1
|
Zhang XL, Wang MY, Liu HJ, Wang YQ. Palladium-Catalyzed Regioselective C4-H Acyloxylation of Indoles with Carboxylic Acids via a Transient Directing Groups Strategy. Org Lett 2024; 26:41-45. [PMID: 38149590 DOI: 10.1021/acs.orglett.3c03568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The development of an efficient method for the synthesis of C4 oxy-substituted indoles is an appealing yet challenging task. Herein, we report a general palladium-catalyzed TDG approach for the direct C4-H acyloxylation of indoles. The protocol features atom and step economy, excellent regioselectivity, and good tolerance of functional groups. Moreover, the reaction can accommodate a range of carboxylic acids including benzoic acids, phenylacetic acids, and aliphatic acids.
Collapse
Affiliation(s)
- Xing-Long Zhang
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, P.R. China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P.R. China
| | - Meng-Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P.R. China
| | - Hui-Jin Liu
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, P.R. China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P.R. China
| |
Collapse
|
2
|
Dong D, Guo Z, Wu F, Yang X, Li J. Plastic residues alter soil microbial community compositions and metabolite profiles under realistic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167352. [PMID: 37769723 DOI: 10.1016/j.scitotenv.2023.167352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
Wide usage of plastic coupled with mismanagement has created a humongous environmental hazard threatening entire ecosystems. To date, the potential effects of plastic debris-induced soil nutrition substance changes and the relevant microbial metabolic behavior remain unclear. Here, we studied the effect of plastic films polyethylene and polylactic acid in differential soil environments (farmland, woodland, and wetland) for 120 days. Soil enzyme activities (urease, neutral phosphatase, and catalase) and nutrition substance (NH4+-N, available P, available K, and soil organic matter) present obvious variations in polylactic acid groups compared to polyethylene-treated samples. 16S rRNA gene sequencing indicates that several bacteria abundance such as Bacteroidales, Actinobacteriota, Nitrososphaeraceae, Pyrinomonadalcs, Muribaculaceae, exhibited obvious up-regulation or down-regulation, and simultaneously, the carbon, nitrogen, and phosphorus cycling relevant species Bryobacter, Bradyrhizobium, and Sphingomonas, expressed wider margin of down-regulation in abundance in plastic treatment soil samples. As a result, the abundance of metabolites including sugar, amino acid, and fatty acids, which may associated with nutrition substance metabolic pathways, were significantly altered in the stress of plastic. These findings provide valuable information on the environmental effects of plastics, and the relationships of subsequent nutrition substance changes and microbial metabolic behavior.
Collapse
Affiliation(s)
- Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China.
| | - Feiyan Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Xue Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Jie Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
3
|
Duan M, Li Y, Zhu G, Wu X, Huang H, Qin J, Long S, Li X, Feng B, Qin S, Liu QH, Li C, Wang L, Li Q, He T, Wang Z. Soil chemistry, metabarcoding, and metabolome analyses reveal that a sugarcane- Dictyophora indusiata intercropping system can enhance soil health by reducing soil nitrogen loss. Front Microbiol 2023; 14:1193990. [PMID: 37303785 PMCID: PMC10249477 DOI: 10.3389/fmicb.2023.1193990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Greater amounts of fertilizer are applied every year to meet the growing demand for food. Sugarcane is one of the important food sources for human beings. Methods Here, we evaluated the effects of a sugarcane-Dictyophora indusiata (DI) intercropping system on soil health by conducting an experiment with three different treatments: (1) bagasse application (BAS process), (2) bagasse + DI (DIS process), and (3) the control (CK). We then analyzed soil chemistry, the diversity of soil bacteria and fungi, and the composition of metabolites to clarify the mechanism underlying the effects of this intercropping system on soil properties. Results and discussion Soil chemistry analyses revealed that the content of several soil nutrients such as nitrogen (N) and phosphorus (P) was higher in the BAS process than in the CK. In the DIS process, a large amount of soil P was consumed by DI. At the same time, the urease activity was inhibited, thus slowing down the loss of soil in the DI process, while the activity of other enzymes such as β-glucosidase and laccase was increased. It was also noticed that the content of lanthanum and calcium was higher in the BAS process than in the other treatments, and DI did not significantly alter the concentrations of these soil metal ions. Bacterial diversity was higher in the BAS process than in the other treatments, and fungal diversity was lower in the DIS process than in the other treatments. The soil metabolome analysis revealed that the abundance of carbohydrate metabolites was significantly lower in the BAS process than in the CK and the DIS process. The abundance of D(+)-talose was correlated with the content of soil nutrients. Path analysis revealed that the content of soil nutrients in the DIS process was mainly affected by fungi, bacteria, the soil metabolome, and soil enzyme activity. Our findings indicate that the sugarcane-DIS intercropping system can enhance soil health.
Collapse
Affiliation(s)
- Mingzheng Duan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Yijie Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Guanghu Zhu
- Center for Applied Mathematics of Guangxi (GUET), Guilin, China
| | - Xiaojian Wu
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hairong Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Jie Qin
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Shengfeng Long
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiang Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Bin Feng
- Laibin Academy of Agricultural Sciences, Laibin, China
| | - Sunqian Qin
- Laibin Academy of Agricultural Sciences, Laibin, China
| | - Qi-Huai Liu
- Center for Applied Mathematics of Guangxi (GUET), Guilin, China
| | - Changning Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Lingqiang Wang
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Qing Li
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Tieguang He
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zeping Wang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Science/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| |
Collapse
|
4
|
Hussain MM, Bibi I, Ali F, Saqib ZA, Shahid M, Niazi NK, Hussain K, Shaheen SM, Wang H, Shakil Q, Rinklebe J. The role of various ameliorants on geochemical arsenic distribution and CO 2-carbon efflux under paddy soil conditions. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:507-523. [PMID: 35022880 DOI: 10.1007/s10653-021-01196-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Climate change is a global challenge that is accelerated by contamination with hazardous substances like arsenic (As), posing threat to the agriculture, ecosystem and human health. Here, we explored the impact of various ameliorants on geochemical distribution of As in two soils with contrasting textures (sandy clay loam (Khudpur Village) and clay loam (Mattital Village)) under paddy soil conditions and their influence on the CO2-carbon efflux. The exchangeable As pool in clay loam soil increased as: lignite (0.4%) < biogas slurry (6%) < cow dung (9%), and < biochar (20%). However, in the sandy clay loam soil exchangeable soil As pool was found to be maximum with farmyard manure followed by biogas slurry, biochar and cow dung (17%, 14%, 13% and 7%, respectively). Interestingly, in the sandy clay loam soil the percentage As distribution in organic fraction was: biochar (38%) > cow dung (33%) > biogas slurry (23%) > sugarcane bagasse (22%) > farmyard manure (21%) that was higher compared to the clay loam soil (< 6% for all the amendments). In addition to the highest As immobilization by biochar in sandy clay loam soil, it also led to the lowest CO2-carbon efflux (1470 CO2-C mg kg-1) among all the organic/inorganic amendments. Overall, the current study advances our understanding on the pivotal role of organic amendments, notably biochar, in immobilizing As under paddy soil conditions with low (CO2) carbon loss, albeit it is dependent on soil and ameliorant types.
Collapse
Affiliation(s)
- Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Fawad Ali
- Centre for Planetary Health and Food Security, Griffith University, Nathan Campus, Brisbane - QLD, 4110, Australia
- Department of Agriculture and Fisheries, Mareeba, 4880, QLD, Australia
| | - Zulfiqar Ahmad Saqib
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Khalid Hussain
- Department of Agronomy, Faculty of Agriculture, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Sabry M Shaheen
- Laboratory of Soil- and Groundwater-Management, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany
- Faculty of Agriculture, Department of Soil and Water Sciences, University of Kafrelsheikh, Kafr El-Sheikh, 33516, Egypt
- Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, King Abdulaziz University, Jiddah, 21589, Saudi Arabia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, Guangdong, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Qamar Shakil
- Fodder Research Sub-Station, Ayub Agricultural Research Institute, Faisalabad, 38000, Pakistan
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany
- Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006, South Korea
| |
Collapse
|
5
|
Soil Chemical Properties, Metabolome, and Metabarcoding Give the New Insights into the Soil Transforming Process of Fairy Ring Fungi Leucocalocybe mongolica. J Fungi (Basel) 2022; 8:jof8070680. [PMID: 35887438 PMCID: PMC9324422 DOI: 10.3390/jof8070680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
A unique ecological landscape distributed in the Mongolian Plateau, called fairy rings, caused by the growth of the fungus Leucocalocybe mongolica (LM) in the soil could promote plant growth without fertilization. Therefore, this landscape can alleviate fertilizer use and has excellent value for agricultural production. The previous studies only investigated several parameters of the fairy rings, such as soil microbial diversity and some soil chemical properties, thus conclusions based on the studies on fairy rings lack comprehension. Therefore, the present study systematically investigated the chemical properties, metabolome, and metabarcoding of LM-transformed soil. We analyzed fairy ring soils from DARK (FR) and OUT (CK) zone correlated growth promotion with ten soil chemical properties, including N, nitrate-N, inorganic-P, cellulose, available boron, available sulfur, Fe, Mn, Zn, and Cu, which were identified as important markers to screen fairy ring landscapes. Metabolomics showed that the accumulation of 17 carbohydrate-dominated metabolites was closely associated with plant growth promotion. Finally, metabarcoding detected fungi as the main components affecting soil conversion. Among the various fungi at the family level, Lasiosphaeriaceae, unidentified_Auriculariales_sp, and Herpotrichiellaceae were markers to screen fairy ring. Our study is novel and systematically reveals the fairy ring soil ecology and lists the key factors promoting plant growth. These findings lay a theoretical foundation for developing the fairy ring landscape in an agricultural system.
Collapse
|
6
|
Affiliation(s)
- Nilanjana Majumdar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|
7
|
Atilgan MR, Bayraktar O. Enhancing shelf life and functionality of food matrices by utilization of natural compounds. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.15197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Oguz Bayraktar
- Faculty of Engineering, Department of Bioengineering Ege University Izmir Turkey
| |
Collapse
|
8
|
Wang F, Bao K, Huang C, Zhao X, Han W, Yin Z. Adsorption and pH Values Determine the Distribution of Cadmium in Terrestrial and Marine Soils in the Nansha Area, Pearl River Delta. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020793. [PMID: 35055615 PMCID: PMC8775905 DOI: 10.3390/ijerph19020793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022]
Abstract
Cadmium is a toxic element with a half-life of several decades, which can accumulate in the human body by entering the food chain and seriously harm health. The cadmium adsorption and desorption processes in the soil directly affect the migration, transformation, bioavailability, and ecotoxicity of this element in soil-plant systems. Coastal zones are located in the transitional zone between land and sea, and large amounts of terrigenous material input have important environmental effects on this ecosystem. The pH, hydrodynamic conditions, soil organic matter (SOM), and other factors defining the sea-land interaction within the sedimentary environment are significantly different from those defining land facies. In order to study the key factors affecting cadmium adsorption in soils at the sea-land interface in the Nansha area of the Pearl River Delta, a test was conducted on a column of undisturbed soil. The results showed that the adsorption constant KF and the Cd2+ adsorption capacity of marine soils were higher than those of terrestrial soils. However, the saturation adsorption of cadmium in terrestrial sediments was higher than in marine sediments. Soil pH was an important factor affecting cadmium adsorption capacity in both terrestrial and ma-rine sediments. Neutral and alkaline topsoil conditions inhibited the vertical migration of cadmium, while the acidic environment favored it. The higher the clay and SOM were, the stronger the Cd2+ adsorption capacity of the soil was. These findings suggest that the distribution of cadmium in marine and continental sedimentary soils is not only related to adsorption, but also to the physical and chemical processes occurring in different sedimentary environments.
Collapse
Affiliation(s)
- Fangting Wang
- Wuhan Geological Survey Center, China Geological Survey, Wuhan 430205, China; (F.W.); (X.Z.)
| | - Ke Bao
- Safety Center for River and Lake Protection, Construction and Operation, Changjiang Water Resources Commission of the Ministry of Water Resources, Wuhan 430015, China;
| | - Changsheng Huang
- Wuhan Geological Survey Center, China Geological Survey, Wuhan 430205, China; (F.W.); (X.Z.)
- Correspondence:
| | - Xinwen Zhao
- Wuhan Geological Survey Center, China Geological Survey, Wuhan 430205, China; (F.W.); (X.Z.)
| | - Wenjing Han
- Geological Survey Research Institute, China University of Geosciences, Wuhan 430074, China; (W.H.); (Z.Y.)
| | - Zhibin Yin
- Geological Survey Research Institute, China University of Geosciences, Wuhan 430074, China; (W.H.); (Z.Y.)
| |
Collapse
|
9
|
Elmassry MM, Bisht K, Colmer-Hamood JA, Wakeman CA, San Francisco MJ, Hamood AN. Malonate utilization by Pseudomonas aeruginosa affects quorum-sensing and virulence and leads to formation of mineralized biofilm-like structures. Mol Microbiol 2021; 116:516-537. [PMID: 33892520 DOI: 10.1111/mmi.14729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that uses malonate among its many carbon sources. We recently reported that, when grown in blood from trauma patients, P. aeruginosa expression of malonate utilization genes was upregulated. In this study, we explored the role of malonate utilization and its contribution to P. aeruginosa virulence. We grew P. aeruginosa strain PA14 in M9 minimal medium containing malonate (MM9) or glycerol (GM9) as a sole carbon source and assessed the effect of the growth on quorum sensing, virulence factors, and antibiotic resistance. Growth of PA14 in MM9, compared to GM9, reduced the production of elastases, rhamnolipids, and pyoverdine; enhanced the production of pyocyanin and catalase; and increased its sensitivity to norfloxacin. Growth in MM9 decreased extracellular levels of N-acylhomoserine lactone autoinducers, an effect likely associated with increased pH of the culture medium; but had little effect on extracellular levels of PQS. At 18 hr of growth in MM9, PA14 formed biofilm-like structures or aggregates that were associated with biomineralization, which was related to increased pH of the culture medium. These results suggest that malonate significantly impacts P. aeruginosa pathogenesis by influencing the quorum sensing systems, the production of virulence factors, biofilm formation, and antibiotic resistance.
Collapse
Affiliation(s)
- Moamen M Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Karishma Bisht
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jane A Colmer-Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Michael J San Francisco
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.,Honors College, Texas Tech University, Lubbock, TX, USA
| | - Abdul N Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
10
|
Das J, Mal DK, Maji S, Maiti D. Recent Advances in External-Directing-Group-Free C–H Functionalization of Carboxylic Acids without Decarboxylation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00176] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jayabrata Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Dibya Kanti Mal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suman Maji
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Salihu R, Abd Razak SI, Ahmad Zawawi N, Rafiq Abdul Kadir M, Izzah Ismail N, Jusoh N, Riduan Mohamad M, Hasraf Mat Nayan N. Citric acid: A green cross-linker of biomaterials for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110271] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Nangare S, Vispute Y, Tade R, Dugam S, Patil P. Pharmaceutical applications of citric acid. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00203-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
Citric acid (CA) is a universal plant and animal-metabolism intermediate. It is a commodity chemical processed and widely used around the world as an excellent pharmaceutical excipient. Notably, CA is offering assorted significant properties viz. biodegradability, biocompatibility, hydrophilicity, safety, etc. Therefore, CA is broadly employed in many sectors including foodstuffs, beverages, pharmaceuticals, nutraceuticals, and cosmetics as a flavoring agent, sequestering agent, buffering agent, etc. From the beginning, CA is a regular ingredient for cosmetic pH-adjustment and as a metallic ion chelator in antioxidant systems. In addition, it is used to improve the taste of pharmaceuticals such as syrups, solutions, elixirs, etc. Furthermore, free CA is also employed as an acidulant in mild astringent preparations.
Main text
In essence, it is estimated that the functionality present in CA provides excellent assets in pharmaceutical applications such as cross-linking, release-modifying capacity, interaction with molecules, capping and coating agent, branched polymer nanoconjugates, gas generating agent, etc. Mainly, the center of attention of the review is to deliver an impression of the CA-based pharmaceutical applications.
Conclusion
In conclusion, CA is reconnoitered for multiple novels pharmaceutical and biomedical/applications including as a green crosslinker, release modifier, monomer/branched polymer, capping and coating agent, novel disintegrant, absorption enhancer, etc. In the future, CA can be utilized as an excellent substitute for pharmaceutical and biomedical applications.
Graphical abstract
Collapse
|
13
|
Marciniak L, Nowak M, Trojanowska A, Tylkowski B, Jastrzab R. The Effect of pH on the Size of Silver Nanoparticles Obtained in the Reduction Reaction with Citric and Malic Acids. MATERIALS 2020; 13:ma13235444. [PMID: 33260479 PMCID: PMC7730334 DOI: 10.3390/ma13235444] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 11/24/2022]
Abstract
In colloidal methods, the morphology of nanoparticles (size and shape) as well as their stability can be controlled by changing the concentration of the substrate, stabilizer, adding inorganic salts, changing the reducer/substrate molar ratio, and changing the pH and reaction time. The synthesis of silver nanoparticles was carried out according to the modified Lee and Meisel method in a wide pH range (from 2.0 to 11.0) using citric acid and malic acid, without adding any additives or stabilizers. Keeping the same reaction conditions as the concentration of acid and silver ions, temperature, and heating time, it was possible to determine the relationship between the reaction pH, the type of acid, and the size of the silver nanoparticles formed. Obtained colloids were analyzed by UV-Vis spectroscopy and investigated by means of Transmission Electron Microscope (TEM). The study showed that the colloids reduced with citric acid and malic acid are stable over time for a minimum of seven weeks. We observed that reactions occurred for citric acid from pH 6.0 to 11.0 and for malic acid from pH 7.0 to 11.0. The average size of the quasi-spherical nanoparticles changed with pH due to the increase of reaction rate.
Collapse
Affiliation(s)
- Lukasz Marciniak
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland; (L.M.); (M.N.)
| | - Martyna Nowak
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland; (L.M.); (M.N.)
| | - Anna Trojanowska
- Centre Tecnològic de Catalunya, Chemical Technologies Unit, Eurecat, 43007 Tarragona, Spain; (A.T.); (B.T.)
| | - Bartosz Tylkowski
- Centre Tecnològic de Catalunya, Chemical Technologies Unit, Eurecat, 43007 Tarragona, Spain; (A.T.); (B.T.)
| | - Renata Jastrzab
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland; (L.M.); (M.N.)
- Correspondence: ; Tel.: +48-6‐9328‐8787
| |
Collapse
|
14
|
Tian L, Shen J, Sun G, Wang B, Ji R, Zhao L. Foliar Application of SiO 2 Nanoparticles Alters Soil Metabolite Profiles and Microbial Community Composition in the Pakchoi ( Brassica chinensis L.) Rhizosphere Grown in Contaminated Mine Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13137-13146. [PMID: 32954728 DOI: 10.1021/acs.est.0c03767] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Silica nanoparticles (SiO2-NPs) are promising in nanoenabled agriculture due to their large surface area and biocompatible properties. Understanding the fundamental interaction between SiO2-NPs and plants is important for their sustainable use. Here, 3 week-old pakchoi (Brassica chinensis L.) plants were sprayed with SiO2-NPs every 3 days for 15 days (5 mg of SiO2-NPs per plant), after which the phenotypes, biochemical properties, and molecular responses of the plants were evaluated. The changes in rhizosphere metabolites were characterized by gas chromatography-mass spectrometry (GC-MS)-based metabolomics, and the response of soil microorganisms to the SiO2-NPs were characterized by high-throughput bacterial 16S rRNA and fungal internal transcribed spacer (ITS) gene sequencing. The results showed that the SiO2-NP spray had no adverse effects on photosynthesis of pakchoi plants nor on their biomass. However, the rhizosphere metabolite profile was remarkably altered upon foliar exposure to SiO2-NPs. Significant increases in the relative abundance of several metabolites, including sugars and sugar alcohols (1.3-9.3-fold), fatty acids (1.5-18.0-fold), and small organic acids (1.5-66.9-fold), and significant decreases in the amino acid levels (60-100%) indicated the altered carbon and nitrogen pool in the rhizosphere. Although the community structure was unchanged, several bacterial (Rhodobacteraceae and Paenibacillus) and fungal (Chaetomium) genera in the rhizosphere involved in carbon and nitrogen cycles were increased. Our results provide novel insights into the environmental effects of SiO2-NPs and point out that foliar application of NPs can alter the soil metabolite profile.
Collapse
Affiliation(s)
- Liyan Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jupei Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guoxin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Farhan Ul Haque M, Xu HJ, Murrell JC, Crombie A. Facultative methanotrophs - diversity, genetics, molecular ecology and biotechnological potential: a mini-review. MICROBIOLOGY (READING, ENGLAND) 2020; 166:894-908. [PMID: 33085587 PMCID: PMC7660913 DOI: 10.1099/mic.0.000977] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
Methane-oxidizing bacteria (methanotrophs) play a vital role in reducing atmospheric methane emissions, and hence mitigating their potent global warming effects. A significant proportion of the methane released is thermogenic natural gas, containing associated short-chain alkanes as well as methane. It was one hundred years following the description of methanotrophs that facultative strains were discovered and validly described. These can use some multi-carbon compounds in addition to methane, often small organic acids, such as acetate, or ethanol, although Methylocella strains can also use short-chain alkanes, presumably deriving a competitive advantage from this metabolic versatility. Here, we review the diversity and molecular ecology of facultative methanotrophs. We discuss the genetic potential of the known strains and outline the consequent benefits they may obtain. Finally, we review the biotechnological promise of these fascinating microbes.
Collapse
Affiliation(s)
| | - Hui-Juan Xu
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- Present address: Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Andrew Crombie
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- Present address: School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
16
|
Siani G, Tiecco M, Di Profio P, Guernelli S, Fontana A, Ciulla M, Canale V. Physical absorption of CO2 in betaine/carboxylic acid-based Natural Deep Eutectic Solvents. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Abstract
D- and most L-enantiomers of carbohydrates and carbohydrate-containing compounds occur naturally in plants and other organisms. These enantiomers play many important roles in plants including building up biomass, defense against pathogens, herbivory, abiotic stress, and plant nutrition. Carbohydrate enantiomers are also precursors of many plant compounds that significantly contribute to plant aroma. Microorganisms, insects, and other animals utilize both types of carbohydrate enantiomers, but their biomass and excrements are dominated by D-enantiomers. The aim of this work was to review the current knowledge about carbohydrate enantiomers in ecosystems with respect to both their metabolism in plants and occurrence in soils, and to identify critical knowledge gaps and directions for future research. Knowledge about the significance of D- versus L-enantiomers of carbohydrates in soils is rare. Determining the mechanism of genetic regulation of D- and L-carbohydrate metabolism in plants with respect to pathogen and pest control and ecosystem interactions represent the knowledge gaps and a direction for future research.
Collapse
|
18
|
Reva ON, Swanevelder DZH, Mwita LA, Mwakilili AD, Muzondiwa D, Joubert M, Chan WY, Lutz S, Ahrens CH, Avdeeva LV, Kharkhota MA, Tibuhwa D, Lyantagaye S, Vater J, Borriss R, Meijer J. Genetic, Epigenetic and Phenotypic Diversity of Four Bacillus velezensis Strains Used for Plant Protection or as Probiotics. Front Microbiol 2019; 10:2610. [PMID: 31803155 PMCID: PMC6873887 DOI: 10.3389/fmicb.2019.02610] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Bacillus velezensis strains are applied as ecologically safe biopesticides, plant growth promoting rhizobacteria (PGPR), and in veterinary probiotics. They are abundant in various environments including soil, plants, marine habitats, the intestinal micro-flora, etc. The mechanisms underlying this adaptive plasticity and bioactivity are not well understood, nor is it clear why several strains outperform other same species isolates by their bioactivities. The main objective of this work was to demonstrate versatility of bioactivities and lifestyle strategies of the selected B. velezensis strains suitable to serve as model organisms in future studies. Here, we performed a comparative study of newly sequenced genomes of four B. velezensis isolates with distinct phenotypes and isolation origin, which were assessed by RNA sequencing under the effect of root exudate stimuli and profiled by epigenetic modifications of chromosomal DNA. Among the selected strains, UCMB5044 is an oligotrophic PGPR strain adapted to nutrient poor desert soils. UCMB5113 and At1 are endophytes that colonize plants and require nutrient rich media. In contrast, the probiotic strain, UCMB5007, is a copiotroph, which shows no propensity to colonize plants. PacBio and Illumina sequencing approaches were used to generate complete genome assemblies, tracing epigenetic modifications, and determine gene expression profiles. All sequence data was deposited at NCBI. The strains, UCMB5113 and At1, show 99% sequence identity and similar phenotypes despite being isolated from geographically distant regions. UCMB5007 and UCMB5044 represent another group of organisms with almost identical genomes but dissimilar phenotypes and plant colonization propensity. The two plant associated strains, UCMB5044 and UCMB5113, share 398 genes putatively associated with root colonization, which are activated by exposure to maize root exudates. In contrast, UCMB5007 did not respond to root exudate stimuli. It was hypothesized that alterations in the global methylation pattern and some other epigenetic modifications enable adaptation of strains to different habitats and therefore may be of importance in terms of the biotechnological applicability of these bacteria. Contrary, the ability to grow on root exudates as a sole source of nutrients or a strong antagonism against phytopathogens showed by the strains in vitro cannot be considered as good predictors of PGPR activities.
Collapse
Affiliation(s)
- Oleg N Reva
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - Liberata A Mwita
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.,Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Aneth David Mwakilili
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Tanzania.,Department of Plant Protection, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Dillon Muzondiwa
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Monique Joubert
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Wai Yin Chan
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.,Forestry and Agricultural Biotechnology Institute, DST-NRF Centre of Excellence in Tree Health Biotechnology, University of Pretoria, Pretoria, South Africa
| | - Stefanie Lutz
- Agroscope, Molecular Diagnostics, Genomics and Bioinformatics and SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Christian H Ahrens
- Agroscope, Molecular Diagnostics, Genomics and Bioinformatics and SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Lylia V Avdeeva
- Department of Antibiotics, D.K. Zabolotny Institute of Microbiology and Virology, Kyiv, Ukraine
| | - Maksim A Kharkhota
- Department of Antibiotics, D.K. Zabolotny Institute of Microbiology and Virology, Kyiv, Ukraine
| | - Donatha Tibuhwa
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Sylvester Lyantagaye
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | | | - Rainer Borriss
- Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Johan Meijer
- Department of Plant Biology, Linnéan Center for Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
19
|
Wu J, Yu S. Effect of root exudates of Eucalyptus urophylla and Acacia mearnsii on soil microbes under simulated warming climate conditions. BMC Microbiol 2019; 19:224. [PMID: 31615406 PMCID: PMC6794899 DOI: 10.1186/s12866-019-1604-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies demonstrated that warming and elevated carbon dioxide (CO2) indirectly affect the soil microbial community structure via plant root exudates. However, there is no direct evidence for how the root exudates affect soil microbes and how the compositions of root exudates respond to climate change. RESULTS The results showed that warming directly decreased biomass of soil-borne bacteria and fungi for Acacia mearnsii De Willd but it did not impact soil microbial community for Eucalyptus urophylla S.T. Blake. In contrast, elevated CO2 had strong direct effect on increasing soil microbial biomass for both plant species. However, plant roots could significantly increase the secretion of antibacterial chemicals (most probable organic acids), which inhibited the growth of bacteria and fungi in elevated CO2 environment. This inhibitory effect neutralized the facilitation from increasing CO2 concentration on microbial growth. CONCLUSIONS We concluded that climate change can directly affect microorganisms, and indirectly affect the soil microbial community structure by changes in composition and content of plant root exudates.
Collapse
Affiliation(s)
- Jiahui Wu
- Department of Ecology, School of Life Sciences /State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275 China
| | - Shixiao Yu
- Department of Ecology, School of Life Sciences /State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
20
|
Dolui P, Das J, Chandrashekar HB, Anjana SS, Maiti D. Ligand‐Enabled Pd
II
‐Catalyzed Iterative γ‐C(sp3)−H Arylation of Free Aliphatic Acid. Angew Chem Int Ed Engl 2019; 58:13773-13777. [DOI: 10.1002/anie.201907262] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/22/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Pravas Dolui
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Jayabrata Das
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400076 India
| | | | - S. S. Anjana
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Debabrata Maiti
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400076 India
| |
Collapse
|
21
|
Dolui P, Das J, Chandrashekar HB, Anjana SS, Maiti D. Ligand‐Enabled Pd
II
‐Catalyzed Iterative γ‐C(sp3)−H Arylation of Free Aliphatic Acid. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pravas Dolui
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Jayabrata Das
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400076 India
| | | | - S. S. Anjana
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Debabrata Maiti
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400076 India
| |
Collapse
|
22
|
|
23
|
Dukunde A, Schneider D, Schmidt M, Veldkamp E, Daniel R. Tree Species Shape Soil Bacterial Community Structure and Function in Temperate Deciduous Forests. Front Microbiol 2019; 10:1519. [PMID: 31338079 PMCID: PMC6629791 DOI: 10.3389/fmicb.2019.01519] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/18/2019] [Indexed: 01/23/2023] Open
Abstract
Amplicon-based analysis of 16S rRNA genes and transcripts was used to assess the effect of tree species composition on soil bacterial community structure and function in a temperate deciduous forest. Samples were collected from mono and mixed stands of Fagus sylvatica (beech), Carpinus betulus (hornbeam), Tilia sp. (lime), and Quercus sp. (oak) in spring, summer, and autumn. Soil bacterial community exhibited similar taxonomic composition at total (DNA-based) and potentially active community (RNA-based) level, with fewer taxa present at active community level. Members of Rhizobiales dominated at both total and active bacterial community level, followed by members of Acidobacteriales, Solibacterales, Rhodospirillales, and Xanthomonadales. Bacterial communities at total and active community level showed a significant positive correlation with tree species identity (mono stands) and to a lesser extent with tree species richness (mixed stands). Approximately 58 and 64% of indicator operational taxonomic units (OTUs) showed significant association with only one mono stand at total and active community level, respectively, indicating a strong impact of tree species on soil bacterial community composition. Soil C/N ratio, pH, and P content similarly exhibited a significant positive correlation with soil bacterial communities, which was attributed to direct and indirect effects of forest stands. Seasonality was the strongest driver of predicted metabolic functions related to C fixation and degradation, and N metabolism. Carbon and nitrogen metabolic processes were significantly abundant in spring, while C degradation gene abundances increased from summer to autumn, corresponding to increased litterfall and decomposition. The results revealed that in a spatially homogenous forest soil, tree species diversity and richness are dominant drivers of structure and composition in soil bacterial communities.
Collapse
Affiliation(s)
- Amélie Dukunde
- Göttingen Genomics Laboratory, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Göttingen Genomics Laboratory, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Marcus Schmidt
- Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Edzo Veldkamp
- Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Li S, Huskić I, Novendra N, Titi HM, Navrotsky A, Friščić T. Mechanochemical Synthesis, Accelerated Aging, and Thermodynamic Stability of the Organic Mineral Paceite and Its Cadmium Analogue. ACS OMEGA 2019; 4:5486-5495. [PMID: 31459711 PMCID: PMC6649266 DOI: 10.1021/acsomega.9b00295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/05/2019] [Indexed: 05/29/2023]
Abstract
We demonstrate the use of ball milling mechanochemistry for rapid, simple, and materials-efficient synthesis of the organic mineral paceite CaCu(OAc)4·6H2O (where OAc- is the acetate ion), composed of coordination polymer chains containing alternating Ca2+ and Cu2+ ions, as well as its cadmium-based analogue CaCd(OAc)4·6H2O. While the synthesis of paceite in aqueous solutions requires a high excess of the copper precursor, mechanochemistry permits the use of stoichiometric amounts of reagents, as well as the use of poorly soluble and readily accessible calcium carbonate or hydroxide reactants. As established by thermochemical measurements, enthalpies of formation of both synthetic paceite and its cadmium analogue relevant to the mechanochemical reactions are highly exothermic. Reactions can also be conducted using accelerated aging, a synthetic technique that mimics geological processes of mineral weathering. Accelerated aging reactivity involving copper(II) acetate monohydrate (hoganite) and calcium carbonate (calcite) provides a potential explanation of how complex organic minerals like paceite could form in a geological environment.
Collapse
Affiliation(s)
- Shaodi Li
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., H3A 0B8 Montreal, Canada
| | - Igor Huskić
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., H3A 0B8 Montreal, Canada
| | - Novendra Novendra
- Peter
A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, One Shields Avenue, Davis, California 95616, United
States
| | - Hatem M. Titi
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., H3A 0B8 Montreal, Canada
| | - Alexandra Navrotsky
- Peter
A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, One Shields Avenue, Davis, California 95616, United
States
| | - Tomislav Friščić
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., H3A 0B8 Montreal, Canada
| |
Collapse
|
25
|
Acid Neutralization by Mining Waste Dissolution under Conditions Relevant for Agricultural Applications. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8100380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The acidification of agricultural soils in high rainfall regions is usually countered by the application of finely ground calcite or dolomite. As this carbonate dissolves, soil pH is raised, but CO2 is released. Mining activities often produce large quantities of very fine silicate rock-derived powders that are commonly deposited in stockpiles. However, the dissolution of such powders can also result in an increase in pH, without any direct release of CO2. Of particular interest are those silicate powders that have a high reactivity and higher capacity for raising pH. In this contribution, we report experimental work addressing the dissolution of various silicate rock-derived powders that were produced during mining activities in Norway under conditions that were representative of weathering in agricultural soils. Three different powders—derived from Åheim dunite, Stjernøya nepheline syenite, or Tellnes ilmenite norite—were exposed to different acids at pH 4 in unstirred flow cells, and dissolution or leaching kinetics were determined from the changes in the fluid composition. Based on these kinetics, pH neutralization rates were determined for the individual powders and compared to expected values for carbonates. Based on this comparison, it is concluded that the application of silicate rock-derived powder dissolution to replace carbonate-based liming may not be feasible due to slower reaction rates, unless larger quantities of a finer particle size than normal are used. The application of larger volumes of slower-reacting silicates may have the additional benefit of reducing the required frequency of liming.
Collapse
|
26
|
Di Crescenzo A, Tiecco M, Zappacosta R, Boncompagni S, Di Profio P, Ettorre V, Fontana A, Germani R, Siani G. Novel zwitterionic Natural Deep Eutectic Solvents as environmentally friendly media for spontaneous self-assembly of gold nanoparticles. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
27
|
Udaondo Z, Ramos JL, Segura A, Krell T, Daddaoua A. Regulation of carbohydrate degradation pathways in Pseudomonas involves a versatile set of transcriptional regulators. Microb Biotechnol 2018; 11:442-454. [PMID: 29607620 PMCID: PMC5902321 DOI: 10.1111/1751-7915.13263] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/22/2018] [Accepted: 03/01/2018] [Indexed: 01/08/2023] Open
Abstract
Bacteria of the genus Pseudomonas are widespread in nature. In the last decades, members of this genus, especially Pseudomonas aeruginosa and Pseudomonas putida, have acquired great interest because of their interactions with higher organisms. Pseudomonas aeruginosa is an opportunistic pathogen that colonizes the lung of cystic fibrosis patients, while P. putida is a soil bacterium able to establish a positive interaction with the plant rhizosphere. Members of Pseudomonas genus have a robust metabolism for amino acids and organic acids as well as aromatic compounds; however, these microbes metabolize a very limited number of sugars. Interestingly, they have three-pronged metabolic system to generate 6-phosphogluconate from glucose suggesting an adaptation to efficiently consume this sugar. This review focuses on the description of the regulatory network of glucose utilization in Pseudomonas, highlighting the differences between P. putida and P. aeruginosa. Most interestingly, It is highlighted a functional link between glucose assimilation and exotoxin A production in P. aeruginosa. The physiological relevance of this connection remains unclear, and it needs to be established whether a similar relationship is also found in other bacteria.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301W. Markham St., Slot 782, Little Rock, AR, 72205, USA
| | - Juan-Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, C/ Profesor Albareda 1, E-18008, Granada, Spain
| | - Ana Segura
- Department of Environmental Protection, Estación Experimental del Zaidín, C/ Profesor Albareda 1, E-18008, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, C/ Profesor Albareda 1, E-18008, Granada, Spain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, Pharmacy School, Granada University, Granada, Spain
| |
Collapse
|
28
|
Oh C, Ji S, Chon CM, Yim G, Cheong Y. Reliability improvement for predicting acid-forming potential of rock samples using static tests. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:207. [PMID: 28382432 DOI: 10.1007/s10661-017-5906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
In predicting the acid-forming potential of rock samples, a combination of acid-base accounting (ABA) and net acid generation (NAG) tests has been commonly used. While simple and economical, this method sometimes shows low reliability such as categorizing certain samples as uncertain (UC). ABA and NAG tests were modified to selectively recover valid minerals in nature and substituted for the original tests. ABA test overestimated acid-producing capacity (in the case of weathered samples) and acid-neutralizing capacity (in the case of plagioclase-including samples) compared to the modified ABA test. NAG test yielded lower NAG pH compared to modified NAG test for samples with high total C content and low total S content. By comparing the correlation coefficients between acid generation amounts by the two evaluation methods, it was confirmed that modified evaluation method (MEM) has a much higher reliability (R 2 = 0.9582) than existing evaluation method (EEM) (R 2 = 0.5873). It was also concluded that exploiting advantages of both EEM and MEM is recommended where EEM is initially applied for general classification and a supplemented static test of MEM is executed for the purpose of correcting the error of UC categorized samples.
Collapse
Affiliation(s)
- Chamteut Oh
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea
| | - Sangwoo Ji
- Climate Change Mitigation and Sustainability Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea.
| | - Chul-Min Chon
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea
| | - Giljae Yim
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea
| | - Youngwook Cheong
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea
| |
Collapse
|
29
|
Oh C, Ji S, Yim G, Cheong Y. Evaluation of net acid generation pH as a single indicator for acid forming potential of rocks using geochemical properties. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:165. [PMID: 28299504 DOI: 10.1007/s10661-017-5869-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 02/27/2017] [Indexed: 05/21/2023]
Abstract
The main purpose of this research was to evaluate the geochemical properties of rocks for a single indicator of acid-forming potential. The indicators, such as net acid generation (NAG), NAG pH and total S, were applied to 312 rock samples of various geological characteristics. Additional indicators, such as a Modified NAG pH, paste pH and available acid neutralizing capacity (ANC), were applied to 22 selected samples. Among them, NAG pH was considered the most plausible single indicator in evaluating acid-forming potential, as it is simple to measure, widely applicable to various samples and can be used to estimate the NAG value. The acid-forming potential of 287 samples (92% of samples examined in this research) was classified as either non-acid forming (NAF) or potentially acid forming (PAF) by NAG pH, with an NAF criteria of <3.21 and PAF of >4.52. The NAG pH was also a good estimate of the risk of short-term acid release when combined with paste pH information. However, application of NAG pH to coal mine wastes, with high organic carbon contents, produced erroneous results due to the generation of organic acid during the NAG test. In this research, a Modified NAG pH was assessed as an alternative to NAG pH in such situations.
Collapse
Affiliation(s)
- Chamteut Oh
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea
| | - Sangwoo Ji
- Climate Change Mitigation and Sustainability Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea.
| | - Giljae Yim
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea
| | - Youngwook Cheong
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea
| |
Collapse
|
30
|
Berlemont R, Martiny AC. Glycoside Hydrolases across Environmental Microbial Communities. PLoS Comput Biol 2016; 12:e1005300. [PMID: 27992426 PMCID: PMC5218504 DOI: 10.1371/journal.pcbi.1005300] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 01/06/2017] [Accepted: 12/11/2016] [Indexed: 11/25/2022] Open
Abstract
Across many environments microbial glycoside hydrolases support the enzymatic processing of carbohydrates, a critical function in many ecosystems. Little is known about how the microbial composition of a community and the potential for carbohydrate processing relate to each other. Here, using 1,934 metagenomic datasets, we linked changes in community composition to variation of potential for carbohydrate processing across environments. We were able to show that each ecosystem-type displays a specific potential for carbohydrate utilization. Most of this potential was associated with just 77 bacterial genera. The GH content in bacterial genera is best described by their taxonomic affiliation. Across metagenomes, fluctuations of the microbial community structure and GH potential for carbohydrate utilization were correlated. Our analysis reveals that both deterministic and stochastic processes contribute to the assembly of complex microbial communities.
Collapse
Affiliation(s)
- Renaud Berlemont
- Dept. of Biological Sciences, California State University, Long Beach, California, United States of America
| | - Adam C. Martiny
- Dept. of Earth System Science, University of California, Irvine, California, United States of America
- Dept. of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
| |
Collapse
|
31
|
Ma Y, Oliveira RS, Freitas H, Zhang C. Biochemical and Molecular Mechanisms of Plant-Microbe-Metal Interactions: Relevance for Phytoremediation. FRONTIERS IN PLANT SCIENCE 2016; 7:918. [PMID: 27446148 PMCID: PMC4917562 DOI: 10.3389/fpls.2016.00918] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/09/2016] [Indexed: 05/22/2023]
Abstract
Plants and microbes coexist or compete for survival and their cohesive interactions play a vital role in adapting to metalliferous environments, and can thus be explored to improve microbe-assisted phytoremediation. Plant root exudates are useful nutrient and energy sources for soil microorganisms, with whom they establish intricate communication systems. Some beneficial bacteria and fungi, acting as plant growth promoting microorganisms (PGPMs), may alleviate metal phytotoxicity and stimulate plant growth indirectly via the induction of defense mechanisms against phytopathogens, and/or directly through the solubilization of mineral nutrients (nitrogen, phosphate, potassium, iron, etc.), production of plant growth promoting substances (e.g., phytohormones), and secretion of specific enzymes (e.g., 1-aminocyclopropane-1-carboxylate deaminase). PGPM can also change metal bioavailability in soil through various mechanisms such as acidification, precipitation, chelation, complexation, and redox reactions. This review presents the recent advances and applications made hitherto in understanding the biochemical and molecular mechanisms of plant-microbe interactions and their role in the major processes involved in phytoremediation, such as heavy metal detoxification, mobilization, immobilization, transformation, transport, and distribution.
Collapse
Affiliation(s)
- Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| | - Rui S. Oliveira
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
- Department of Environmental Health, Research Centre on Health and Environment, School of Allied Health Sciences, Polytechnic Institute of PortoVila Nova de Gaia, Portugal
- Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica PortuguesaPorto, Portugal
| | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| | | |
Collapse
|
32
|
Cerdán M, Sánchez-Sánchez A, Jordá JD, Amat B, Cortina J, Ruiz-Vicedo N, El-Khattabi M. Characterization of water dissolved organic matter under woody vegetation patches in semi-arid Mediterranean soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 553:340-348. [PMID: 26930307 DOI: 10.1016/j.scitotenv.2016.02.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/03/2016] [Accepted: 02/13/2016] [Indexed: 06/05/2023]
Abstract
Woody patches in semiarid environments favor the establishment of other plants. Facilitation may be favored by an increase in soil fertility. Dissolved organic matter (DOM), is the most active fraction of soil organic matter and may contain compounds affecting plant establishment, as allelochemicals, hormone-like substances and metal carriers. However, information on DOM contents and composition in these environments is scarce. In this paper, we study the impact of woody patches on DOM in Stipa tenacissima L. steppes and discuss its implications for community dynamics. DOM under patch- and inter-patch areas, was analyzed for elemental composition, UV-Vis indices and organic acid content. Element concentration and composition in DOM, and organic acid concentration were similar in patch- and inter-patch areas. Yet, soils under patches were richer in DOC, aromatic species and organic acids (particularly fumaric acid) than soils in inter-patch areas. Dominant species affected organic matter concentration and quality in complex ways. Thus, patches dominated by Ephedra fragilis showed higher concentrations of TOC and aromatics than those dominated by other species. Rhamnus lycioides patches showed the highest accumulation of fumaric acid, which may contribute to its successful recruitment rate and expansion in the area. Our results show substantial differences in the amount and composition of DOM and specific compounds affecting soil functionality and plant dynamics. Further studies on the effects of such changes on seedling performance are needed to increase our understanding of plant-plant interactions in semiarid environments.
Collapse
Affiliation(s)
- M Cerdán
- Dep. Agrochemistry and Biochemistry, Faculty of Sciences, University of Alicante, Ap. 99, 03080 Alicante, Spain
| | - A Sánchez-Sánchez
- Dep. Agrochemistry and Biochemistry, Faculty of Sciences, University of Alicante, Ap. 99, 03080 Alicante, Spain
| | - J D Jordá
- Institute for Environmental Research, Ramon Margalef, University of Alicante, Ap. 99, 03080 Alicante, Spain.
| | - B Amat
- Department of Ecology, Faculty of Sciences, University of Alicante, Ap. 99, 03080 Alicante, Spain
| | - J Cortina
- Institute for Environmental Research, Ramon Margalef, University of Alicante, Ap. 99, 03080 Alicante, Spain; Department of Ecology, Faculty of Sciences, University of Alicante, Ap. 99, 03080 Alicante, Spain
| | - N Ruiz-Vicedo
- Dep. Agrochemistry and Biochemistry, Faculty of Sciences, University of Alicante, Ap. 99, 03080 Alicante, Spain
| | - M El-Khattabi
- Dep. Agrochemistry and Biochemistry, Faculty of Sciences, University of Alicante, Ap. 99, 03080 Alicante, Spain
| |
Collapse
|
33
|
Vranová V, Danso Marfo T, Rejšek K. Soil Scientific Research Methods Used in Archaeology - Promising Soil Biochemistry: a Mini-review. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2015. [DOI: 10.11118/actaun201563041417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
34
|
Pham TTM, Pino Rodriguez NJ, Hijri M, Sylvestre M. Optimizing Polychlorinated Biphenyl Degradation by Flavonoid-Induced Cells of the Rhizobacterium Rhodococcus erythropolis U23A. PLoS One 2015; 10:e0126033. [PMID: 25970559 PMCID: PMC4430277 DOI: 10.1371/journal.pone.0126033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/27/2015] [Indexed: 01/11/2023] Open
Abstract
There is evidence that many plant secondary metabolites may act as signal molecules to trigger the bacterial ability to metabolize polychlorinated biphenyls (PCBs) during the rhizoremediation process. However, the bases for the PCB rhizoremediation process are still largely unknown. The rhizobacterium Rhodococcus erythropolis U23A is unable to use flavanone as a growth substrate. However, on the basis of an assay that monitors the amount of 4-chlorobenzoate produced from 4-chlorobiphenyl by cells grown co-metabolically on flavanone plus sodium acetate, this flavonoid was previously found to be a potential inducer of the U23A biphenyl catabolic pathway. In this work, and using the same assay, we identified ten other flavonoids that did not support growth, but that acted as inducers of the U23A biphenyl pathway, and we confirmed flavonoid induction of the biphenyl catabolic pathway using quantitative real-time polymerase chain reaction (RT-qPCR) on the bphA gene. We also examined the effect of the growth co-substrate on flavonoid induction. Sodium acetate was replaced by glucose, mannose, sucrose, or mannitol, which are sugars found in plant root exudates. The data showed that the level of induction of strain U23A biphenyl-degrading enzymes was significantly influenced by the nature and concentration of the flavonoid in the growth medium, as well as by the substrate used for growth. Sucrose allowed for an optimal induction response for most flavonoids. Some flavonoids, such as flavone and isoflavone, were better inducers of the biphenyl catabolic enzymes than biphenyl itself. We also found that all flavonoids tested in this work were metabolized by strain U23A during co-metabolic growth, but that the metabolite profiles, as well as the level of efficiency of degradation, differed for each flavonoid. To obtain insight into how flavonoids interact with strain U23A to promote polychlorinated biphenyl (PCB) degradation, we determined the concentration of flavanone at which optimal PCB-degrading performance of strain U23A was achieved. We showed that it corresponded to the concentration required to fully induce the biphenyl catabolic pathway of the strain. Together, our data demonstrate that optimal PCB degradation during the rhizoremediation process will require the adjustment of several parameters, including the presence of the appropriate flavonoids at the proper concentrations and the presence of proper growth substrates that positively influence the ability of flavonoids to induce the pathway.
Collapse
Affiliation(s)
- Thi Thanh My Pham
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | | | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Michel Sylvestre
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
35
|
Haichar FEZ, Santaella C, Heulin T, Achouak W. Root exudates mediated interactions belowground. SOIL BIOLOGY AND BIOCHEMISTRY 2014; 77:69-80. [PMID: 0 DOI: 10.1016/j.soilbio.2014.06.017] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|