1
|
Barachini S, Ghelardoni S, Madonna R. Vascular Progenitor Cells: From Cancer to Tissue Repair. J Clin Med 2023; 12:jcm12062399. [PMID: 36983398 PMCID: PMC10059009 DOI: 10.3390/jcm12062399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Vascular progenitor cells are activated to repair and form a neointima following vascular damage such as hypertension, atherosclerosis, diabetes, trauma, hypoxia, primary cancerous lesions and metastases as well as catheter interventions. They play a key role not only in the resolution of the vascular lesion but also in the adult neovascularization and angiogenesis sprouting (i.e., the growth of new capillaries from pre-existing ones), often associated with carcinogenesis, favoring the formation of metastases, survival and progression of tumors. In this review, we discuss the biology, cellular plasticity and pathophysiology of different vascular progenitor cells, including their origins (sources), stimuli and activated pathways that induce differentiation, isolation and characterization. We focus on their role in tumor-induced vascular injury and discuss their implications in promoting tumor angiogenesis during cancer proliferation and migration.
Collapse
Affiliation(s)
- Serena Barachini
- Laboratory for Cell Therapy, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Sandra Ghelardoni
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56126 Pisa, Italy
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
2
|
Thankam FG, La V, Agrawal DK. Single-cell genomics illustrates heterogeneous phenotypes of myocardial fibroblasts under ischemic insults. Biochem Cell Biol 2023; 101:12-51. [PMID: 36458696 DOI: 10.1139/bcb-2022-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myocardial regenerative strategies are promising where the choice of ideal cell population is crucial for successful translational applications. Herein, we explored the regenerative/repair responses of infarct zone cardiac fibroblast(s) (CF) by unveiling their phenotype heterogeneity at single-cell resolution. CF were isolated from the infarct zone of Yucatan miniswine that suffered myocardial infarction, cultured under simulated ischemic and reperfusion, and grouped into control, ischemia, and ischemia/reperfusion. The single-cell RNA sequencing analysis revealed 19 unique cell clusters suggesting distinct subpopulations. The status of gene expression (log2 fold change (log2 FC) > 2 and log2 FC < -2) was used to define the characteristics of each cluster unveiling with diverse features, including the pro-survival/cardioprotective (Clusters 1, 3, 5, 9, and 18), vasculoprotective (Clusters 2 and 5), anti-inflammatory (Clusters 4 and 17), proliferative (Clusters 4 and 5), nonproliferative (Clusters 6, 8, 11, 16, 17, and 18), proinflammatory (Cluster 6), profibrotic/pathologic (Clusters 8 and 19), antihypertrophic (Clusters 8 and 10), extracellular matrix restorative (Clusters 9 and 12), angiogenic (Cluster 16), and normal (Clusters 7 and 15) phenotypes. Further understanding of these unique phenotypes of CF will provide significant translational opportunities for myocardial regeneration and cardiac management.
Collapse
Affiliation(s)
- Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vy La
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
3
|
The Expanding Role of Cancer Stem Cell Marker ALDH1A3 in Cancer and Beyond. Cancers (Basel) 2023; 15:cancers15020492. [PMID: 36672441 PMCID: PMC9857290 DOI: 10.3390/cancers15020492] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Aldehyde dehydrogenase 1A3 (ALDH1A3) is one of 19 ALDH enzymes expressed in humans, and it is critical in the production of hormone receptor ligand retinoic acid (RA). We review the role of ALDH1A3 in normal physiology, its identification as a cancer stem cell marker, and its modes of action in cancer and other diseases. ALDH1A3 is often over-expressed in cancer and promotes tumor growth, metastasis, and chemoresistance by altering gene expression, cell signaling pathways, and glycometabolism. The increased levels of ALDH1A3 in cancer occur due to genetic amplification, epigenetic modifications, post-transcriptional regulation, and post-translational modification. Finally, we review the potential of targeting ALDH1A3, with both general ALDH inhibitors and small molecules specifically designed to inhibit ALDH1A3 activity.
Collapse
|
4
|
Schemann-Miguel F, Aloise AC, Gaiba S, Ferreira LM. Effect of Static Compressive Force on Aldehyde Dehydrogenase Activity in Periodontal Ligament Fibroblasts. Open Dent J 2021. [DOI: 10.2174/1874210602115010417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
The application of static compressive forces to periodontal ligament fibroblasts (PDLFs) in vivo or in vitro has been linked to the expression of biochemical agents and local tissue modifications that could be involved in maintaining homeostasis during orthodontic movement. An approach used for identifying mesenchymal cells, or a subpopulation of progenitor cells in both tumoral and normal tissues, involves determining the activity of aldehyde dehydrogenase (ALDH). However, the role of subpopulations of PDLF-derived undifferentiated cells in maintaining homeostasis during tooth movement remains unclear.
Objective:
This study aimed at analyzing the effect of applying a static compressive force to PDLFs on the activity of ALDH in these cells.
Methods:
PDLFs were distributed into two groups: control group (CG), where fibroblasts were not submitted to compression, and experimental group (EG), where fibroblasts were submitted to a static compressive force of 4 g/mm2 for 6 hours. The compressive force was applied directly to the cells using a custom-built device. ALDH activity in the PDLFs was evaluated by a flow cytometry assay.
Results:
ALDH activity was observed in both groups, but was significantly lower in EG than in CG after the application of a static compressive force in the former.
Conclusion:
Application of a static compressive force to PDLFs decreased ALDH activity.
Collapse
|
5
|
Takahashi H, Nakashima T, Masuda T, Namba M, Sakamoto S, Yamaguchi K, Horimasu Y, Miyamoto S, Iwamoto H, Fujitaka K, Hamada H, Hattori N. Antifibrotic effect of lung-resident progenitor cells with high aldehyde dehydrogenase activity. Stem Cell Res Ther 2021; 12:471. [PMID: 34425896 PMCID: PMC8381511 DOI: 10.1186/s13287-021-02549-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/08/2021] [Indexed: 01/05/2023] Open
Abstract
Background Aldehyde dehydrogenase (ALDH) is highly expressed in stem/progenitor cells in various tissues, and cell populations with high ALDH activity (ALDHbr) are associated with tissue repair. However, little is known about lung-resident ALDHbr. This study was performed to clarify the characteristics of lung-resident ALDHbr cells and to evaluate their possible use as a tool for cell therapy using a mouse model of bleomycin-induced pulmonary fibrosis. Methods The characteristics of lung-resident/nonhematopoietic (CD45−) ALDHbr cells were assessed in control C57BL/6 mice. The kinetics and the potential usage of CD45−/ALDHbr for cell therapy were investigated in bleomycin-induced pulmonary fibrosis. Localization of transferred CD45−/ALDHbr cells was determined using mCherry-expressing mice as donors. The effects of aging on ALDH expression were also assessed using aged mice. Results Lung CD45−/ALDHbr showed higher proliferative and colony-forming potential than cell populations with low ALDH activity. The CD45−/ALDHbr cell population, and especially its CD45−/ALDHbr/PDGFRα+ subpopulation, was significantly reduced in the lung during bleomycin-induced pulmonary fibrosis. Furthermore, mRNA expression of ALDH isoforms was significantly reduced in the fibrotic lung. When transferred in vivo into bleomycin-pretreated mice, CD45−/ALDHbr cells reached the site of injury, ameliorated pulmonary fibrosis, recovered the reduced expression of ALDH mRNA, and prolonged survival, which was associated with the upregulation of the retinol-metabolizing pathway and the suppression of profibrotic cytokines. The reduction in CD45−/ALDHbr/PDGFRα+ population was more remarkable in aged mice than in young mice. Conclusions Our results strongly suggest that the lung expression of ALDH and lung-resident CD45−/ALDHbr cells are involved in pulmonary fibrosis. The current study signified the possibility that CD45−/ALDHbr cells could find application as novel and useful cell therapy tools in pulmonary fibrosis treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02549-6.
Collapse
Affiliation(s)
- Hiroshi Takahashi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masashi Namba
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
6
|
Mah V, Elshimali Y, Chu A, Moatamed NA, Uzzell JP, Tsui J, Schettler S, Shakeri H, Wadehra M. ALDH1 expression predicts progression of premalignant lesions to cancer in Type I endometrial carcinomas. Sci Rep 2021; 11:11949. [PMID: 34099751 PMCID: PMC8184965 DOI: 10.1038/s41598-021-90570-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
In type 1 endometrial cancer, unopposed estrogen stimulation is thought to lead to endometrial hyperplasia which precedes malignant progression. Recent data from our group and others suggest that ALDH activity mediates stemness in endometrial cancer, but while aldehyde dehydrogenase 1 (ALDH1) has been suggested as a putative cancer stem cell marker in several cancer types, its clinical and prognostic value in endometrial cancer remains debated. The aim of this study was to investigate the clinical value of ALDH1 expression in endometrial hyperplasia and to determine its ability to predict progression to endometrial cancer. Interrogation of the TCGA database revealed upregulation of several isoforms in endometrial cancer, of which the ALDH1 isoforms collectively constituted the largest group. To translate its expression, a tissue microarray was previously constructed which contained a wide sampling of benign and malignant endometrial samples. The array contained a metachronous cohort of samples from individuals who either developed or did not develop endometrial cancer. Immunohistochemical staining was used to determine the intensity and frequency of ALDH1 expression. While benign proliferative and secretory endometrium showed very low levels of ALDH1, slightly higher expression was observed within the stratum basalis. In disease progression, cytoplasmic ALDH1 expression showed a step-wise increase between endometrial hyperplasia, atypical hyperplasia, and endometrial cancer. ALDH1 was also shown to be an early predictor of EC development, suggesting that it can serve as an independent prognostic indicator of patients with endometrial hyperplasia with or without atypia who would progress to cancer (p = 0.012).
Collapse
Affiliation(s)
- Vei Mah
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Yahya Elshimali
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, USA
| | - Alison Chu
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Neda A Moatamed
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Jamar P Uzzell
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Jessica Tsui
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Stephen Schettler
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Hania Shakeri
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Madhuri Wadehra
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, USA.
| |
Collapse
|
7
|
Etienne J, Joanne P, Catelain C, Riveron S, Bayer AC, Lafable J, Punzon I, Blot S, Agbulut O, Vilquin JT. Aldehyde dehydrogenases contribute to skeletal muscle homeostasis in healthy, aging, and Duchenne muscular dystrophy patients. J Cachexia Sarcopenia Muscle 2020; 11:1047-1069. [PMID: 32157826 PMCID: PMC7432589 DOI: 10.1002/jcsm.12557] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/12/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenases (ALDHs) are key players in cell survival, protection, and differentiation via the metabolism and detoxification of aldehydes. ALDH activity is also a marker of stem cells. The skeletal muscle contains populations of ALDH-positive cells amenable to use in cell therapy, whose distribution, persistence in aging, and modifications in myopathic context have not been investigated yet. METHODS The Aldefluor® (ALDEF) reagent was used to assess the ALDH activity of muscle cell populations, whose phenotypic characterizations were deepened by flow cytometry. The nature of ALDH isoenzymes expressed by the muscle cell populations was identified in complementary ways by flow cytometry, immunohistology, and real-time PCR ex vivo and in vitro. These populations were compared in healthy, aging, or Duchenne muscular dystrophy (DMD) patients, healthy non-human primates, and Golden Retriever dogs (healthy vs. muscular dystrophic model, Golden retriever muscular dystrophy [GRMD]). RESULTS ALDEF+ cells persisted through muscle aging in humans and were equally represented in several anatomical localizations in healthy non-human primates. ALDEF+ cells were increased in dystrophic individuals in humans (nine patients with DMD vs. five controls: 14.9 ± 1.63% vs. 3.6 ± 0.39%, P = 0.0002) and dogs (three GRMD dogs vs. three controls: 10.9 ± 2.54% vs. 3.7 ± 0.45%, P = 0.049). In DMD patients, such increase was due to the adipogenic ALDEF+ /CD34+ populations (11.74 ± 1.5 vs. 2.8 ± 0.4, P = 0.0003), while in GRMD dogs, it was due to the myogenic ALDEF+ /CD34- cells (3.6 ± 0.6% vs. 1.03 ± 0.23%, P = 0.0165). Phenotypic characterization associated the ALDEF+ /CD34- cells with CD9, CD36, CD49a, CD49c, CD49f, CD106, CD146, and CD184, some being associated with myogenic capacities. Cytological and histological analyses distinguished several ALDH isoenzymes (ALDH1A1, 1A2, 1A3, 1B1, 1L1, 2, 3A1, 3A2, 3B1, 3B2, 4A1, 7A1, 8A1, and 9A1) expressed by different cell populations in the skeletal muscle tissue belonging to multinucleated fibres, or myogenic, endothelial, interstitial, and neural lineages, designing them as potential new markers of cell type or of metabolic activity. Important modifications were noted in isoenzyme expression between healthy and DMD muscle tissues. The level of gene expression of some isoenzymes (ALDH1A1, 1A3, 1B1, 2, 3A2, 7A1, 8A1, and 9A1) suggested their specific involvement in muscle stability or regeneration in situ or in vitro. CONCLUSIONS This study unveils the importance of the ALDH family of isoenzymes in the skeletal muscle physiology and homeostasis, suggesting their roles in tissue remodelling in the context of muscular dystrophies.
Collapse
Affiliation(s)
- Jessy Etienne
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France.,Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, USA
| | - Pierre Joanne
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - Cyril Catelain
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Stéphanie Riveron
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Alexandra Clarissa Bayer
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Jérémy Lafable
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Isabel Punzon
- Université Paris-Est Créteil, INSERM, Institut Mondor de Recherche Biomédicale, IMRB, École Nationale Vétérinaire d'Alfort, ENVA, U955-E10, Maisons-Alfort, France
| | - Stéphane Blot
- Université Paris-Est Créteil, INSERM, Institut Mondor de Recherche Biomédicale, IMRB, École Nationale Vétérinaire d'Alfort, ENVA, U955-E10, Maisons-Alfort, France
| | - Onnik Agbulut
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - Jean-Thomas Vilquin
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| |
Collapse
|
8
|
Differentiation of Human Cardiac Atrial Appendage Stem Cells into Adult Cardiomyocytes: A Role for the Wnt Pathway? Int J Mol Sci 2020; 21:ijms21113931. [PMID: 32486259 PMCID: PMC7312541 DOI: 10.3390/ijms21113931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/30/2022] Open
Abstract
Human cardiac stem cells isolated from atrial appendages based on aldehyde dehydrogenase activity (CASCs) can be expanded in vitro and differentiate into mature cardiomyocytes. In this study, we assess whether Wnt activation stimulates human CASC proliferation, whereas Wnt inhibition induces cardiac maturation. CASCs were cultured as described before. Conventional PCR confirmed the presence of the Frizzled receptors. Small-molecule inhibitors (IWP2, C59, XAV939, and IWR1-endo) and activator (CHIR99021) of the Wnt/β -catenin signaling pathway were applied, and the effect on β-catenin and target genes for proliferation and differentiation was assessed by Western blot and RT-qPCR. CASCs express multiple early cardiac differentiation markers and are committed toward myocardial differentiation. They express several Frizzled receptors, suggesting a role for Wnt signaling in clonogenicity, proliferation, and differentiation. Wnt activation increases total and active β-catenin levels. However, this does not affect CASC proliferation or clonogenicity. Wnt inhibition upregulated early cardiac markers but could not induce mature myocardial differentiation. When CASCs are committed toward myocardial differentiation, the Wnt pathway is active and can be modulated. However, despite its role in cardiogenesis and myocardial differentiation of pluripotent stem-cell populations, our data indicate that Wnt signaling has limited effects on CASC clonogenicity, proliferation, and differentiation.
Collapse
|
9
|
Li X, He P, Wang XL, Zhang S, Devejian N, Bennett E, Cai C. Sulfiredoxin-1 enhances cardiac progenitor cell survival against oxidative stress via the upregulation of the ERK/NRF2 signal pathway. Free Radic Biol Med 2018; 123:8-19. [PMID: 29772252 PMCID: PMC5999586 DOI: 10.1016/j.freeradbiomed.2018.05.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/30/2018] [Accepted: 05/12/2018] [Indexed: 02/08/2023]
Abstract
Cardiac stem/progenitor cells (CPCs) have recently emerged as a potentially transformative regenerative medicine to repair the infarcted heart. However, the limited survival of donor cells is one of the major challenges for CPC therapy. Our recent research effort on preconditioning human CPCs (hCPCs) with cobalt protoporphyrin (CoPP) indicated that sulfiredoxin-1 (SRXN1) is upregulated upon preconditioning aldehyde dehydrogenase bright hCPCs (ALDHbr-hCPCs) with CoPP. Further studies demonstrated that overexpressing SRXN1 enhanced the survival capacity for ALDHbr-hCPCs. This was associated with the up-regulation of anti-apoptotic factors, including BCL2 and BCL-xL. Meanwhile, overexpressing SRXN1 decreased the ROS generation and mitochondrial membrane potential, concomitant with the up-regulated primary antioxidant systems, such as PRDX1, PRDX3, TXNRD1, Catalase and SOD2. It was also observed that overexpressing SRXN1 increased the migration, proliferation, and cardiac differentiation of ALDHbr-hCPCs. Interestingly, SRXN1 activated the ERK/NRF2 cell survival signaling pathway, which may be the underlying mechanism through which overexpressing SRXN1 lead to protection of hCPCs against oxidative stress-induced apoptosis. Taken together, these results provide a rationale for the exploration of SRXN1 as a novel molecular target that can be used to enhance the effectiveness of cardiac stem/progenitor cell therapy for ischemic heart disease.
Collapse
Affiliation(s)
- Xiuchun Li
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY 12208, USA
| | - Pan He
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY 12208, USA; Laboratory for Cancer Signal Transduction, Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Xiao-Liang Wang
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY 12208, USA
| | - Shuning Zhang
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY 12208, USA
| | - Neil Devejian
- Division of Pediatric Cardiothoracic Surgery, Albany Medical Center, NY 12208, USA
| | - Edward Bennett
- Division of Cardiothoracic Surgery, Albany Medical Center, NY 12208, USA
| | - Chuanxi Cai
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
10
|
Puttini S, Plaisance I, Barile L, Cervio E, Milano G, Marcato P, Pedrazzini T, Vassalli G. ALDH1A3 Is the Key Isoform That Contributes to Aldehyde Dehydrogenase Activity and Affects in Vitro Proliferation in Cardiac Atrial Appendage Progenitor Cells. Front Cardiovasc Med 2018; 5:90. [PMID: 30087899 PMCID: PMC6066537 DOI: 10.3389/fcvm.2018.00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/25/2018] [Indexed: 12/23/2022] Open
Abstract
High aldehyde dehydrogenase (ALDHhi) activity has been reported in normal and cancer stem cells. We and others have shown previously that human ALDHhi cardiac atrial appendage cells are enriched with stem/progenitor cells. The role of ALDH in these cells is poorly understood but it may come down to the specific ALDH isoform(s) expressed. This study aimed to compare ALDHhi and ALDHlo atrial cells and to identify the isoform(s) that contribute to ALDH activity, and their functional role. Methods and Results: Cells were isolated from atrial appendage specimens from patients with ischemic and/or valvular heart disease undergoing heart surgery. ALDHhi activity assessed with the Aldefluor reagent coincided with primitive surface marker expression (CD34+). Depending on their ALDH activity, RT-PCR analysis of ALDHhi and ALDHlo cells demonstrated a differential pattern of pluripotency genes (Oct 4, Nanog) and genes for more established cardiac lineages (Nkx2.5, Tbx5, Mef2c, GATA4). ALDHhi cells, but not ALDHlo cells, formed clones and were culture-expanded. When cultured under cardiac differentiation conditions, ALDHhi cells gave rise to a higher number of cardiomyocytes compared with ALDHlo cells. Among 19 ALDH isoforms known in human, ALDH1A3 was most highly expressed in ALDHhi atrial cells. Knocking down ALDH1A3, but not ALDH1A1, ALDH1A2, ALDH2, ALDH4A1, or ALDH8A1 using siRNA decreased ALDH activity and cell proliferation in ALDHhi cells. Conversely, overexpressing ALDH1A3 with a retroviral vector increased proliferation in ALDHlo cells. Conclusions: ALDH1A3 is the key isoform responsible for ALDH activity in ALDHhi atrial appendage cells, which have a propensity to differentiate into cardiomyocytes. ALDH1A3 affects in vitro proliferation of these cells.
Collapse
Affiliation(s)
- Stefania Puttini
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland
| | - Isabelle Plaisance
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland
| | - Lucio Barile
- Cardiocentro Ticino Foundation and Swiss Institute for Regenerative Medicine, Lugano, Switzerland
| | - Elisabetta Cervio
- Cardiocentro Ticino Foundation and Swiss Institute for Regenerative Medicine, Lugano, Switzerland
| | - Giuseppina Milano
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland.,Cardiocentro Ticino Foundation and Swiss Institute for Regenerative Medicine, Lugano, Switzerland
| | - Paola Marcato
- Departments of Pathology, Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Thierry Pedrazzini
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland
| | - Giuseppe Vassalli
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland.,Cardiocentro Ticino Foundation and Swiss Institute for Regenerative Medicine, Lugano, Switzerland
| |
Collapse
|
11
|
Ma X, Zheng S, Shu Y, Wang Y, Chen X. Association of the Glu504Lys polymorphism in the aldehyde dehydrogenase 2 gene with endothelium-dependent dilation disorder in Chinese Han patients with essential hypertension. Intern Med J 2017; 46:608-15. [PMID: 26691593 DOI: 10.1111/imj.12983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND In essential hypertension (EH), 30-50% of the variability in blood pressure is determined by genetic factors. The aldehyde dehydrogenase 2 (ALDH2) gene Glu504Lys polymorphism is associated with 'alcohol flush' and might be associated with EH. AIMS The aim of the present study was to investigate the association of the Glu504Lys polymorphism in the ALDH2 gene with endothelium-dependent dilation (EDD) disorder in Chinese Han patients with EH. METHODS This case-control study enrolled 1210 patients with EH. The control group consisted of 1089 healthy subjects with normal blood pressure. Patients with EH were divided into normal brachial arterial flow-mediated dilation (FMD) (EH1 group, n = 354) versus endothelial dysfunction (EH2 group, n = 856). ALDH2 gene Glu504Lys polymorphism was detected using a DNA microarray. RESULTS The ALDH2 AA/AG genotypes and the A allele frequencies were significantly higher in the EH group compared with healthy controls (both P < 0.05) and significantly higher in the EH2 group compared with the EH1 group (79.8 vs 51.4%; 45.0 vs 29.1%, respectively; both P < 0.05). Multivariate logistic regression analyses showed that the ALDH2 gene Glu504Lys polymorphism was independently associated with EH (dominant: odds ratio (OR) = 1.38; 95% confidence interval (95% CI) = 1.14-2.82; P = 0.01; additive: OR = 1.32; 95% CI = 1.12-2.44; P = 0.02) as well as with EDD in patients with EH (dominant: OR = 1.49, 95% CI = 1.16-3.01, P = 0.02; additive: OR = 1.43, 95% CI = 1.10-2.87, P = 0.03). CONCLUSION The ALDH2 Glu504Lys polymorphism was associated with EDD disorders in Chinese Han patients with EH, providing further evidence that this mutation and 'alcohol flush' are not harmless in this Asian population.
Collapse
Affiliation(s)
- X Ma
- Department of Cardiovascular Medicine, West China Hospital, Sichuan University, Chengdu, China.,Center of Health Physical Examination and Health Management, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - S Zheng
- Department of Cardiology, The Affiliated Hospital of Luzhou Medical College, Lu Zhou, China
| | - Y Shu
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Y Wang
- Cardiovascular Department of Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - X Chen
- Department of Cardiovascular Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Vilquin JT, Etienne J. [Cell therapies for cardiopathies: the shift of paradigms]. Med Sci (Paris) 2016; 32 Hors série n°2:30-39. [PMID: 27869075 DOI: 10.1051/medsci/201632s209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Heart failure is a major concern for public health systems, and several approaches of cellular therapy are being investigated with the goal of improving the function of these failing hearts. Many cell types have been used (skeletal myoblasts, hematopoietic, endothelial or mesenchymal progenitors, cardiac cells…), most often in the indication of post-ischemic heart failure rather than in the indication of genetic dilated cardiomyopathy. It is easier, indeed, to target a restricted area than the whole myocardium. Several clinical trials have reported slight but encouraging functional benefits, but their interpretations were frequently limited by the small sizes of cohorts, and by the biological variabilities inherent to the patients status and to the biology of the cells. These trials also shed light on unexpected mechanisms of action of the cells, which are changing the concepts and methodologies of the studies. The functional benefits observed would be due, indeed, to the secretion of trophic factors by the cells, instead of their true structural and mechanical integration within the myocardial tissue. Accordingly, the new generations of clinical trials aim at improving the size and homogeneity of the patient cohorts to increase the statistical power. On the other hand, several studies are associating or conditionning cells with biomaterials or cocktails of cytokines to improve their survival and their biological efficacy. In parallel, bio-engineering investigates several ways to support cells in vitro and in vivo, to sustain the architectural structure of the failing myocardium, to produce ex vivo some true substitutive cardiac tissue, or to purely replace the cells by their active secreted products. Several therapeutic devices should emerge from these researches, and the choice of their respective use will be ultimately guided by the medical indication.
Collapse
Affiliation(s)
- Jean-Thomas Vilquin
- Centre de Recherche en Myologie, Sorbonne Universités, UPMC-Inserm UMRS 974, CNRS FRE 3617, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Jessy Etienne
- Centre de Recherche en Myologie, Sorbonne Universités, UPMC-Inserm UMRS 974, CNRS FRE 3617, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
13
|
Machado CV, Passos ST, Campos TMC, Bernardi L, Vilas-Bôas DS, Nör JE, Telles PDS, Nascimento IL. The dental pulp stem cell niche based on aldehyde dehydrogenase 1 expression. Int Endod J 2016; 49:755-63. [PMID: 26198909 PMCID: PMC4723291 DOI: 10.1111/iej.12511] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/16/2015] [Indexed: 12/24/2022]
Abstract
AIM To detect cells expressing the stem cell marker ALDH1 (aldehyde dehydrogenase1) in the pulp of human permanent teeth and to investigate the expression of ALDH1 in isolated dental pulp cells. METHODOLOGY Pulp tissue was collected and processed for immunohistochemistry to detect ALDH1-, STRO-1- and CD90-positive cells. In addition, cells were isolated and analysed by flow cytometry for ALDH1 activity and for the cell surface markers CD44, CD73, CD90, STRO-1 and CD45. Cells were also examined for multidifferentiation capacity. Within these cells, an ALDH1(+) cell subpopulation was selected and evaluated for multidifferentiation capacity. RESULTS The immunohistochemistry analyses showed that ALDH1-, CD90- and STRO-1-positive cells were located mainly in the perivascular areas and nerve fibres of dental pulps. Cells on the fifth passage had high expression for CD44, CD73 and CD90, whereas moderate labelling was observed for STRO-1 and ALDH1 in flow cytometry analysis. On the same passages, cells were able to differentiate into osteogenic, adipogenic and chondrogenic lineages. The ALDH1(+) cell subpopulation also demonstrated multilineage differentiation ability. CONCLUSIONS Dental pulp stem cells reside in the vicinity of blood vessels and nerve fibres, indicating the possible existence of more than one stem cell niche in dental pulps. Furthermore, ALDH1 was expressed by isolated dental pulp cells, which had mesenchymal stem cell characteristics. Thus, it can be suggested that ALDH1 may be used as a DPSC marker.
Collapse
Affiliation(s)
- C V Machado
- Department of Bio-Interaction, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - S T Passos
- Department of Bio-Interaction, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - T M C Campos
- Department of Bio-Interaction, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - L Bernardi
- Department of Bio-Interaction, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - D S Vilas-Bôas
- Department of Bio-Interaction, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - J E Nör
- Department of Bio-Interaction, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - P D S Telles
- Department of Bio-Interaction, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - I L Nascimento
- Department of Bio-Interaction, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
14
|
Human articular chondrocytes with higher aldehyde dehydrogenase activity have stronger expression of COL2A1 and SOX9. Osteoarthritis Cartilage 2016; 24:873-82. [PMID: 26687820 DOI: 10.1016/j.joca.2015.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/17/2015] [Accepted: 11/24/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine in human articular chondrocytes the activity of Aldehyde dehydrogenase (ALDH), which are reported as stem/progenitor cell marker in various adult tissues and evaluate gene expression of ALDH1A isoforms. DESIGN ALDH activity was evaluated by flow cytometry with Aldefluor™ assay in cells, isolated from human osteoarthritic (OA) cartilage. Its coexpression with surface markers was identified. Cells were sorted according to ALDH activity, and gene expression in sorted populations (ALDH(+) and ALDH(-)) was analyzed by RTq-PCR with Taqman(®) assay. RESULTS About 40% of freshly isolated chondrocytes demonstrated ALDH activity that remarkably declined during monolayer culture. Markers CD54 and CD55 were significantly stronger expressed, while CD47, CD140b, CD146 and CD166 were depleted in ALDH-expressing (ALDH(pos)) cells. Gene expression analysis revealed significantly higher expression of chondrocyte-specific genes COL2A1, SOX9 and SERPINA1 and lower expression of osteogenic markers RUNX2 and osteocalcin (BGLAP) in sorted ALDH(+) fraction. COL1A1, ACAN, ALPL and stem cell markers NANOG, OCT4, SOX2 and ABCG2 did not differ remarkably between the populations. Genes of isoenzymes ALDH1A2, ALDH1A3 and ALDH2 were strongly expressed, while ALDH1A1 was weakly expressed in chondrocytes. Only ALDH1A2 and ALDH1A3 were significantly enriched in ALDH(+) fraction. CONCLUSIONS We identified ALDH activity with significantly stronger expression of CD54 and CD55 in human articular chondrocytes. Gene expression of isotypes ALDH1A2, ALDH1A3 and ALDH2 was identified. Coexpression of ALDH activity with chondrogenic markers suggests its association with collagen II producing chondrocyte phenotype. Isotypes ALDH1A2 and ALDH1A3 can be associated with the ALDH activity in these cells.
Collapse
|