1
|
Horikawa A, Tsuda K, Yamamoto T, Michiue T. Evaluation of Pancreatic β-cell Differentiation Efficiency of Human iPSC Lines for Clinical Use. Curr Stem Cell Res Ther 2024; 19:1449-1460. [PMID: 38311917 DOI: 10.2174/011574888x267226231126185532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/02/2023] [Accepted: 08/24/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Transplantation of pancreatic β-cells generated from human induced pluripotent stem cells (hiPSCs) has great potential as a root treatment for type 1 diabetes. However, their current level of efficiency to differentiate into β-cells is still not at par for clinical use. Previous research has shown that differentiation efficiency varies among human embryonic stem cells and mouse-induced pluripotent stem cell lines. Therefore, selecting a suitable cell line for efficient induction into desired tissues and organs is crucial. METHODS In this study, we have evaluated the efficiency of 15 hiPSC lines available for clinical use to differentiate into pancreatic β-cells. RESULTS Our investigation has revealed induction efficiency to differ among the hiPSC lines, even when derived from the same donor. Among the hiPSC lines tested, the 16A01 cell line exhibited the highest Insulin expression and low Glucagon expression, suggesting that this cell line is suitable for differentiation into β-cells. CONCLUSION Our study has demonstrated the importance of selecting a suitable hiPSC line for effective differentiation into β-cells.
Collapse
Affiliation(s)
- Ayumi Horikawa
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Kyoko Tsuda
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Takayoshi Yamamoto
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Tatsuo Michiue
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
3
|
Carvalho AB, Coutinho KCDS, Barbosa RAQ, de Campos DBP, Leitão IDC, Pinto RS, Dos Santos DS, Farjun B, De Araújo DDS, Mesquita FCP, Monnerat-Cahli G, Medei EH, Kasai-Brunswick TH, De Carvalho ACC. Action potential variability in human pluripotent stem cell-derived cardiomyocytes obtained from healthy donors. Front Physiol 2022; 13:1077069. [PMID: 36589430 PMCID: PMC9800870 DOI: 10.3389/fphys.2022.1077069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Human pluripotent stem cells (PSC) have been used for disease modelling, after differentiation into the desired cell type. Electrophysiologic properties of cardiomyocytes derived from pluripotent stem cells are extensively used to model cardiac arrhythmias, in cardiomyopathies and channelopathies. This requires strict control of the multiple variables that can influence the electrical properties of these cells. In this article, we report the action potential variability of 780 cardiomyocytes derived from pluripotent stem cells obtained from six healthy donors. We analyze the overall distribution of action potential (AP) data, the distribution of action potential data per cell line, per differentiation protocol and batch. This analysis indicates that even using the same cell line and differentiation protocol, the differentiation batch still affects the results. This variability has important implications in modeling arrhythmias and imputing pathogenicity to variants encountered in patients with arrhythmic diseases. We conclude that even when using isogenic cell lines to ascertain pathogenicity to variants associated to arrythmias one should use cardiomyocytes derived from pluripotent stem cells using the same differentiation protocol and batch and pace the cells or use only cells that have very similar spontaneous beat rates. Otherwise, one may find phenotypic variability that is not attributable to pathogenic variants.
Collapse
Affiliation(s)
- A. B. Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro, Brazil,*Correspondence: A. B. Carvalho,
| | | | | | | | - Isabela de Carvalho Leitão
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R. S. Pinto
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - D. Silva Dos Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Farjun
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dayana da Silva De Araújo
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - G. Monnerat-Cahli
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - E. H. Medei
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro, Brazil
| | - Tais Hanae Kasai-Brunswick
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro, Brazil
| | - A. C. Campos De Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro, Brazil,National Institute of Cardiology, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Waas M, Gundry RL. A call to adopt a "fit for purpose" approach to antibody validation for flow cytometry analyses of stem cell models and beyond. Am J Physiol Heart Circ Physiol 2019; 317:H954-H957. [PMID: 31559827 DOI: 10.1152/ajpheart.00347.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) can be exploited as models for a wide range of research applications and numerous protocols for generating hPSC-CMs have been described. However, it is currently not possible to direct differentiation to a single, homogeneous end point, and the resulting heterogeneity may be variable among laboratories, cell lines, and protocols. Consequently, the ability to assess phenotypic heterogeneity of the cell population is critical to the interpretation, repeatability, and reproduction of hPSC-CM studies. While flow cytometry is well suited for this purpose, a review of published literature reveals there is currently no consensus regarding which marker, antibody, or protocol is best suited to enable comparisons of hPSC-CM culture heterogeneity. Moreover, the lack of available experimental detail, combined with the variability in the approaches used for hPSC-CM evaluation, makes it challenging to reproduce, interpret, and compare published data. Consequently, this article calls for an alignment of the way researchers approach the routine use and documentation of the antibodies and controls used during flow cytometry-based assessment of hPSC-CM cultures. We advocate for the adoption of a "fit for purpose" validation mindset, whereby antibodies and experimental conditions are demonstrated as specific within a defined experimental design and biological context. Overall, we expect that by adhering to rigorous standards for antibody validation and use, reporting of experimental details, and presentation of data, the concepts emphasized here will promote enhanced utility and dialogue regarding hPSC-CM for a variety of research and translational applications by enabling more accurate comparisons of results among studies.
Collapse
Affiliation(s)
- Matthew Waas
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Rebekah L Gundry
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
7
|
Li J, Yin X, Luan Q. Comparative study of periodontal differentiation propensity of induced pluripotent stem cells from different tissue origins. J Periodontol 2018; 89:1230-1240. [PMID: 30039603 DOI: 10.1002/jper.18-0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Despite being almost identical to embryonic stem cells, induced pluripotent stem cells (iPSCs) have been shown to possess a residual somatic memory that favors their differentiation propensity into donor tissue. To further confirm this assumption, we compare for the first time the periodontal differentiation tendency of human gingival fibroblast-derived iPSCs (G-iPSCs) and human neonatal skin fibroblast-derived iPSCs (S-iPSCs) to assess whether G-iPSCs could be more efficiently induced toward periodontal cells. METHODS We induced G- and S-iPSCs under the treatment of growth/differentiation factor-5 and connective tissue growth factor, respectively, for 14 days. Immunofluorescence staining and real-time polymerase chain reaction were used to compare their expression levels of related markers. Furthermore, a hydrogel carrier was developed to seed these periodontal progenitors for subcutaneous implantation in non-obese diabetic-severe combined immunodeficiency disease mice. Their differentiated periodontal phenotype maintenance was further assayed by HE observation, immunohistochemical staining and immunofluorescence co-localization with pre-labeled PKH67. RESULTS As expected, both iPSCs were inclined to differentiate back into their original lineage by expressing higher markers at both gene and protein levels in vitro. HE observation of G-iPSCs-seeded hydrogel constructs present more mineralized structure formation than S-iPSCs-seeded ones. Immunohistochemical staining and immunofluorescence analysis also showed stronger positive staining for periodontal related markers in G-iPSCs-seeded hydrogel constructs. CONCLUSIONS Our results preliminarily confirmed that both G- and S-iPSCs were inclined to differentiate back into their original tissue in vitro. Animal study further confirmed the phenotype maintenance of periodontal differentiated G-iPSCs, which highlighted their significant implications for therapeutic use in periodontal regeneration.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Xiaohui Yin
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| |
Collapse
|
12
|
Martinez-Fernandez A, Nelson TJ, Reyes S, Alekseev AE, Secreto F, Perez-Terzic C, Beraldi R, Sung HK, Nagy A, Terzic A. iPS cell-derived cardiogenicity is hindered by sustained integration of reprogramming transgenes. ACTA ACUST UNITED AC 2014; 7:667-76. [PMID: 25077947 DOI: 10.1161/circgenetics.113.000298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Nuclear reprogramming inculcates pluripotent capacity by which de novo tissue differentiation is enabled. Yet, introduction of ectopic reprogramming factors may desynchronize natural developmental schedules. This study aims to evaluate the effect of imposed transgene load on the cardiogenic competency of induced pluripotent stem (iPS) cells. METHODS AND RESULTS Targeted inclusion and exclusion of reprogramming transgenes (c-MYC, KLF4, OCT4, and SOX2) was achieved using a drug-inducible and removable cassette according to the piggyBac transposon/transposase system. Pulsed transgene overexpression, before iPS cell differentiation, hindered cardiogenic outcomes. Delayed in counterparts with maintained integrated transgenes, transgene removal enabled proficient differentiation of iPS cells into functional cardiac tissue. Transgene-free iPS cells generated reproducible beating activity with robust expression of cardiac α-actinin, connexin 43, myosin light chain 2a, α/β-myosin heavy chain, and troponin I. Although operational excitation-contraction coupling was demonstrable in the presence or absence of transgenes, factor-free derivatives exhibited an expedited maturing phenotype with canonical responsiveness to adrenergic stimulation. CONCLUSIONS A disproportionate stemness load, caused by integrated transgenes, affects the cardiogenic competency of iPS cells. Offload of transgenes in engineered iPS cells ensures integrity of cardiac developmental programs, underscoring the value of nonintegrative nuclear reprogramming for derivation of competent cardiogenic regenerative biologics.
Collapse
Affiliation(s)
- Almudena Martinez-Fernandez
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.)
| | - Timothy J Nelson
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.)
| | - Santiago Reyes
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.)
| | - Alexey E Alekseev
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.)
| | - Frank Secreto
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.)
| | - Carmen Perez-Terzic
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.)
| | - Rosanna Beraldi
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.)
| | - Hoon-Ki Sung
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.)
| | - Andras Nagy
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.)
| | - Andre Terzic
- From the Center for Regenerative Medicine (A.M.-F., T.J.N., S.R., A.E.A., A.T.), Marriott Heart Disease Research Program, Division of Cardiovascular Diseases (A.M.-F., S.R., A.E.A., A.T.), and Department of Physical Medicine and Rehabilitation (C.P.-T.), General Internal Medicine and Transplant Center (T.J.N., F.S., R.B.), Mayo Clinic, Rochester, MN; and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada (H.-K.S., A.N.).
| |
Collapse
|