1
|
Imchen T, Tilvi S, Singh KS, Thakur N. Allelochemicals from the seaweeds and their bioprospecting potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5387-5401. [PMID: 38396154 DOI: 10.1007/s00210-024-03002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Allelochemicals are secondary metabolites which function as a natural protection against grazing activities by algae and higher plants. They are one of the major metabolites engaged in the interactions of organisms. The chemically mediated interactions between organisms significantly influence the functioning of the ecosystems. Most of these compounds are secondary metabolites comprising sterols, terpenes, and polyphenols. These compounds not only play a defensive role, but also exhibit biological activities such as antioxidants, anti-cancer, anti-diabetes, anti-inflammation, and anti-microbial properties. This review article discusses the current understanding of the allelochemicals of seaweeds and their bioprospecting potential that can bring benefit to humanity. Specifically, the bioactive substances having specific health benefits associated with the consumption or application of seaweed-derived compounds. The properties of such allelochemicals can have implications for bioprospecting pharmaceutical, nutraceutical and cosmetic applications.
Collapse
Affiliation(s)
- Temjensangba Imchen
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004.
| | - Supriya Tilvi
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004
| | - Keisham Sarjit Singh
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004
| | - Narsinh Thakur
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004.
| |
Collapse
|
2
|
Photosynthetic Protein-Based Edible Quality Formation in Various Porphyra dentata Harvests Determined by Label-Free Proteomics Analysis. Cells 2022; 11:cells11071136. [PMID: 35406700 PMCID: PMC8997503 DOI: 10.3390/cells11071136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
The influence of harvest time on the photosynthetic protein quality of the red alga Porphyra dentata was determined using label-free proteomics. Of 2716 differentially abundant proteins that were identified in this study, 478 were upregulated and 374 were downregulated. The top enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) pathways were metabolic processes and biosynthetic pathways such as photosynthesis, light harvesting, and carbon fixation in photosynthetic organisms. Nine important photosynthetic proteins were screened. Correlations among their expression levels were contrasted and verified by western blotting. PSII D1 and 44-kDa protein levels increased with later harvest time and increased light exposure. Specific photoprotective protein expression accelerated P. dentata growth and development. Biological processes such as photosynthesis and carbon cycling increased carbohydrate metabolism and decreased the total protein content. The results of the present study provide a scientific basis for the optimization of the culture and harvest of P. dentata.
Collapse
|
3
|
Li X, Zhou DY, Li FT, Jiang YF, Dai YL, Jeon YJ. Saringosterol Acetate Isolated from Sargassum fusiformis Induces Mitochondrial-Mediated Apoptosis in MCF-7 Breast Cancer Cells. Chem Biodivers 2022; 19:e202100848. [PMID: 34997687 DOI: 10.1002/cbdv.202100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/06/2022] [Indexed: 11/08/2022]
Abstract
Sargassum fusiformis is among the most important edible brown seaweeds in Eastern Asia that contains various bioactive compounds and strong activities. Saringosterol acetate (SA) was successfully isolated from S. fusiformis in our previous research. In this study, SA was investigated for its anticancer effect on MCF-7 breast cancer cells. SA attenuated the survival rate of MCF-7 cells with an IC50 value of 63.16±3.6 μg/mL. Staining with Hoechst 33342 demonstrated that SA treatment mediated apoptotic body generation. SA significantly downregulated Bcl-xL and upregulated Bax, and cleaved PARP, and cleaved caspase 3 in a dose-dependent manner. Thus, these results suggest that SA induced mitochondria-mediated apoptosis in MCF-7 cells, making it a plausible candidate for drug development against breast cancer.
Collapse
Affiliation(s)
- Xue Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Dong-Yue Zhou
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Fang-Tong Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yun-Fei Jiang
- Changchun Sci-Tech University, Changchun, 130600, China
| | - Yu-Lin Dai
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, 130117, China
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| |
Collapse
|
4
|
Sohn SI, Rathinapriya P, Balaji S, Jaya Balan D, Swetha TK, Durgadevi R, Alagulakshmi S, Singaraj P, Pandian S. Phytosterols in Seaweeds: An Overview on Biosynthesis to Biomedical Applications. Int J Mol Sci 2021; 22:12691. [PMID: 34884496 PMCID: PMC8657749 DOI: 10.3390/ijms222312691] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Seaweed extracts are considered effective therapeutic alternatives to synthetic anticancer, antioxidant, and antimicrobial agents, owing to their availability, low cost, greater efficacy, eco-friendliness, and non-toxic nature. Since the bioactive constituents of seaweed, in particular, phytosterols, possess plenty of medicinal benefits over other conventional pharmaceutical agents, they have been extensively evaluated for many years. Fortunately, recent advances in phytosterol-based research have begun to unravel the evidence concerning these important processes and to endow the field with the understanding and identification of the potential contributions of seaweed-steroidal molecules that can be used as chemotherapeutic drugs. Despite the myriad of research interests in phytosterols, there is an immense need to fill the void with an up-to-date literature survey elucidating their biosynthesis, pharmacological effects, and other biomedical applications. Hence, in the present review, we summarize studies dealing with several types of seaweed to provide a comprehensive overview of the structural determination of several phytosterol molecules, their properties, biosynthetic pathways, and mechanisms of action, along with their health benefits, which could significantly contribute to the development of novel drugs and functional foods.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Periyasamy Rathinapriya
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
- Department of Biotechnology, Vidhyaa Giri College of Arts and Science, Karaikudi 630 003, India
| | - Sekaran Balaji
- Independent Researcher, Madurai 625 020, India; (S.B.); (P.S.)
| | - Devasahayam Jaya Balan
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | | | - Ravindran Durgadevi
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | - Selvaraj Alagulakshmi
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | | | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
5
|
Ditty MJ, Ezhilarasan D. β-sitosterol induces reactive oxygen species-mediated apoptosis in human hepatocellular carcinoma cell line. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:541-550. [PMID: 34804892 PMCID: PMC8588954 DOI: 10.22038/ajp.2021.17746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/06/2020] [Accepted: 12/31/2020] [Indexed: 01/27/2023]
Abstract
Objective: It is of interest to investigate the anti-proliferative effect of β-sitosterol (BS) on human hepatocellular carcinoma (HepG2) cell line. Materials and Methods: β-sitosterol treatments (0.6 and 1.2 mM/ml) were done in HepG2 and after 24 hr, cell viability was evaluated by MTT assay. Reactive oxygen species (ROS) accumulating potential of BS was assessed by dichloro-dihydro-fluorescein diacetate staining. Morphology related to apoptosis was investigated by acridine orange and ethidium bromide dual staining. Cytochrome c and caspase 3 expressions were evaluated by immunofluorescence and western blot analyses. Results: β-sitosterol induced cytotoxicity (p<0.001) and intracellular ROS in HepG2 cells in a dose-dependent manner. BS treatments accumulated induced intracellular ROS accumulation which led to membrane damage and mitochondrial toxicity. At the molecular level, BS treatments induced cytochrome c release from mitochondria and enhanced the protein expressions (p<0.05 vs 0.6 mM/ml and p<0.001 vs 1.2 mM/ml) of both caspase 3 and cleaved caspase 3. Conclusion: β-sitosterol induced ROS accumulation which plays a critical role in apoptosis via the intrinsic pathway in HepG2 cells. The present investigation paves the way for further in vivo studies.
Collapse
Affiliation(s)
- Mary J Ditty
- Department of Pharmacology, The Blue Lab, Molecular Medicine and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, The Blue Lab, Molecular Medicine and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Karimzadeh K, Zahmatkesh A. Phytochemical screening, antioxidant potential, and cytotoxic effects of different extracts of red algae ( Laurencia snyderiae) on HT29 cells. Res Pharm Sci 2021; 16:400-413. [PMID: 34447448 PMCID: PMC8356712 DOI: 10.4103/1735-5362.319578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/05/2020] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background and purpose Marine algae are potential renewable and sustainable sources of bioactive natural products which can be utilized in nutraceutical and pharmaceutical industries. Experimental approach Different extracts (methanol, chloroform, and ethyl acetate) of red algae, Laurencia snyderiae, was evaluated for their antioxidant potential, with various antioxidant assessment assays, cytotoxic properties (using MTT colorimetric assay), and phytochemical constituents (total phenolic and flavonoid contents). The GC-MS analyses of the algal methanolic extract and its apoptotic effects on the human colon carcinoma cell line (HT29) were also investigated. Findings/Results The total phenolic content in the methanol, chloroform, and ethyl acetate extracts of L. snyderiae was 3.6 ± 0.12, 3.2 ± 0.41, and 3.3 ± 0.35 μg/mg of gallic acid, respectively. Among different algae extracts, chloroform extract showed significantly chelating ability (IC50 = 0.027 mg/mL) and reducing power activity (IC50 = 0.082 mg/mL), while the highest DPPH scavenging activity (IC50 = 0.058 mg/mL) exhibited in the methanol extract compared to the other extracts. The methanolic extract was found to have a higher cytotoxicity effect on colon carcinoma cells with IC50 70.2 μg/mL. The viability of the cancer cells was increased with the decrease in the concentration in different extracts. GC-MS analysis of the algal methanolic extract revealed the presence of active antitumor constituents and apoptosis-based cytotoxicity against colon cancer cells through the DNA damage was also confirmed. Conclusion and implications Based on these results, the red algae L. snyderiae possesses potent bioactive constituents and can use as additional resources as a natural antioxidant and antitumor agent in the pharmaceutical and nutraceutical area.
Collapse
Affiliation(s)
- Katayoon Karimzadeh
- Marine Biology Department, Lahijan Branch, Islamic Azad University, Gilan, I.R. Iran
| | - Asgar Zahmatkesh
- Aquaculture Department, Gilan Agricultural and Natural Resources Research and Education Center, AREEO, Gilan, I.R. Iran
| |
Collapse
|
7
|
Sterols in red macroalgae from antarctica: extraction and quantification by Gas Chromatography–Mass spectrometry. Polar Biol 2021. [DOI: 10.1007/s00300-021-02853-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Disruption of Endoplasmic Reticulum and ROS Production in Human Ovarian Cancer by Campesterol. Antioxidants (Basel) 2021; 10:antiox10030379. [PMID: 33802602 PMCID: PMC8001332 DOI: 10.3390/antiox10030379] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/14/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Phytosterols, which are present in a variety of foods, exhibit various physiological functions and do not have any side effects. Here, we attempted to identify functional role of campesterol in regulation of oxidative stress by leading to cell death of ovarian cancer. We investigated the effects of campesterol on cancer cell aggregation using a three-dimensional (3D) culture of human ovarian cancer cells. The effects of campesterol on apoptosis, protein expression, proliferation, the cell cycle, and the migration of these cells were determined to unravel the underlying mechanism. We also investigated whether campesterol regulates mitochondrial function, the generation of reactive oxygen species (ROS), and calcium concentrations. Our results show that campesterol activates cell death signals and cell death in human ovarian cancer cells. Excessive calcium levels and ROS production were induced by campesterol in the two selected ovarian cancer cell lines. Moreover, campesterol suppressed cell proliferation, cell cycle progression, and cell aggregation in ovarian cancer cells. Campesterol also enhanced the anticancer effects of conventional anticancer agents. The present study shows that campesterol can be used as a novel anticancer drug for human ovarian cancer.
Collapse
|
9
|
Abstract
Seaweed-based cosmetics are being gradually used by consumers as a substitute of synthetic equivalent products. These seaweed-based products normally contain purified compounds or extracts with several compounds. Several seaweeds’ molecules already demonstrated a high potential as a cosmetic active ingredient (such as, mycosporine-like amino acids, fucoidan, pigments, phenolic compounds) or as a key element for the products consistency (agar, alginate, carrageenan). Moreover, seaweeds’ compounds present important qualities for cosmetic application, such as low cytotoxicity and low allergens content. However, seaweeds’ biochemical profile can be variable, and the extraction methods can cause the loss of some of the biomolecules. This review gives a general look at the seaweed cosmetics benefits and its current application in the cosmetic industry. Moreover, it focuses on the ecological and sustainable scope of seaweed exploitation to guarantee a safe source of ingredients for the cosmetic industry and consumers.
Collapse
|
10
|
Cioccoloni G, Soteriou C, Websdale A, Wallis L, Zulyniak MA, Thorne JL. Phytosterols and phytostanols and the hallmarks of cancer in model organisms: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 2020; 62:1145-1165. [PMID: 33238719 DOI: 10.1080/10408398.2020.1835820] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Giorgia Cioccoloni
- Food Science & Nutrition, University of Leeds, Leeds, West Yorkshire, UK
| | - Chrysa Soteriou
- Food Science & Nutrition, University of Leeds, Leeds, West Yorkshire, UK
| | - Alex Websdale
- Food Science & Nutrition, University of Leeds, Leeds, West Yorkshire, UK
| | - Lewis Wallis
- Food Science & Nutrition, University of Leeds, Leeds, West Yorkshire, UK
| | | | - James L. Thorne
- Food Science & Nutrition, University of Leeds, Leeds, West Yorkshire, UK
| |
Collapse
|
11
|
Cho TJ, Rhee MS. Health Functionality and Quality Control of Laver ( Porphyra, Pyropia): Current Issues and Future Perspectives as an Edible Seaweed. Mar Drugs 2019; 18:E14. [PMID: 31877971 PMCID: PMC7024182 DOI: 10.3390/md18010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
The growing interest in laver as a food product and as a source of substances beneficial to health has led to global consumer demand for laver produced in a limited area of northeastern Asia. Here we review research into the benefits of laver consumption and discuss future perspectives on the improvement of laver product quality. Variation in nutritional/functional values among product types (raw and processed (dried, roasted, or seasoned) laver) makes product-specific nutritional analysis a prerequisite for accurate prediction of health benefits. The effects of drying, roasting, and seasoning on the contents of both beneficial and harmful substances highlight the importance of managing laver processing conditions. Most research into health benefits has focused on substances present at high concentrations in laver (porphyran, Vitamin B12, taurine), with assessment of the expected effects of laver consumption. Mitigation of chemical/microbiological risks and the adoption of novel technologies to exploit under-reported biochemical characteristics of lavers are suggested as key strategies for the further improvement of laver product quality. Comprehensive analysis of the literature regarding laver as a food product and as a source of biomedical compounds highlights the possibilities and challenges for application of laver products.
Collapse
Affiliation(s)
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| |
Collapse
|
12
|
Ivanov I, Petkova N, Tumbarski J, Dincheva I, Badjakov I, Denev P, Pavlov A. GC-MS characterization of n-hexane soluble fraction from dandelion (Taraxacum officinale Weber ex F.H. Wigg.) aerial parts and its antioxidant and antimicrobial properties. ACTA ACUST UNITED AC 2019; 73:41-47. [PMID: 28902635 DOI: 10.1515/znc-2017-0107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/20/2017] [Indexed: 11/15/2022]
Abstract
A comparative investigation of n-hexane soluble compounds from aerial parts of dandelion (Taraxacum officinale Weber ex F.H. Wigg.) collected during different vegetative stages was carried out. The GC-MS analysis of the n-hexane (unpolar) fraction showed the presence of 30 biologically active compounds. Phytol [14.7% of total ion current (TIC)], lupeol (14.5% of TIC), taraxasteryl acetate (11.4% of TIC), β-sitosterol (10.3% of TIC), α-amyrin (9.0% of TIC), β-amyrin (8.3% of TIC), and cycloartenol acetate (5.8% of TIC) were identified as the major components in n-hexane fraction. The unpolar fraction exhibited promising antioxidant activity - 46.7 mmol Trolox equivalents/g extract (determined by 1,1-diphenyl-2-picrylhydrazyl method). This fraction demonstrated insignificant antimicrobial activity and can be used in cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
- Ivan Ivanov
- Department Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 26 Maritza Blvd., Plovdiv, Bulgaria
| | - Nadezhda Petkova
- Department Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 26 Maritza Blvd., Plovdiv, Bulgaria
| | - Julian Tumbarski
- Department Microbiology, University of Food Technologies, 26 Maritza Blvd., Plovdiv, Bulgaria
| | - Ivayla Dincheva
- AgroBioInstitute Agricultural Academy, 8 Dr. Tsankov Blvd., Sofia, Bulgaria
| | - Ilian Badjakov
- AgroBioInstitute Agricultural Academy, 8 Dr. Tsankov Blvd., Sofia, Bulgaria
| | - Panteley Denev
- Department Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 26 Maritza Blvd., Plovdiv, Bulgaria
| | - Atanas Pavlov
- Department Analytical and Physical Chemistry, University of Food Technologies, 26 Maritza Blvd., Plovdiv, 4002, Bulgaria
| |
Collapse
|
13
|
Associations among dietary seaweed intake, c-MYC rs6983267 polymorphism, and risk of colorectal cancer in a Korean population: a case-control study. Eur J Nutr 2019; 59:1963-1974. [PMID: 31300834 DOI: 10.1007/s00394-019-02046-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/02/2019] [Indexed: 01/28/2023]
Abstract
PURPOSE The effects of seaweed compounds have been studied in relation to colorectal cancer (CRC) based on their ability to modulate carcinogen metabolism in vivo and in vitro. However, no epidemiological studies on the interaction between edible seaweed and genetic variants relevant to CRC have been reported. This study examined the associations among dietary seaweed intake (gim, miyeok, and dashima), single-nucleotide polymorphisms (SNPs; rs6983267, rs7014346, and rs719725), and CRC risk in a Korean population. METHODS The participants comprised 923 CRC patients and 1846 controls who visited the National Cancer Center Korea. We used a Semiquantitative Food Frequency Questionnaire and genotyped SNPs using genomic DNA samples. RESULTS The intake of total seaweed, miyeok, and dashima showed a significant inverse association with CRC risk after adjusting for potential confounding factors (total seaweed odds ratio (OR) [95% CI] = 0.65 [0.50-0.85], P for trend < 0.001; miyeok = 0.82 [0.62-1.09], P for trend < 0.05; dashima = 0.58 [0.44-0.76], P for trend < 0.001, highest vs. lowest tertile). We confirmed that the homozygous T/T allele of rs6983267 c-MYC indicated an interaction between dietary seaweed intake and both overall CRC and rectal cancer (CRC OR [95% CI] = 0.52 [0.34-0.81], P for interaction = 0.015; rectal cancer = 0.45 [0.25-0.79], P for interaction = 0.007, T/T carriers with high total seaweed intake vs. T/T carriers with low total seaweed intake). CONCLUSIONS This study provides evidence of the effect of dietary seaweed intake on CRC risk with respect to c-MYC gene variants.
Collapse
|
14
|
Antioxidant, anti-inflammatory and anticancer potential of natural bioactive compounds from seaweeds. BIOACTIVE NATURAL PRODUCTS 2019. [DOI: 10.1016/b978-0-12-817901-7.00005-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Pacheco BS, Dos Santos MAZ, Schultze E, Martins RM, Lund RG, Seixas FK, Colepicolo P, Collares T, Paula FR, De Pereira CMP. Cytotoxic Activity of Fatty Acids From Antarctic Macroalgae on the Growth of Human Breast Cancer Cells. Front Bioeng Biotechnol 2018; 6:185. [PMID: 30560124 PMCID: PMC6286972 DOI: 10.3389/fbioe.2018.00185] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/15/2018] [Indexed: 01/01/2023] Open
Abstract
Macroalgae are a natural source of clinically relevant molecules such as polyunsaturated and monounsaturated fatty acids. The Antarctic environment, due to its cold climate, leads to high production of these bioactive molecules. Adenocystis utricularis, Curdiea racovitzae, and Georgiella confluens from three distinct islands in the Antarctic Peninsula were collected and analyzed for their fatty acid content by gas chromatography flame ionization detection. Results revealed that the algal extracts consisted of 22 fatty acids, of which 9 were saturated, 4 were monounsaturated, and 9 were polyunsaturated (PUFA). In addition, fucosterol was identified within the lipidic extracts. The cytotoxic activity of these fatty acids was evaluated in human breast cancer cell lines MCF-7 and MDA-MB-231. The most notable result was the effect of PUFA on the growth inhibition of cancer cells ranging from 61.04 to 69.78% in comparison to control cells. Significant cytotoxic activity of fatty acids from A. utricularis was observed at 48 h, resulting in an inhibition of growth of more than 50% for breast cancer cells at a concentration of 100 μg/mL. A cell viability assay showed that the fatty acids from A. utricularis significantly reduced cell viability (68.7% in MCF-7 and 89% in MDA-MB-231 after 72 h of exposure). At the same time, DAPI staining demonstrated chromatin condensation, and apoptotic bodies formed in cells that were cultured with fatty acids from A. utricularis. These data indicate that fatty acids from Antarctic macroalgae have the potential to reduce the proliferation of and induce apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- Bruna Silveira Pacheco
- Bioforensic Research Group, Lipidomic and Bio-Organic Laboratory, Postgraduate Program in Biochemistry and Bioprospection, Federal University of Pelotas, Pelotas, Brazil.,Research Group on Cellular and Molecular Oncology, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - Marco Aurélio Ziemann Dos Santos
- Bioforensic Research Group, Lipidomic and Bio-Organic Laboratory, Postgraduate Program in Biochemistry and Bioprospection, Federal University of Pelotas, Pelotas, Brazil
| | - Eduarda Schultze
- Research Group on Cellular and Molecular Oncology, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - Rosiane Mastelari Martins
- Bioforensic Research Group, Lipidomic and Bio-Organic Laboratory, Postgraduate Program in Biochemistry and Bioprospection, Federal University of Pelotas, Pelotas, Brazil
| | - Rafael Guerra Lund
- Bioforensic Research Group, Lipidomic and Bio-Organic Laboratory, Postgraduate Program in Biochemistry and Bioprospection, Federal University of Pelotas, Pelotas, Brazil
| | - Fabiana Kömmling Seixas
- Research Group on Cellular and Molecular Oncology, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - Pio Colepicolo
- Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | - Tiago Collares
- Bioforensic Research Group, Lipidomic and Bio-Organic Laboratory, Postgraduate Program in Biochemistry and Bioprospection, Federal University of Pelotas, Pelotas, Brazil.,Research Group on Cellular and Molecular Oncology, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - Favero Reisdorfer Paula
- Laboratory of Research and Drugs Development, Pharmaceutical Sciences Postgraduate Program, Federal University of Pampa, Bagé, Brazil
| | - Claudio Martin Pereira De Pereira
- Bioforensic Research Group, Lipidomic and Bio-Organic Laboratory, Postgraduate Program in Biochemistry and Bioprospection, Federal University of Pelotas, Pelotas, Brazil.,Research Group on Cellular and Molecular Oncology, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
16
|
Seaweeds as Source of Bioactive Substances and Skin Care Therapy—Cosmeceuticals, Algotheraphy, and Thalassotherapy. COSMETICS 2018. [DOI: 10.3390/cosmetics5040068] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Riverine, estuarine, and coastal populations have always used algae in the development of home remedies that were then used to treat diverse health problems. The empirical knowledge of various generations originated these applications, and their mechanism of action is, in most cases, unknown, that is, few more scientific studies would have been described beyond simple collection and ethnographic recording. Nevertheless, recent investigations, carried out with the purpose of analyzing the components and causes that alter the functioning and the balance of our organism, are already giving their first results. Water, and especially sea water is considered as essential to life on our planet. It sings all the substances necessary and conducive to the development of the living being (minerals, catalysts, vitamins, amino acids, etc.). Oceans cover over 70% of Earth, being home to up to 90% of the organisms in the planet. Many rich resources and unique environments are provided by the ocean. Additionally, bioactive compounds that multiple marine organisms have a great potential to produce can be used as nutraceuticals, pharmaceuticals, and cosmeceuticals. Both primary and secondary metabolites are produced by algae. The first ones are directly implicated in development, normal growth, or reproduction conditions to perform physiological functions. Stress conditions, like temperature changes, salinity, environmental pollutants, or UV radiation exposure cause the performance of secondary metabolites. In algae, proteins, polysaccharides, fatty acids, and amino acids are primary metabolites and phenolic compounds, pigments, vitamins, sterols, and other bioactive agents, all produced in algae tissues, are secondary metabolites. These algal active constituents have direct relevance in cosmetics.
Collapse
|
17
|
Bito T, Teng F, Watanabe F. Bioactive Compounds of Edible Purple Laver Porphyra sp. (Nori). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10685-10692. [PMID: 29161815 DOI: 10.1021/acs.jafc.7b04688] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Porphyra sp. (nori) is widely cultivated as an important marine crop. Dried nori contains numerous nutrients, including vitamin B12, which is the only vitamin absent from plant-derived food sources. Vegetarian diets are low in iron and vitamin B12; depletion of both causes severe anemia. Nori also contains large amounts of iron compared with other plant-derived foods and eicosapentaenoic acid, which is an important fatty acid found in fish oils. In nori, there are also many bioactive compounds that exhibit various pharmacological activities, such as immunomodulation, anticancer, antihyperlipidemic, and antioxidative activities, indicating that consumption of nori is beneficial to human health. However, Porphyra sp. contains toxic metals (arsenic and cadmiun) and/or amphipod allergens, the levels of which vary significantly among nori products. Further evidence from human studies of such beneficial or adverse effects of nori consumption is required.
Collapse
Affiliation(s)
- Tomohiro Bito
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University , Tottori 680-8553, Japan
| | - Fei Teng
- Department of Food Quality and Safety, College of Food Science, Northeast Agricultural University , Harbin 150030, China
| | - Fumio Watanabe
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University , Tottori 680-8553, Japan
| |
Collapse
|
18
|
R-Phycoerythrin Induces SGC-7901 Apoptosis by Arresting Cell Cycle at S Phase. Mar Drugs 2016; 14:md14090166. [PMID: 27626431 PMCID: PMC5039537 DOI: 10.3390/md14090166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/03/2016] [Accepted: 09/07/2016] [Indexed: 02/04/2023] Open
Abstract
R-Phycoerythrin (R-PE), one of the chemical constituents of red algae, could produce singlet oxygen upon excitation with the appropriate radiation and possibly be used in photodynamic therapy (PDT) for cancer. Documents reported that R-PE could inhibit cell proliferation in HepG2 and A549 cells, which was significative for cancer therapy. This is due to the fact that R-PE could kill cancer cells directly as well as by PDT. However, little is known about the cytotoxicity of R-PE to the SGC-7901 cell. In this study, it has been found that R-PE could inhibit SGC-7901 proliferation and induce cell apoptosis, which was achieved by arresting the SGC-7901 cell at S phase. CyclinA, CDK2 and CDC25A are proteins associated with the S phase, and it was found that R-PE could increase the expression of cyclin A protein and decrease the expression of CDK2 and CDC25A proteins. Thus, it was concluded that R-PE reduced the CDK2 protein activated through decreasing the CDC25A factor, which reduced the formation of Cyclin-CDK complex. The reduction of Cyclin-CDK complex made the SGC-7901 cells arrest at the S phase. Therefore, R-PE induced apoptosis by arresting the SGC-7901 cell at S phase was successful, which was achieved by the expression of the CDC25A protein, which reduced the CDK2 protein actived and the formation of Cyclin-CDK complex.
Collapse
|
19
|
Taslimi Y, Zahedifard F, Habibzadeh S, Taheri T, Abbaspour H, Sadeghipour A, Mohit E, Rafati S. Antitumor Effect of IP-10 by Using Two Different Approaches: Live Delivery System and Gene Therapy. J Breast Cancer 2016; 19:34-44. [PMID: 27066094 PMCID: PMC4822105 DOI: 10.4048/jbc.2016.19.1.34] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/26/2016] [Indexed: 12/11/2022] Open
Abstract
Purpose Immunotherapy is one of the treatment strategies for breast cancer, the most common cancer in women worldwide. In this approach, the patient's immune system is stimulated to attack microscopic tumors and control metastasis. Here, we used interferon γ-induced protein 10 (IP-10), which induces and strengthens antitumor immunity, as an immunotherapeutic agent. We employed Leishmania tarentolae, a nonpathogenic lizard parasite that lacks the ability to persist in mammalian macrophages, was used as a live delivery system for carrying the immunotherapeutic agent. It has been already shown that arginase activity, and consequently, polyamine production, are associated with tumor progression. Methods A live delivery system was constructed by stable transfection of pLEXSY plasmid containing the IP-10-enhanced green fluorescent protein (IP-10-egfp) fusion gene into L. tarentolae. Then, the presence of the IP-10-egfp gene and the accurate integration location into the parasite genome were confirmed. The therapeutic efficacy of IP-10 delivered via L. tarentolae and recombinant pcDNA-(IP-10-egfp) plasmid was compared by determining the arginase activity in a mouse 4T1 breast cancer model. Results The pcDNA-(IP-10-egfp) group showed a significant reduction in tumor weight and growth. Histological evaluation also revealed that only this group demonstrated inhibition of metastasis to the lung tissue. The arginase activity in the tissue of the pcDNA-(IP-10-egfp) mice significantly decreased in comparison with that in normal mice. No significant difference was observed in arginase activity in the sera of mice receiving other therapeutic strategies. Conclusion Our data indicates that IP-10 immunotherapy is a promising strategy for breast cancer treatment, as shown in the 4T1-implanted BALB/c mouse model. However, the L. tarentolae-(IP-10-EGFP) live delivery system requires dose modifications to achieve efficacy in the applied regimen (six injections in 3 weeks). Our results indicate that the arginase assay could be a good biomarker to differentiate tumoral tissues from the normal ones.
Collapse
Affiliation(s)
- Yasaman Taslimi
- Department of Biology, College of Basic Sciences, Damghan Branch, Islamic Azad University, Damghan, Iran.; Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Farnaz Zahedifard
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Habibzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Hossain Abbaspour
- Department of Biology, College of Basic Sciences, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Alireza Sadeghipour
- Department of Pathology, Hazrat-e-Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
20
|
Nakamoto M, Schmit AC, Heintz D, Schaller H, Ohta D. Diversification of sterol methyltransferase enzymes in plants and a role for β-sitosterol in oriented cell plate formation and polarized growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:860-74. [PMID: 26426526 DOI: 10.1111/tpj.13043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 05/06/2023]
Abstract
Phytosterols are classified into C24-ethylsterols and C24-methylsterols according to the different C24-alkylation levels conferred by two types of sterol methyltransferases (SMTs). The first type of SMT (SMT1) is widely conserved, whereas the second type (SMT2) has diverged in charophytes and land plants. The Arabidopsis smt2 smt3 mutant is defective in the SMT2 step, leading to deficiency in C24-ethylsterols while the C24-methylsterol pathway is unchanged. smt2 smt3 plants exhibit severe dwarfism and abnormal development throughout their life cycle, with irregular cell division followed by collapsed cell files. Preprophase bands are occasionally formed in perpendicular directions in adjacent cells, and abnormal phragmoplasts with mislocalized KNOLLE syntaxin and tubulin are observed. Defects in auxin-dependent processes are exemplified by mislocalizations of the PIN2 auxin efflux carrier due to disrupted cell division and failure to distribute PIN2 asymmetrically after cytokinesis. Although endocytosis of PIN2-GFP from the plasma membrane (PM) is apparently unaffected in smt2 smt3, strong inhibition of the endocytic recycling is associated with a remarkable reduction in the level of PIN2-GFP on the PM. Aberrant localization of the cytoplasmic linker associated protein (CLASP) and microtubules is implicated in the disrupted endocytic recycling in smt2 smt3. Exogenous C24-ethylsterols partially recover lateral root development and auxin distribution in smt2 smt3 roots. These results indicate that C24-ethylsterols play a crucial role in division plane determination, directional auxin transport, and polar growth. It is proposed that the divergence of SMT2 genes together with the ability to produce C24-ethylsterols were critical events to achieve polarized growth in the plant lineage.
Collapse
Affiliation(s)
- Masatoshi Nakamoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 599-8531, Sakai, Japan
| | - Anne-Catherine Schmit
- Institut de Biologie Moléculaire des Plantes, CNRS, UPR2357, Conventionné Avec l'Université de Strasbourg, 67084, Strasbourg, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, CNRS, UPR2357, Conventionné Avec l'Université de Strasbourg, 67084, Strasbourg, France
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes, CNRS, UPR2357, Conventionné Avec l'Université de Strasbourg, 67084, Strasbourg, France
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 599-8531, Sakai, Japan
| |
Collapse
|
21
|
Jarošová B, Javůrek J, Adamovský O, Hilscherová K. Phytoestrogens and mycoestrogens in surface waters--Their sources, occurrence, and potential contribution to estrogenic activity. ENVIRONMENT INTERNATIONAL 2015; 81:26-44. [PMID: 25916939 DOI: 10.1016/j.envint.2015.03.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
This review discusses the potential contribution of phytoestrogens and mycoestrogens to in vitro estrogenic activities occurring in surface waters and in vivo estrogenic effects in fish. Main types, sources, and pathways of entry into aquatic environment of these detected compounds were summarized. Reviewed concentrations of phyto/mycoestrogens in surface waters were mostly undetectable or in low ng/L ranges, but exceeded tens of μg/L for the flavonoids biochanin A, daidzein and genistein at some sites. While a few phytosterols were reported to occur at relatively high concentrations in surface waters, information about their potencies in in vitro systems is very limited, and contradictory in some cases. The relative estrogenic activities of compounds (compared to standard estrogen 17β-estradiol) by various in vitro assays were included, and found to differ by orders of magnitude. These potencies were used to estimate total potential estrogenic activities based on chemical analyses of phyto/mycoestrogens. In vivo effective concentrations of waterborne phyto/mycoestrogens were available only for biochanin A, daidzein, formononetin, genistein, equol, sitosterol, and zearalenone. The lowest observable effect concentrations in vivo were reported for the mycoestrogen zearalenone. This compound and especially its metabolites also elicited the highest in vitro estrogenic potencies. Despite the limited information available, the review documents low contribution of phyto/mycoestrogens to estrogenic activity in vast majority of surface waters, but significant contribution to in vitro responses and potentially also to in vivo effects in areas with high concentrations.
Collapse
Affiliation(s)
- Barbora Jarošová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 3, CZ-62500 Brno, Czech Republic
| | - Jakub Javůrek
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 3, CZ-62500 Brno, Czech Republic
| | - Ondřej Adamovský
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 3, CZ-62500 Brno, Czech Republic
| | - Klára Hilscherová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 3, CZ-62500 Brno, Czech Republic.
| |
Collapse
|
22
|
Luo X, Su P, Zhang W. Advances in Microalgae-Derived Phytosterols for Functional Food and Pharmaceutical Applications. Mar Drugs 2015; 13:4231-54. [PMID: 26184233 PMCID: PMC4515614 DOI: 10.3390/md13074231] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 06/29/2015] [Accepted: 06/29/2015] [Indexed: 11/30/2022] Open
Abstract
Microalgae contain a variety of bioactive lipids with potential applications in aquaculture feed, biofuel, food and pharmaceutical industries. While microalgae-derived polyunsaturated fatty acid (PUFA) and their roles in promoting human health have been extensively studied, other lipid types from this resource, such as phytosterols, have been poorly explored. Phytosterols have been used as additives in many food products such as spread, dairy products and salad dressing. This review focuses on the recent advances in microalgae-derived phytosterols with functional bioactivities and their potential applications in functional food and pharmaceutical industries. It highlights the importance of microalgae-derived lipids other than PUFA for the development of an advanced microalgae industry.
Collapse
Affiliation(s)
- Xuan Luo
- Flinders Centre for Marine Bioproducts Development, Flinders University, Adelaide, SA 5042, Australia.
- Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide, SA 5042, Australia.
| | - Peng Su
- Flinders Centre for Marine Bioproducts Development, Flinders University, Adelaide, SA 5042, Australia.
- Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide, SA 5042, Australia.
| | - Wei Zhang
- Flinders Centre for Marine Bioproducts Development, Flinders University, Adelaide, SA 5042, Australia.
- Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide, SA 5042, Australia.
| |
Collapse
|
23
|
Moussavou G, Kwak DH, Obiang-Obonou BW, Maranguy CAO, Dinzouna-Boutamba SD, Lee DH, Pissibanganga OGM, Ko K, Seo JI, Choo YK. Anticancer effects of different seaweeds on human colon and breast cancers. Mar Drugs 2014; 12:4898-911. [PMID: 25255129 PMCID: PMC4178489 DOI: 10.3390/md12094898] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/02/2014] [Accepted: 09/09/2014] [Indexed: 11/16/2022] Open
Abstract
Seafoods and seaweeds represent some of the most important reservoirs of new therapeutic compounds for humans. Seaweed has been shown to have several biological activities, including anticancer activity. This review focuses on colorectal and breast cancers, which are major causes of cancer-related mortality in men and women. It also describes various compounds extracted from a range of seaweeds that have been shown to eradicate or slow the progression of cancer. Fucoidan extracted from the brown algae Fucus spp. has shown activity against both colorectal and breast cancers. Furthermore, we review the mechanisms through which these compounds can induce apoptosis in vitro and in vivo. By considering the ability of compounds present in seaweeds to act against colorectal and breast cancers, this review highlights the potential use of seaweeds as anticancer agents.
Collapse
Affiliation(s)
- Ghislain Moussavou
- Department of Biological Science, College of Natural Science, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| | - Dong Hoon Kwak
- Department of Biological Science, College of Natural Science, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| | | | - Cyr Abel Ogandaga Maranguy
- Department of Biological Science, College of Natural Science, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| | | | - Dae Hoon Lee
- Department of Biological Science, College of Natural Science, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| | | | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 156-756, Korea.
| | - Jae In Seo
- College of Pharmacy, Yonsei University, Veritas D, Yonsei International Campus, Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea.
| | - Young Kug Choo
- Department of Biological Science, College of Natural Science, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| |
Collapse
|
24
|
Lin HTV, Hwang PA, Lin TC, Tsai GJ. Production of Bacillus subtilis-fermented red alga Porphyra dentata suspension with fibrinolytic and immune-enhancing activities. Biosci Biotechnol Biochem 2014; 78:1074-81. [PMID: 25036138 DOI: 10.1080/09168451.2014.915726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The fermented marine alga Porphyra dentata suspension was tested for its fibrinolytic and immune-enhancing activities. An isolated Bacillus subtilis N2 strain was selected for its fibrinolytic activity on fibrin plates. After investigating the effects of biomass amounts of P. dentata powder in water, various additives including sugars, nitrogen-containing substances, lipids and minerals, and cultural conditions of temperature and agitation in flask, the highest fibrinolytic activity in the cultural filtrate was obtained by cultivating N2 strain in 3% (w/v) P. dentata powder suspension containing 1% peanut oil at 37 °C, 150 rpm for 48 h. A fermentor system was further established using the same medium with controlled pH value of 7.0 at 37 °C, 150 rpm, 2.0 vvm for 48 h for the best fibrinolytic activity. The fermented product also showed its immune-enhancing activity by increasing cell proliferation and stimulating the secretion of IL-1β, IL-6, and TNF-α in J774.1 cells.
Collapse
Affiliation(s)
- Hong-Ting Victor Lin
- a Department of Food Science , National Taiwan Ocean University , Keelung , Taiwan, R.O.C
| | | | | | | |
Collapse
|