L, Casadevall A, Guimarães AJ. Comprehensive characterization of extracellular vesicles produced by environmental (Neff) and clinical (T4) strains of Acanthamoeba castellanii. mSystems 2024; 9:e0122623. [PMID: 38717186 PMCID: PMC11237502 DOI: 10.1128/msystems.01226-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/01/2024] [Indexed: 06/19/2024] Open
Abstract
We conducted a comprehensive comparative analysis of extracellular vesicles (EVs) from two Acanthamoeba castellanii strains, Neff (environmental) and T4 (clinical). Morphological analysis via transmission electron microscopy revealed slightly larger Neff EVs (average = 194.5 nm) compared to more polydisperse T4 EVs (average = 168.4 nm). Nanoparticle tracking analysis (NTA) and dynamic light scattering validated these differences. Proteomic analysis of the EVs identified 1,352 proteins, with 1,107 common, 161 exclusive in Neff, and 84 exclusively in T4 EVs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping revealed distinct molecular functions and biological processes and notably, the T4 EVs enrichment in serine proteases, aligned with its pathogenicity. Lipidomic analysis revealed a prevalence of unsaturated lipid species in Neff EVs, particularly triacylglycerols, phosphatidylethanolamines (PEs), and phosphatidylserine, while T4 EVs were enriched in diacylglycerols and diacylglyceryl trimethylhomoserine, phosphatidylcholine and less unsaturated PEs, suggesting differences in lipid metabolism and membrane permeability. Metabolomic analysis indicated Neff EVs enrichment in glycerolipid metabolism, glycolysis, and nucleotide synthesis, while T4 EVs, methionine metabolism. Furthermore, RNA-seq of EVs revealed differential transcript between the strains, with Neff EVs enriched in transcripts related to gluconeogenesis and translation, suggesting gene regulation and metabolic shift, while in the T4 EVs transcripts were associated with signal transduction and protein kinase activity, indicating rapid responses to environmental changes. In this novel study, data integration highlighted the differences in enzyme profiles, metabolic processes, and potential origins of EVs in the two strains shedding light on the diversity and complexity of A. castellanii EVs and having implications for understanding host-pathogen interactions and developing targeted interventions for Acanthamoeba-related diseases.IMPORTANCEA comprehensive and fully comparative analysis of extracellular vesicles (EVs) from two Acanthamoeba castellanii strains of distinct virulence, a Neff (environmental) and T4 (clinical), revealed striking differences in their morphology and protein, lipid, metabolites, and transcripts levels. Data integration highlighted the differences in enzyme profiles, metabolic processes, and potential distinct origin of EVs from both strains, shedding light on the diversity and complexity of A. castellanii EVs, with direct implications for understanding host-pathogen interactions, disease mechanisms, and developing new therapies for the clinical intervention of Acanthamoeba-related diseases.
Collapse
Affiliation(s)
- Elisa Gonçalves Medeiros
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Michele Ramos Valente
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Leandro Honorato
- Departamento de Microbiologia Geral, Laboratório de Glicobiologia de Eucariotos, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marina da Silva Ferreira
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Susana Ruiz Mendoza
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diego de Souza Gonçalves
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lucas Martins Alcântara
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Kamilla Xavier Gomes
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Departamento de Microbiologia Geral, Laboratório de Glicobiologia de Eucariotos, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcia Ribeiro Pinto
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Ernesto S. Nakayasu
- Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Flavia C. G. dos Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Fiocruz, Curitiba, Paraná, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fiocruz, Rio de Janeiro, Brazil
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Fiocruz, Curitiba, Paraná, Brazil
- Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| | - Lysangela R. Alves
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Fiocruz, Curitiba, Paraná, Brazil
| | - Leonardo Nimrichter
- Departamento de Microbiologia Geral, Laboratório de Glicobiologia de Eucariotos, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Rede Micologia RJ–Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Allan Jefferson Guimarães
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Rede Micologia RJ–Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Loufouma-Mbouaka A, Martín-Pérez T, Köhsler M, Danisman Z, Schwarz M, Mazumdar R, Samba-Louaka A, Walochnik J. Characterization of novel extracellular proteases produced by Acanthamoeba castellanii after contact with human corneal epithelial cells and their relevance to pathogenesis. Parasit Vectors 2024; 17:242. [PMID: 38812022 PMCID: PMC11137893 DOI: 10.1186/s13071-024-06304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Proteases produced by Acanthamoeba spp. play an important role in their virulence and may be the key to understanding Acanthamoeba pathogenesis; thus, increasing attention has been directed towards these proteins. The present study aimed to investigate the lytic factors produced by Acanthamoeba castellanii during the first hours of in vitro co-culture with human corneal epithelial cells (HCECs). METHODS We used one old and one recent Acanthamoeba isolate, both from patients with severe keratitis, and subsets of these strains with enhanced pathogenic potential induced by sequential passaging over HCEC monolayers. The proteolytic profiles of all strains and substrains were examined using 1D in-gel zymography. RESULTS We observed the activity of additional proteases (ranging from 33 to 50 kDa) during the early interaction phase between amoebae and HCECs, which were only expressed for a short time. Based on their susceptibilities to protease inhibitors, these proteases were characterized as serine proteases. Protease activities showed a sharp decline after 4 h of co-incubation. Interestingly, the expression of Acanthamoeba mannose-binding protein did not differ between amoebae in monoculture and those in co-culture. Moreover, we observed the activation of matrix metalloproteinases in HCECs after contact with Acanthamoeba. CONCLUSIONS This study revealed the involvement of two novel serine proteases in Acanthamoeba pathogenesis and suggests a pivotal role of serine proteases during Acanthamoeba-host cell interaction, contributing to cell adhesion and lysis.
Collapse
Affiliation(s)
- Alvie Loufouma-Mbouaka
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Tania Martín-Pérez
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Martina Köhsler
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Zeynep Danisman
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Maya Schwarz
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Rounik Mazumdar
- Max Perutz Labs Vienna, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
- GenomeByte Ltd, London, UK
| | - Ascel Samba-Louaka
- Laboratoire Ecologie Et Biologie Des Interactions, Université de Poitiers, UMR CNRS, 7267, Poitiers, France
| | - Julia Walochnik
- Center for Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Rodríguez-Expósito RL, Sifaoui I, Reyes-Batlle M, Fuchs F, Scheid PL, Piñero JE, Sutak R, Lorenzo-Morales J. Induction of Programmed Cell Death in Acanthamoeba culbertsoni by the Repurposed Compound Nitroxoline. Antioxidants (Basel) 2023; 12:2081. [PMID: 38136200 PMCID: PMC10740438 DOI: 10.3390/antiox12122081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Acanthamoeba is a ubiquitous genus of amoebae that can act as opportunistic parasites in both humans and animals, causing a variety of ocular, nervous and dermal pathologies. Despite advances in Acanthamoeba therapy, the management of patients with Acanthamoeba infections remains a challenge for health services. Therefore, there is a need to search for new active substances against Acanthamoebae. In the present study, we evaluated the amoebicidal activity of nitroxoline against the trophozoite and cyst stages of six different strains of Acanthamoeba. The strain A. griffini showed the lowest IC50 value in the trophozoite stage (0.69 ± 0.01 µM), while the strain A. castellanii L-10 showed the lowest IC50 value in the cyst stage (0.11 ± 0.03 µM). In addition, nitroxoline induced in treated trophozoites of A. culbertsoni features compatibles with apoptosis and autophagy pathways, including chromatin condensation, mitochondrial malfunction, oxidative stress, changes in cell permeability and the formation of autophagic vacuoles. Furthermore, proteomic analysis of the effect of nitroxoline on trophozoites revealed that this antibiotic induced the overexpression and the downregulation of proteins involved in the apoptotic process and in metabolic and biosynthesis pathways.
Collapse
Affiliation(s)
- Rubén L. Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Spain; (R.L.R.-E.); (I.S.); (M.R.-B.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Spain; (R.L.R.-E.); (I.S.); (M.R.-B.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Spain
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Spain; (R.L.R.-E.); (I.S.); (M.R.-B.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Spain
| | - Frieder Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50935 Cologne, Germany;
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56072 Koblenz, Germany
| | - Patrick L. Scheid
- Parasitology Lab., Central Military Hospital Koblenz, 56072 Koblenz, Germany
- Department of Biology, Working Group Parasitology and Infection Biology, University Koblenz, 56070 Koblenz, Germany
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Spain; (R.L.R.-E.); (I.S.); (M.R.-B.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Spain; (R.L.R.-E.); (I.S.); (M.R.-B.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| |
Collapse
|
6
|
Sharma C, Khurana S, Bhatia A, Arora A, Gupta A. The gene expression and proteomic profiling of Acanthamoeba isolates. Exp Parasitol 2023; 255:108630. [PMID: 37820893 DOI: 10.1016/j.exppara.2023.108630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION The free-living protozoan Acanthamoeba can cause severe keratitis known as Acanthamoeba Keratitis (AK) and granulomatous amoebic encephalitis (GAE). The pathogenesis of Acanthamoeba includes intricate interactions between the organism and the host's immune system. The downstream analysis of a well-annotated genome assembly along with proteomic analysis can unravel several biological processes and aid in the identification of potential genes involved in pathogenicity. METHODS Based on the next-generation sequencing data analysis, genes including lysophospholipase, phospholipase, S8/S53 peptidase, carboxylesterase, and mannose-binding protein were selected as probable pathogenic targets that were validated by conventional PCR in a total of 30 Acanthamoeba isolates. This was followed by real-time PCR for the evaluation of relative gene expression in the keratitis and amoebic encephalitis animal model induced using keratitis (CHA5), encephalitis (CHA24) and non-pathogenic environmental isolate (CHA36). In addition, liquid chromatography-mass spectrometry (LC-MS/MS) was performed for keratitis, encephalitis, and non-pathogenic environmental isolate before and after treatment with polyhexamethylene biguanide (PHMB). RESULTS The conventional PCR demonstrated the successful amplification of lysophospholipase, phospholipase, S8/S53 peptidase, carboxylesterase, and mannose-binding protein genes in clinical and environmental isolates. The expression analysis revealed phospholipase, lysophospholipase, and mannose-binding genes to be significantly upregulated in the keratitis isolate (CHA 5) during AK in the animal model. In the case of the amoebic encephalitis model, phospholipase, lysophospholipase, S8/S53 peptidase, and carboxylesterase were significantly upregulated in the encephalitis isolate compared to the keratitis isolate. The proteomic data revealed differential protein expression in pathogenic versus non-pathogenic isolates in the pre and post-treatment with PHMB. CONCLUSION The gene expression data suggests that lysophospholipase, phospholipase, S8/S53 peptidase, carboxylesterase, and mannose-binding protein (MBP) could play a role in the contact-dependent and independent mechanisms of Acanthamoeba pathogenesis. In addition, the proteomic profiling of the 3 isolates revealed differential protein expression crucial for parasite growth, survival, and virulence. Our results provide baseline data for selecting possible pathogenic targets that could be utilized for designing knockout experiments in the future.
Collapse
Affiliation(s)
- Chayan Sharma
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| | - Sumeeta Khurana
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| | - Amit Arora
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| | - Amit Gupta
- Advanced Eye Centre, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| |
Collapse
|
7
|
Sierra-López F, Castelan-Ramírez I, Hernández-Martínez D, Salazar-Villatoro L, Segura-Cobos D, Flores-Maldonado C, Hernández-Ramírez VI, Villamar-Duque TE, Méndez-Cruz AR, Talamás-Rohana P, Omaña-Molina M. Extracellular Vesicles Secreted by Acanthamoeba culbertsoni Have COX and Proteolytic Activity and Induce Hemolysis. Microorganisms 2023; 11:2762. [PMID: 38004773 PMCID: PMC10673465 DOI: 10.3390/microorganisms11112762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Several species of Acanthamoeba genus are potential pathogens and etiological agents of several diseases. The pathogenic mechanisms carried out by these amoebae in different target tissues have been documented, evidencing the relevant role of contact-dependent mechanisms. With the purpose of describing the pathogenic processes carried out by these protozoans more precisely, we considered it important to determine the emission of extracellular vesicles (EVs) as part of the contact-independent pathogenicity mechanisms of A. culbertsoni, a highly pathogenic strain. Through transmission electronic microscopy (TEM) and nanoparticle tracking analysis (NTA), EVs were characterized. EVs showed lipid membrane and a size between 60 and 855 nm. The secretion of large vesicles was corroborated by confocal and TEM microscopy. The SDS-PAGE of EVs showed proteins of 45 to 200 kDa. Antigenic recognition was determined by Western Blot, and the internalization of EVs by trophozoites was observed through Dil-labeled EVs. In addition, some EVs biological characteristics were determined, such as proteolytic, hemolytic and COX activity. Furthermore, we highlighted the presence of leishmanolysin in trophozites and EVs. These results suggest that EVs are part of a contact-independent mechanism, which, together with contact-dependent ones, allow for a better understanding of the pathogenicity carried out by Acanthamoeba culbertsoni.
Collapse
Affiliation(s)
- Francisco Sierra-López
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Ismael Castelan-Ramírez
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Dolores Hernández-Martínez
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Lizbeth Salazar-Villatoro
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, National Polytechnic Institute (IPN), Mexico City 07360, Mexico; (L.S.-V.); (V.I.H.-R.); (P.T.-R.)
| | - David Segura-Cobos
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Catalina Flores-Maldonado
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies, National Polytechnic Institute (IPN), Mexico City 07360, Mexico;
| | - Verónica Ivonne Hernández-Ramírez
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, National Polytechnic Institute (IPN), Mexico City 07360, Mexico; (L.S.-V.); (V.I.H.-R.); (P.T.-R.)
| | - Tomás Ernesto Villamar-Duque
- General Biotery, Faculty of Superior Studies Iztacala, Biology, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico;
| | - Adolfo René Méndez-Cruz
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Patricia Talamás-Rohana
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, National Polytechnic Institute (IPN), Mexico City 07360, Mexico; (L.S.-V.); (V.I.H.-R.); (P.T.-R.)
| | - Maritza Omaña-Molina
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| |
Collapse
|
8
|
Ledbetter EC, Dong L. Susceptibility of the Intact and Traumatized Feline Cornea to In Vitro Binding and Invasion by Acanthamoeba castellanii. Cornea 2023; 42:624-629. [PMID: 36518074 PMCID: PMC10060048 DOI: 10.1097/ico.0000000000003220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Acanthamoeba castellanii ( A. castellanii ) displays host specificity at the level of the ocular surface. This study determined the susceptibility of the intact and traumatized feline cornea to A. castellanii binding and invasion relative to other host species with established susceptibility and resistance to Acanthamoeba binding. METHODS Full-thickness buttons of fresh feline, porcine, and canine corneas were prepared. The corneal epithelium was confirmed intact by fluorescein staining or lightly scarified with a 25-G needle to simulate corneal trauma. Acanthamoeba castellanii was axenically cultivated. Corneal buttons were incubated with the parasite suspension or parasite-free medium for 18 hours at 35°C. Corneal buttons were rinsed, fixed, and processed for histopathology and immunohistochemistry using immunoperoxidase and immunofluorescence methods of amoeba detection. RESULTS Numerous amoebae were bound to feline and porcine corneas incubated with parasites. In both intact and traumatized corneas, amoebae were detected at all levels in the corneal epithelium and within the anterior stroma. In traumatized corneal sections, amoebae were frequently present in regions of epithelial damage. Corneal architecture was well-preserved in sections incubated with parasite-free medium; however, epithelial cell sloughing, separation of epithelial layers, and epithelial detachment from the stroma were observed in corneas incubated with amoebae. Intact and traumatized canine corneas were relatively free of adherent amoebae, and corneal architecture was indistinguishable between sections incubated with the parasite suspension and parasite-free medium. CONCLUSIONS The feline cornea is highly susceptible to in vitro binding and invasion by A. castellanii . Acanthamoeba binding to the feline cornea does not require a previous epithelial defect.
Collapse
Affiliation(s)
- Eric C. Ledbetter
- Departments of Clinical Sciences; and Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Longying Dong
- Departments of Clinical Sciences; and Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
9
|
Retana Moreira L, Steller Espinoza MF, Chacón Camacho N, Cornet-Gomez A, Sáenz-Arce G, Osuna A, Lomonte B, Abrahams Sandí E. Characterization of Extracellular Vesicles Secreted by a Clinical Isolate of Naegleria fowleri and Identification of Immunogenic Components within Their Protein Cargo. BIOLOGY 2022; 11:983. [PMID: 36101365 PMCID: PMC9312180 DOI: 10.3390/biology11070983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Extracellular vesicles (EVs) are small lipid vesicles released by both prokaryotic and eukaryotic cells, involved in intercellular communication, immunomodulation and pathogenesis. In this study, we performed a characterization of the EVs produced by trophozoites of a clinical isolate of the free-living amoeba Naegleria fowleri (N. fowleri). Size distribution, zeta potential, protein profile and protease activity were analyzed. Under our incubation conditions, EVs of different sizes were observed, with a predominant population ranging from 206 to 227 nm. SDS-PAGE revealed protein bands of 25 to 260 KDa. The presence of antigenic proteins was confirmed by Western blot, which evidenced strongest recognition by rat polyclonal antibodies raised against N. fowleri in the region close to 80 KDa and included peptidases, as revealed by zymography. Proteins in selected immunorecognized bands were further identified using nano-ESI-MS/MS. A preliminary proteomic profile of the EVs identified at least 184 proteins as part of the vesicles' cargo. Protease activity assays, in combination with the use of inhibitors, revealed the predominance of serine proteases. The present characterization uncovers the complexity of EVs produced by N. fowleri, suggesting their potential relevance in the release of virulence factors involved in pathogenicity. Owing to their cargo's diversity, further research on EVs could reveal new therapeutic targets or biomarkers for developing rapid and accurate diagnostic tools for lethal infections such as the one caused by this amoeba.
Collapse
Affiliation(s)
- Lissette Retana Moreira
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica
| | - María Fernanda Steller Espinoza
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
| | - Natalia Chacón Camacho
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
| | - Alberto Cornet-Gomez
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Campus de Fuentenueva, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (A.C.-G.); (A.O.)
| | | | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Campus de Fuentenueva, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (A.C.-G.); (A.O.)
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica;
| | - Elizabeth Abrahams Sandí
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
10
|
Wang YJ, Chen CH, Chen JW, Lin WC. Commensals Serve as Natural Barriers to Mammalian Cells during Acanthamoeba castellanii Invasion. Microbiol Spectr 2021; 9:e0051221. [PMID: 34935418 PMCID: PMC8693914 DOI: 10.1128/spectrum.00512-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
Acanthamoeba castellanii is a free-living, pathogenic ameba found in the soil and water. It invades the body through ulcerated skin, the nasal passages, and eyes and can cause blinding keratitis and granulomatous encephalitis. However, the mechanisms underlying the opportunistic pathogenesis of A. castellanii remain unclear. In this study, we observed that commensal bacteria significantly reduced the cytotoxicity of the ameba on mammalian cells. This effect occurred in the presence of both Gram-positive and Gram-negative commensals. Additionally, commensals mitigated the disruption of cell junctions. Ex vivo experiments on mouse eyeballs further showed that the commensals protected the corneal epithelial layer. Together, these findings indicate that A. castellanii is pathogenic to individuals with a dysbiosis of the microbiota at infection sites, further highlighting the role of commensals as a natural barrier during parasite invasion. IMPORTANCE Acanthamoeba castellanii, an opportunistic protozoan widely present in the environment, can cause Acanthamoeba keratitis and encephalitis in humans. However, only a few reports describe how the ameba acts as an opportunistic pathogen. Our study showed that the normal microbiota interfered with the cytotoxicity of Acanthamoeba, persevered during Acanthamoeba invasion, and reduced corneal epithelium peeling in the mouse eyeball model. This suggests that commensals may act as a natural barrier against Acanthamoeba invasion. In future, individuals who suffer from Acanthamoeba keratitis should be examined for microbiota absence or dysbiosis to reduce the incidence of Acanthamoeba infection in clinical settings.
Collapse
Affiliation(s)
- Yu-Jen Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Clinical Laboratory, Chest Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Chun-Hsien Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jenn-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chen Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
11
|
Sarink MJ, van der Meijs NL, Denzer K, Koenderman L, Tielens AGM, van Hellemond JJ. Three encephalitis-causing amoebae and their distinct interactions with the host. Trends Parasitol 2021; 38:230-245. [PMID: 34758928 DOI: 10.1016/j.pt.2021.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
Naegleria fowleri, Balamuthia mandrillaris, and Acanthamoeba spp. can cause devastating brain infections in humans which almost always result in death. The symptoms of the three infections overlap, but brain inflammation and the course of the disease differ, depending on the amoeba that is responsible. Understanding the differences between these amoebae can result in the development of strategies to prevent and treat these infections. Recently, numerous scientific advancements have been made in the understanding of pathogenicity mechanisms in general, and the basic biology, epidemiology, and the human immune response towards these amoebae in particular. In this review, we combine this knowledge and aim to identify which factors can explain the differences between the lethal brain infections caused by N. fowleri, B. mandrillaris, and Acanthamoeba spp.
Collapse
Affiliation(s)
- Maarten J Sarink
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Nadia L van der Meijs
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Kristin Denzer
- Center for Translational Immunology (CTI), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Koenderman
- Center for Translational Immunology (CTI), University Medical Center Utrecht, Utrecht, The Netherlands; Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aloysius G M Tielens
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Jaap J van Hellemond
- Erasmus MC, University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Morphological Description of the Early Events during the Invasion of Acanthamoeba castellanii Trophozoites in a Murine Model of Skin Irradiated under UV-B Light. Pathogens 2020; 9:pathogens9100794. [PMID: 32992452 PMCID: PMC7600863 DOI: 10.3390/pathogens9100794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/27/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022] Open
Abstract
Skin infections have been associated with Acanthamoeba, nevertheless the events during skin invasion and UV-B light effects on it are unknown. The early morphological events of Acanthamoeba castellanii skin invasion are shown in SKH-1 mice that were chronically UV-B light irradiated. Mice that developed skin lesions (group 1) were topical and intradermally inoculated with A. castellanii trophozoites and sacrificed 48 h or 18 days later. Mice that showed no skin lesions (group 2) were intradermally inoculated and sacrificed 24, 48 or 72 h later. Mice ventral areas were considered controls with and without trophozoites intradermally inoculated. Skin samples were processed by histological and immunohistochemistry techniques. In group 1, trophozoites were immunolocalized in dermal areas, hair cysts, sebaceous glands, and blood vessels, and collagen degradation was observed. One of these mice shown trophozoites in the spleen, liver, and brain. In group 2, few trophozoites nearby collagenolytic activity zones were observed. In control samples, nor histological damage and no trophozoites were observed. Adherence and collagenolytic activity by A. castellanii were corroborated in vitro. We can infer that UV-B light irradiated skin could favor A. castellanii invasiveness causing damage in sites as far away as the brain, confirming the invasive capacity and pathogenic potential of these amphizoic amoebae.
Collapse
|
13
|
Castelan-Ramírez I, Salazar-Villatoro L, Chávez-Munguía B, Salinas-Lara C, Sánchez-Garibay C, Flores-Maldonado C, Hernández-Martínez D, Anaya-Martínez V, Ávila-Costa MR, Méndez-Cruz AR, Omaña-Molina M. Schwann Cell Autophagy and Necrosis as Mechanisms of Cell Death by Acanthamoeba. Pathogens 2020; 9:E458. [PMID: 32526974 PMCID: PMC7350333 DOI: 10.3390/pathogens9060458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/30/2022] Open
Abstract
Amoebae of the genus Acanthamoeba are etiological agents of granulomatous amoebic encephalitis (GAE). Recently, through an in vivo GAE model, Acanthamoeba trophozoites were immunolocalized in contact with the peripheral nervous system (PNS) cells-Schwann cells (SC). In this study, we analyzed in greater detail the in vitro early morphological events (1, 2, 3, and 4 h) during the interaction of A. culbertsoni trophozoites (ATCC 30171) with SC from Rattus norvegicus (ATCC CRL-2941). Samples were processed for scanning and transmission electron microscopy as well as confocal microscopy. After 1 h of interaction, amoebae were observed to be adhered to the SC cultures, emitting sucker-like structures associated with micro-phagocytic channels. In addition, evidence of necrosis was identified since edematous organelles as well as multivesicular and multilamellar bodies characteristics of autophagy were detected. At 2 h, trophozoites migrated beneath the SC culture in which necrosis and autophagy persisted. By 3 and 4 h, extensive lytic zones were observed. SC necrosis was confirmed by confocal microscopy. We reported for the first time the induction of autophagic and necrotic processes in PNS cells, associated in part with the contact-dependent pathogenic mechanisms of A. culbertsoni trophozoites.
Collapse
Affiliation(s)
- Ismael Castelan-Ramírez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de Mexico (UNAM), Av. Ciudad Universitaria 3000, Coyoacán P.C. 04510, Mexico;
- Laboratorio de Amibas Anfizoicas, Facultad de Estudios Superiores Iztacala (FESI), Medicina, UNAM, Tlalnepantla 54090, Mexico;
| | - Lizbeth Salazar-Villatoro
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de Mexico 07360, Mexico; (L.S.-V.); (B.C.-M.)
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de Mexico 07360, Mexico; (L.S.-V.); (B.C.-M.)
| | - Citlaltepetl Salinas-Lara
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Ciudad de Mexico 14269, Mexico; (C.S.-L.); (C.S.-G.)
- Laboratorio de Histología y Patología, FESI, Medicina, UNAM, Tlalnepantla 54090, Mexico
| | - Carlos Sánchez-Garibay
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Ciudad de Mexico 14269, Mexico; (C.S.-L.); (C.S.-G.)
| | - Catalina Flores-Maldonado
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV–IPN, Ciudad de Mexico 07360, Mexico;
| | - Dolores Hernández-Martínez
- Laboratorio de Amibas Anfizoicas, Facultad de Estudios Superiores Iztacala (FESI), Medicina, UNAM, Tlalnepantla 54090, Mexico;
| | - Verónica Anaya-Martínez
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac, Huixquilucan C.P. 52786, Mexico;
| | | | | | - Maritza Omaña-Molina
- Laboratorio de Amibas Anfizoicas, Facultad de Estudios Superiores Iztacala (FESI), Medicina, UNAM, Tlalnepantla 54090, Mexico;
| |
Collapse
|
14
|
Retana Moreira L, Vargas Ramírez D, Linares F, Prescilla Ledezma A, Vaglio Garro A, Osuna A, Lorenzo Morales J, Abrahams Sandí E. Isolation of Acanthamoeba T5 from Water: Characterization of Its Pathogenic Potential, Including the Production of Extracellular Vesicles. Pathogens 2020; 9:pathogens9020144. [PMID: 32098034 PMCID: PMC7168589 DOI: 10.3390/pathogens9020144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Acanthamoeba is a genus of free-living amoebae widely distributed in nature, associated with the development of encephalitis and keratitis. Despite the fact that it is common to find genotype T5 in environmental samples, only a few cases have been associated with clinical cases in humans. The wide distribution of Acanthamoeba, the characteristic of being amphizoic and the severity of the disease motivate researchers to focus on the isolation of these organisms, but also in demonstrating direct and indirect factors that could indicate a possible pathogenic potential. Here, we performed the characterization of the pathogenic potential of an Acanthamoeba T5 isolate collected from a water source in a hospital. Osmo- and thermotolerance, the secretion of proteases and the effect of trophozoites over cell monolayers were analyzed by different methodologies. Additionally, we confirm the secretion of extracellular vesicles (EVs) of this isolate incubated at two different temperatures, and the presence of serine and cysteine proteases in these vesicles. Finally, using atomic force microscopy, we determined some nanomechanical properties of the secreted vesicles and found a higher value of adhesion in the EVs obtained at 37 °C, which could have implications in the parasite´s survival and damaging potential in two different biological environments.
Collapse
Affiliation(s)
- Lissette Retana Moreira
- Departamento de Parasitología, Universidad de Costa Rica, San Pedro, Montes de Oca 2060, Costa Rica;
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San Pedro, Montes de Oca 2060, Costa Rica;
- Correspondence: (L.R.M.); (E.A.S.)
| | - Daniel Vargas Ramírez
- Departamento de Parasitología, Universidad de Costa Rica, San Pedro, Montes de Oca 2060, Costa Rica;
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San Pedro, Montes de Oca 2060, Costa Rica;
| | - Fátima Linares
- Centro de Instrumentación Científica (CIC), Universidad de Granada, Granada 18071, Spain;
| | - Alexa Prescilla Ledezma
- Departamento de Parasitología, Grupo de Bioquímica y Parasitología Molecular (CTS 183), Instituto de Biotecnología, Campus de Fuentenueva, Universidad de Granada, Granada 18071, Spain; (A.P.L.); (A.O.)
| | - Annette Vaglio Garro
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San Pedro, Montes de Oca 2060, Costa Rica;
| | - Antonio Osuna
- Departamento de Parasitología, Grupo de Bioquímica y Parasitología Molecular (CTS 183), Instituto de Biotecnología, Campus de Fuentenueva, Universidad de Granada, Granada 18071, Spain; (A.P.L.); (A.O.)
| | - Jacob Lorenzo Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife, Islas Canarias 38203, Spain;
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife, Islas Canarias 38203, Spain
| | - Elizabeth Abrahams Sandí
- Departamento de Parasitología, Universidad de Costa Rica, San Pedro, Montes de Oca 2060, Costa Rica;
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San Pedro, Montes de Oca 2060, Costa Rica;
- Correspondence: (L.R.M.); (E.A.S.)
| |
Collapse
|
15
|
Cirelli C, Mesquita EIS, Chagas IAR, Furst C, Possamai CO, Abrahão JS, dos Santos Silva LK, Grossi MF, Tagliati CA, Costa AO. Extracellular protease profile of Acanthamoeba after prolonged axenic culture and after interaction with MDCK cells. Parasitol Res 2019; 119:659-666. [DOI: 10.1007/s00436-019-06562-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022]
|
16
|
Acanthamoeba mauritaniensis genotype T4D: An environmental isolate displays pathogenic behavior. Parasitol Int 2019; 74:102002. [PMID: 31669294 DOI: 10.1016/j.parint.2019.102002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Acanthamoeba spp. are free-living amoebae with a worldwide distribution. These amoebae can cause granulomatous amoebic encephalitis and amoebic keratitis in humans. Proteases are considered virulence factors in pathogenic Acanthamoeba. The objective of this study was to evaluate the behavior of Acanthamoeba mauritaniensis, a nonpathogenic amoeba. We analyzed the cytopathic effect of A. mauritaniensis on RCE1(5 T5) and MDCK cells and compared it to that of Acanthamoeba castellanii. A partial biochemical characterization of proteases was performed in total crude extracts (TCE) and conditioned medium (CM). Finally, we evaluated the effect of proteases on tight junction (TJ) proteins and the transepithelial electrical resistance of MDCK cells. The results showed that this amoeba can induce substantial damage to RCE1(5T5) and MDCK cells. Moreover, the zymograms and Azocoll assays of amoebic TCE and CM revealed different protease activities, with serine proteases being the most active. Furthermore, A. mauritaniensis induced the alteration and degradation of MDCK cell TJ proteins with serine proteases. After genotyping this amoeba, we determined that it is an isolate of Acanthamoeba genotype T4D. From these data, we suggest that A. mauritaniensis genotype T4D behaves similarly to the A. castellanii strain.
Collapse
|
17
|
Cucina A, Filali S, Risler A, Febvay C, Salmon D, Pivot C, Pelandakis M, Pirot F. Dual 0.02% chlorhexidine digluconate - 0.1% disodium EDTA loaded thermosensitive ocular gel for Acanthamoeba keratitis treatment. Int J Pharm 2019; 556:330-337. [PMID: 30553004 DOI: 10.1016/j.ijpharm.2018.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
Poor bioavailability and low residence time limit the efficiency of conventional biguanide-based eye drops against Acanthamoeba keratitis. The aim of this work was to formulate an original anti-amoebic thermoreversible ocular gel combining biguanide and metalloproteases inhibitor - chelating agent. Chlorhexidine digluconate (CHX)-ethylenediaminetetraacetic acid disodium salt (Na2EDTA) were compounded in poloxamer 407 saline solution. 0.02% CHX - 0.1% Na2EDTA loaded thermosensitive ocular gel exhibited appropriate pH (5.73 ± 0.06), iso-osmolality (314 ± 5 mOsm/kg), viscosity (ranged between 15 and 25 mPa.s) and thermal gelation (26.5 °C and 33 °C) properties. Bioadhesion of gel was successfully tested onto isolated bovine eyes as well as the assessment of CHX penetration into the cornea. Intracorneal CHX concentration was found greater than trophozoite minimum amoebicidal concentration and minimal cysticidal concentration after 15-min and 2-h ocular exposure, respectively, while any CHX permeation through the cornea was detected (<51 ng/cm2/h). Improvement of CHX ocular bioavailability was attributed to probable solubilization of tear film lipid layer by poloxamer. In vitro efficiency of CHX-Na2EDTA ocular gel was confirmed from the drastic reduction of trophozoite and cyst survival (to 25% and 2%, respectively), confirming the potential of the multicomponent pharmaceutical material strategy for the treatment of Acanthamoeba keratitis.
Collapse
Affiliation(s)
- Annamaria Cucina
- Service Pharmaceutique, Plateforme Fripharm, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France; Université de Lyon, Laboratoire de Pharmacie Galénique Industrielle, UMR-CNRS 5305, Plateforme Fripharm, ISPB-Faculté de Pharmacie, Université Claude Bernard Lyon 1, 8, Avenue Rockefeller, F-69373 Lyon Cedex 08, France
| | - Samira Filali
- Service Pharmaceutique, Plateforme Fripharm, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France; Université de Lyon, Laboratoire de Pharmacie Galénique Industrielle, UMR-CNRS 5305, Plateforme Fripharm, ISPB-Faculté de Pharmacie, Université Claude Bernard Lyon 1, 8, Avenue Rockefeller, F-69373 Lyon Cedex 08, France
| | - Arnaud Risler
- Laboratoire Lorrain de Chimie Moléculaire, Faculté des Sciences et Techniques, Université de Lorraine, Boulevard des Aiguillettes, F-54506 Vandoeuvre les Nancy, France
| | - Camille Febvay
- Service d'Ophtalmologie, Groupement Hospitalier Edouard Herriot, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France
| | - Damien Salmon
- Service Pharmaceutique, Plateforme Fripharm, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France; Université de Lyon, Laboratoire de Pharmacie Galénique Industrielle, UMR-CNRS 5305, Plateforme Fripharm, ISPB-Faculté de Pharmacie, Université Claude Bernard Lyon 1, 8, Avenue Rockefeller, F-69373 Lyon Cedex 08, France
| | - Christine Pivot
- Service Pharmaceutique, Plateforme Fripharm, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France
| | - Michel Pelandakis
- Université de Lyon, Laboratoire de Microbiologie, Adaptation et Pathogénie, UMR 5240, ISPB-Faculté de Pharmacie Laboratoire L3, 8, avenue Rockefeller - 69373 Lyon Cedex 08, France
| | - Fabrice Pirot
- Service Pharmaceutique, Plateforme Fripharm, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon Cedex 03, France; Université de Lyon, Laboratoire de Pharmacie Galénique Industrielle, UMR-CNRS 5305, Plateforme Fripharm, ISPB-Faculté de Pharmacie, Université Claude Bernard Lyon 1, 8, Avenue Rockefeller, F-69373 Lyon Cedex 08, France. http://fripharm.com
| |
Collapse
|
18
|
Possamai CO, Loss AC, Costa AO, Falqueto A, Furst C. Acanthamoeba of three morphological groups and distinct genotypes exhibit variable and weakly inter-related physiological properties. Parasitol Res 2018. [PMID: 29532218 DOI: 10.1007/s00436-018-5824-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Free-living amoeba of the genus Acanthamoeba can eventually act as parasites, causing infections in humans. Some physiological characteristics of Acanthamoeba have been related to the grade of pathogenicity, allowing inferences about the pathogenic potential. The main goal of this study was to characterize isolates of Acanthamoeba obtained in Brazil and evaluate properties associated with their pathogenicity. A total of 39 isolates obtained from keratitis cases (n = 16) and environmental sources (n = 23) were classified into morphological groups and genotyped by sequencing the 18S rDNA fragments ASA.S1 and GTSA.B1. Samples were also tested regarding their thermo-tolerance, osmo-tolerance, and cytopathogenicity in MDCK cells. Isolates were identified and classified as follows: group I (T17, T18); group II (T1, T3, T4, T11); and group III (T5, T15), with the predominance of genotype T4 (22/39). Clinical isolates were genotyped as T3 (1/16), T4 (14/16) and T5 (1/16). The majority of isolates (38/39) were able to grow at 37 °C, but tolerance to 40 °C was more frequent among environmental samples. The tolerance to 1 M mannitol was infrequent (4/39), with three of these corresponding to clinical samples. The variable ability to cause cytopathic effects was observed among isolates of distinct genotypes and origins. This study identified, for the first time, T1 and T18 in Brazil. It also indicated a weak association between the clinical origin of the isolates and tolerance to high temperatures, high osmolarity, and cytopathogenicity, demonstrating that some in vitro parameters do not necessarily reflect a higher propensity of Acanthamoeba to cause a disease.
Collapse
Affiliation(s)
- Cynara Oliveira Possamai
- Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, CEP 29043-900, Brazil
| | - Ana Carolina Loss
- Departamento de Ciências Biológicas, Centro de Ciências Humanas e Naturais, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Vitória, ES, CEP 29075-900, Brazil
| | - Adriana Oliveira Costa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Aloisio Falqueto
- Departamento de Medicina Social, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, CEP 29043-900, Brazil
| | - Cinthia Furst
- Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, CEP 29043-900, Brazil.
| |
Collapse
|
19
|
Castro-Artavia E, Retana-Moreira L, Lorenzo-Morales J, Abrahams-Sandí E. Potentially pathogenic Acanthamoeba genotype T4 isolated from dental units and emergency combination showers. Mem Inst Oswaldo Cruz 2017; 112:817-821. [PMID: 29211242 PMCID: PMC5719550 DOI: 10.1590/0074-02760170147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/20/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Acanthamoeba is the genus of free-living amoebae that is most frequently isolated in nature. To date, 20 Acanthamoeba genotypes have been described. Genotype T4 is responsible for approximately 90% of encephalitis and keratitis cases. Due to the ubiquitous presence of amoebae, isolation from environmental sources is not uncommon; to determine the clinical importance of an isolation, it is necessary to have evidence of the pathogenic potential of amoebae. OBJECTIVE The aim of this study was to physiologically characterise 8 Acanthamoeba T4 isolates obtained from dental units and emergency combination showers and to determine their pathogenic potential by employing different laboratory techniques. METHODS Eight axenic cultures of Acanthamoeba genotype T4 were used in pathogenic potential assays. Osmotolerance, thermotolerance, determination and characterisation of extracellular proteases and evaluation of cytopathic effects in MDCK cells were performed. FINDINGS All of the isolates were osmotolerant, thermotolerant and had serine proteases from 44-122 kDa. Two isolates had cytopathic effects on the MDCK cell monolayer. MAIN CONCLUSION The presence of Acanthamoeba T4 with pathogenic potential in areas such as those tested in this study reaffirms the need for adequate cleaning and maintenance protocols to reduce the possibility of infection with free-living amoebae.
Collapse
Affiliation(s)
- Esteban Castro-Artavia
- University of Costa Rica, Faculty of Microbiology, Department of Parasitology, San Pedro, San José, Costa Rica.,University of Costa Rica, Centro de Investigación en Enfermedades Tropicales, San Pedro, San José, Costa Rica
| | - Lissette Retana-Moreira
- University of Costa Rica, Faculty of Microbiology, Department of Parasitology, San Pedro, San José, Costa Rica.,University of Costa Rica, Centro de Investigación en Enfermedades Tropicales, San Pedro, San José, Costa Rica
| | - Jacob Lorenzo-Morales
- University of La Laguna, Institute of Tropical Diseases and Public Health of the Canary Islands, Tenerife, Spain
| | - Elizabeth Abrahams-Sandí
- University of Costa Rica, Faculty of Microbiology, Department of Parasitology, San Pedro, San José, Costa Rica.,University of Costa Rica, Centro de Investigación en Enfermedades Tropicales, San Pedro, San José, Costa Rica
| |
Collapse
|
20
|
Acanthamoeba (T4) trophozoites cross the MDCK epithelium without cell damage but increase paracellular permeability and transepithelial resistance by modifying tight junction composition. Exp Parasitol 2017; 183:69-75. [DOI: 10.1016/j.exppara.2017.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/12/2017] [Accepted: 10/29/2017] [Indexed: 01/10/2023]
|
21
|
González-Robles A, Omaña-Molina M, Salazar-Villatoro L, Flores-Maldonado C, Lorenzo-Morales J, Reyes-Batlle M, Arnalich-Montiel F, Martínez-Palomo A. Acanthamoeba culbertsoni isolated from a clinical case with intraocular dissemination: Structure and in vitro analysis of the interaction with hamster cornea and MDCK epithelial cell monolayers. Exp Parasitol 2017; 183:245-253. [PMID: 28974450 DOI: 10.1016/j.exppara.2017.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/24/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
Acanthamoeba culbertsoni trophozoites, previously isolated from a human keratitis case with severe intraocular damage, were maintained in axenic culture. Co-incubation of amoebae with MDCK cell monolayers demonstrated an apparent preference of the amoebae to introduce themselves between the cells. The trophozoites appeared to cross the cell monolayer through the tight junctions, which resulted in decreased trans-epithelial resistance (TER) measurements. Unexpectedly, after co-incubation of amoebae with hamster corneas, we observed that the trophozoites were able to cross the different cell layers and reach the corneal stroma after only 12 h of interaction, in contrast to other Acanthamoeba species. These observations suggest that this A. culbertsoni isolate is particularly pathogenic. Further research with diverse methodologies needs to be performed to explain the unique behavior of this Acanthamoeba strain.
Collapse
Affiliation(s)
- Arturo González-Robles
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Mexico City, Mexico.
| | - Maritza Omaña-Molina
- Faculty of Superior Studies, UNAM, Iztacala, Tlalnepantla, State of Mexico, Mexico
| | - Lizbeth Salazar-Villatoro
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Mexico City, Mexico
| | - Catalina Flores-Maldonado
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies, Mexico City, Mexico
| | - Jacob Lorenzo-Morales
- Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Tenerife, Canary Islands, Spain
| | - María Reyes-Batlle
- Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Tenerife, Canary Islands, Spain
| | | | - Adolfo Martínez-Palomo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Mexico City, Mexico
| |
Collapse
|
22
|
In vivo CNS infection model of Acanthamoeba genotype T4: the early stages of infection lack presence of host inflammatory response and are a slow and contact-dependent process. Parasitol Res 2016; 116:725-733. [PMID: 27915418 DOI: 10.1007/s00436-016-5338-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
Abstract
This study was developed in order to describe the early morphological events observed during the invasion of two pathogenic strains of Acanthamoeba (genotype T4); A. castellanii and A. culbertsoni, at the olfactory meatus and cerebral, pulmonary, renal, hepatic and splenic tissues levels, an in vivo invasion study. Histological and immunohistochemical description of the events at 24, 48, 72, and 96 h postintranasal inoculations of BALB/c mice was performed. A. castellanii showed a higher invasion rate than A. culbertsoni, which was only able to reach lung and brain tissue in the in vivo model. The current study supports previous evidence of lack of inflammatory response during the early stages of infection. Acanthamoeba invasion of the CNS and other organs is a slow and contact-dependent process. The early morphological events during the invasion of amoebae include the penetration of trophozoites into different epithelia: olfactory, respiratory, alveolar space, and renal tubule, which resemble the process of amoebae invasion described in corneal tissue. The data suggest that after reaching the nasal epithelium, trophozoites continued invasion, separating and lifting the most superficial cells, then migrating and penetrating between the cell junctions without causing a cytolytic effect on adjacent cells. These results reaffirm the idea that contact-dependent mechanisms are relevant for amoebae of Acanthamoeba genus regardless of the invasion site.
Collapse
|
23
|
Genotypic, physiological, and biochemical characterization of potentially pathogenic Acanthamoeba isolated from the environment in Cairo, Egypt. Parasitol Res 2016; 115:1871-81. [PMID: 26841771 DOI: 10.1007/s00436-016-4927-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
Abstract
Acanthamoebae are the most common opportunistic amphizoic protozoa that cause life-threatening granulomatous amoebic encephalitis in immunocompromised individuals and sight-threatening amoebic keratitis (AK) in contact lens wearers. The present work aimed to determine the presence of Acanthamoeba isolates in different environmental sources: water, soil, and dust in Cairo, Egypt and to characterize the pathogenic potential of the isolated Acanthamoeba using physiological and biochemical assays as well as determination of the genotypes in an attempt to correlate pathogenicity with certain genotypes. The study included the collection of 22 corneal scrapings from patients complaining of symptoms and signs indicative of acanthamoeba keratitis (AK) and 75 environmental samples followed by cultivation on non-nutrient agar plates preseeded with E. coli. Positive samples for Acanthamoeba were subjected to osmo- and thermo-tolerance assays and zymography analysis. Potentially pathogenic isolates were subjected to PCR amplification using genus-specific primer pair. Isolates were classified at the genotype level based on the sequence analysis of Acanthamoeba 18S rRNA gene (diagnostic fragment 3). The total detection rate for Acanthamoeba in environmental samples was 33.3 %, 31.4 % in water, 40 % in soil, and 20 % in dust samples. Three and two Acanthamoeba isolates from water and soil sources, respectively, had the potential for pathogenicity as they exhibited full range of pathogenic traits. Other 12 isolates were designated as weak potential pathogens. Only ten of the environmental isolates were positive in PCR and were classified by genotype analysis into T4 genotype (70 %), T3 (10 %) and T5 (20 %). Potential pathogens belonged to genotypes T4 (from water) and T5 (from soil) while weak potential pathogens belonged to genotypes T3 (from water) and T4 (from water and soil). Additionally, T7 genotype was isolated from keratitis patients. There is a considerable variation in the response of Acanthamoeba members of the same genotype to pathogenicity indicator assays making correlation of pathogenicity with certain genotypes difficult. Presence of potentially pathogenic Acanthamoeba isolates in habitats related directly to human populations represent a risk for human health. Isolation of Acanthamoeba genotype T7 from AK cases, which is commonly considered as nonpathogenic, might draw the attention to other Acanthamoeba genotypes considered as non pathogenic and reevaluate their role in production of human infections. To our knowledge, this is the first study on the presence and distribution of Acanthamoeba genotypes in the environment, Cairo, Egypt.
Collapse
|
24
|
Acanthamoeba genotypes T3 and T4 as causative agents of amoebic keratitis in Mexico. Parasitol Res 2015; 115:873-8. [DOI: 10.1007/s00436-015-4821-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/05/2015] [Indexed: 02/02/2023]
|
25
|
Sant'ana VP, Carrijo-Carvalho LC, Foronda AS, Chudzinski-Tavassi AM, de Freitas D, de Carvalho FRS. Cytotoxic activity and degradation patterns of structural proteins by corneal isolates of Acanthamoeba spp. Graefes Arch Clin Exp Ophthalmol 2014; 253:65-75. [PMID: 25161076 DOI: 10.1007/s00417-014-2783-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/22/2014] [Accepted: 08/13/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Proteolytic enzymes secreted by trophozoites (amoebic secretome) are suggested as the main virulence factor involved in the severity of Acanthamoeba keratitis. The degradation profile of the main glycoprotein components of anterior and posterior portions of the cornea and the cytopathic effect of secretomes on endothelial cells by contact-independent mechanism were evaluated. METHODS Trophozoites were isolated primarily from corneal tissue samples (n = 11) and extracellular proteins were collected from axenic cell culture supernatants. The molecular weights of proteolytic enzymes were estimated by zymography. Enzymatic cleavage of laminin and fibronectin substrates by amoebic secretome was investigated and cluster analysis was applied to the proteolysis profiles. Primary cultures of endothelial cells were used in both qualitative and quantitative assays of cytophatogenicity. RESULTS Differential patterns of proteolysis were observed among the Acanthamoeba secretomes that were analysed. The uniformity of laminin degradation contrasted with the diversity of the proteolysis profiles observed in the fibronectin substrate. Acanthamoeba secretome extracted from four clinical isolates was shown to be toxic when in contact with the endothelial cell monolayer (p < 0.01). Induction of apoptosis and membrane permeability, at different percentual values, were suggested as the main mechanisms that could induce endothelial cell death when in contact with amoebic secretome. CONCLUSIONS Our results provide evidence that virulence factors secreted by Acanthamoeba trophozoites can be related to an increased pathogenicity pattern by an independent contact-trophozoite mechanism, through induction of endothelial cell death by apoptosis at a higher percentage than providing the lack of cell viability by the membrane-associated pore-forming toxin activity.
Collapse
Affiliation(s)
- Viviane Peracini Sant'ana
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, Federal University of Sao Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Characterization of a human-pathogenic Acanthamoeba griffini isolated from a contact lens-wearing keratitis patient in Spain. Parasitology 2014; 142:363-73. [PMID: 25068502 DOI: 10.1017/s0031182014001140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Amoebae were isolated from contact lenses of a symptomatic lens wearer in Spain. Protozoa were characterized by studying their morphology, biology, protease activity and the 18S rRNA gene sequence. Morphology of the organism was observed by light microscopy, scanning electron microscopy and transmission electron microscopy. Its structure corresponded to an amphizoic amoeba. The protozoa grew well at 37 °C and poorly at lower temperatures. In addition, it was capable of lysing mammalian cells in vitro. A major 56 kDa proteolytic enzyme was observed in amoeba crude extracts by gelatin-sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Most proteolytic enzymes in protozoa extracts showed significant activity over a wide range of pH (3-9) and temperature (8-45 °C) values. The assays on inhibition of protease activity indicated strongly that enzymes detected in amoeba extracts corresponded to serine proteases and, to a lesser extent, cysteine proteases. The use of proteinase inhibitors on a tissue culture model proved that the proteinase activity is critical for developing focal lesions in HeLa cell monolayers. Finally, partial sequencing of the 18S ribosomal RNA gene and phylogenetic analyses indicated that the isolate is closely related to Acanthamoeba griffini H37 from the UK (T3 genotype).
Collapse
|