1
|
Wu TL, Wang BN, Yang AJ, Wang L, You YN, Zhou RQ. C-type lectin 4 of Toxocara canis activates NF-ĸB and MAPK pathways by modulating NOD1/2 and RIP2 in murine macrophages in vitro. Parasitol Res 2024; 123:189. [PMID: 38639821 DOI: 10.1007/s00436-024-08212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Toxocara canis is a parasitic zoonose that is distributed worldwide and is one of the two pathogens causing toxocariasis. After infection, it causes serious public health and safety problems, which pose significant veterinary and medical challenges. To better understand the regulatory effects of T. canis infection on the host immune cells, murine macrophages (RAW264.7) were incubated with recombinant T. canis C-type lectin 4 (rTc-CTL-4) protein in vitro. The quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to analyze the nucleotide-binding oligomerization domain-containing protein 1/2 (NOD1/2), receptor-interacting protein 2 (RIP2), nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK) on mRNA level and protein expression level in macrophages. Our results indicated that 10 μg/mL rTc-CTL-4 protein could modulate the expression of NOD1, NOD2, and RIP2 at both the transcriptional and translational levels. The protein translation levels of NF-κB, P-p65, p38, and P-p38 in macrophages were also modulated by rTc-CTL-4 protein. Macrophages were co-incubated with rTc-CTL-4 protein after siRNA silencing of NOD1, NOD2, and RIP2. The expression levels of NF-κB, P-p65, p38, and P-p38 were significantly changed compared with the negative control groups (Neg. Ctrl.). Taken together, rTc-CTL-4 protein seemed to act on NOD1/2-RIP2-NF-κB and MAPK signaling pathways in macrophages and might activate MAPK and NF-κB signaling pathways by regulating NOD1, NOD2, and RIP2. The insights from the above studies could contribute to our understanding of immune recognition and regulatory mechanisms of T. canis infection in the host animals.
Collapse
Affiliation(s)
- Tian-Le Wu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Bing-Nan Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Ai-Jia Yang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Lei Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Yi-Ning You
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Rong-Qiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
2
|
Elgendy DI, Elmahy RA, Amer AIM, Ibrahim HA, Eltantawy AF, Mansour FR, Salama AM. Efficacy of artemether against toxocariasis in mice: parasitological and immunopathological changes in brain, liver, and lung. Pathog Glob Health 2024; 118:47-64. [PMID: 37978995 PMCID: PMC10769145 DOI: 10.1080/20477724.2023.2285182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Toxocariasis is a zoonosis that represents a serious threat to public health particularly in tropical and subtropical areas. Currently, albendazole, the most effective drug for treating visceral toxocariasis, shows moderate efficacy against the larvae in tissues and has some adverse effects. Artemether is an antiparasitic drug mainly used in the treatment of malaria and showed effectiveness against numerous helminthic infections. Besides, it possesses potent anti-inflammatory, antiapoptotic, antifibrotic, and neuroprotective properties. Thus, the study's aim was to investigate artemether's effects in comparison with albendazole on the therapeutic outcome of experimental toxocariasis. For this aim, 140 laboratory-bred mice were divided into four main groups: uninfected control, treatment control, albendazole-treated, and artemether-treated groups. The treatment regimens were started at the 15th dpi (early treatment), and at the 35th dpi (late treatment). The effectiveness of treatment was determined by brain larval count, histopathological, immunohistochemical, and biochemical examination. Artemether showed more effectiveness than albendazole in reducing brain larval counts, markers of brain injury including NF-κB, GFAP, and caspase-3, the diameter and number of hepatic granulomas, hepatic oxidative stress, hepatic IL-6, and TG2 mRNA, and pulmonary inflammation and fibrosis. The efficacy of artemether was the same when administered early or late in the infection. Finally, our findings illustrated that artemether might be a promising therapy for T. canis infection and it could be a good substitution for albendazole in toxocariasis treatment.
Collapse
Affiliation(s)
- Dina I. Elgendy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rasha A. Elmahy
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Hoda A. Ibrahim
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Asmaa Fawzy Eltantawy
- Medical Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fotouh Rashed Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amina M. Salama
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Salama AM, Elmahy RA, Ibrahim HA, Amer AIM, Eltantawy AF, Elgendy DI. Effects of metformin on parasitological, pathological changes in the brain and liver and immunological aspects during visceral toxocariasis in mice. Parasitol Res 2023; 122:3213-3231. [PMID: 37874393 PMCID: PMC10667394 DOI: 10.1007/s00436-023-08011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
There are currently insufficient anthelmintic medications available for the treatment of toxocariasis. For instance, Albendazole (ABZ) is the preferred medication, but its effectiveness against tissue-dwelling parasites is limited. In addition, Metformin (MTF) is a widely used oral antidiabetic medication that is considered to be safe for treatment. This study aimed to investigate any potential effects of MTF, alone or in combination with ABZ, on mice infections caused by Toxocara canis (T. canis). The efficacy of the treatment was assessed in the acute and chronic phases of the infection by larval recovery and histopathological, immunohistochemical, and biochemical studies. The results showed that combined therapy significantly reduced larval counts in the liver, brain, and muscles and ameliorated hepatic and brain pathology. It reduced oxidative stress and TGF-β mRNA expression and increased FGF21 levels in the liver. It decreased TNF-α levels and MMP-9 expression in the brain. In addition, it increased serum levels of IL-12 and IFN-γ and decreased serum levels of IL-4 and IL-10. In the acute and chronic phases of the infection, the combined treatment was more effective than ABZ alone. In conclusion, this study highlights the potential role of MTF as an adjuvant in the treatment of experimental T. canis infection when administered with ABZ.
Collapse
Affiliation(s)
- Amina M Salama
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rasha A Elmahy
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Hoda A Ibrahim
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Asmaa Fawzy Eltantawy
- Medical Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina I Elgendy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
4
|
Prakash A, Medved J, Arneja A, Niebuhr C, Li AN, Tarrah S, Boscia AR, Burnett ED, Singh A, Salazar JE, Xu W, Santhanakrishnan M, Hendrickson JE, Luckey CJ. Class switching is differentially regulated in RBC alloimmunization and vaccination. Transfusion 2023; 63:826-838. [PMID: 36907655 PMCID: PMC10851675 DOI: 10.1111/trf.17301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Studies of human patients have shown that most anti-RBC alloantibodies are IgG1 or IgG3 subclasses, although it is unclear why transfused RBCs preferentially drive these subclasses over others. Though mouse models allow for the mechanistic exploration of class-switching, previous studies of RBC alloimmunization in mice have focused more on the total IgG response than the relative distribution, abundance, or mechanism of IgG subclass generation. Given this major gap, we compared the IgG subclass distribution generated in response to transfused RBCs relative to protein in alum vaccination, and determined the role of STAT6 in their generation. STUDY DESIGN AND METHODS WT mice were either immunized with Alum/HEL-OVA or transfused with HOD RBCs and levels of anti-HEL IgG subtypes were measured using end-point dilution ELISAs. To study the role of STAT6 in IgG class-switching, we first generated and validated novel STAT6 KO mice using CRISPR/cas9 gene editing. STAT6 KO mice were then transfused with HOD RBCs or immunized with Alum/HEL-OVA, and IgG subclasses were quantified by ELISA. RESULTS When compared with antibody responses to Alum/HEL-OVA, transfusion of HOD RBCs induced lower levels of IgG1, IgG2b, and IgG2c but similar levels of IgG3. Class switching to most IgG subtypes remained largely unaffected in STAT6 deficient mice in response to HOD RBC transfusion, with the one exception being IgG2b. In contrast, STAT6 deficient mice showed altered levels of all IgG subtypes following Alum vaccination. DISCUSSION Our results show that anti-RBC class-switching occurs via alternate mechanisms when compared with the well-studied immunogen alum vaccination.
Collapse
Affiliation(s)
- Anupam Prakash
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Jelena Medved
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Abhinav Arneja
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Conrad Niebuhr
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Andria N. Li
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Soraya Tarrah
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Alexis R. Boscia
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Emily D. Burnett
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Aanika Singh
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Juan E. Salazar
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Wenhao Xu
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Manjula Santhanakrishnan
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jeanne E. Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Chance John Luckey
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Abou-El-Naga IF, Mogahed NMFH. Potential roles of Toxocara canis larval excretory secretory molecules in immunomodulation and immune evasion. Acta Trop 2023; 238:106784. [PMID: 36502886 DOI: 10.1016/j.actatropica.2022.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
Toxocara canis larvae invade various tissues of different vertebrate species without developing into adults in paratenic host. The long-term survival of the larvae despite exposure to the well-armed immune response is a notable achievement. The larvae modulate the immune response to help the survival of both the host and the larvae. They skew the immune response to type 2/regulatory phenotype. The outstanding ability of the larvae to modulate the host immune response and to evade the immune arms is attributed to the secretion of Toxocara excretory-secretory products (TESPs). TESPs are complex mixture of differing molecules. The present review deals with the molecular composition of the TESPs, their interaction with the host molecules, their effect on the innate immune response, the receptor recognition, the downstream signals the adaptive immunity and the repair of tissues. This review also addresses the role of TESPs molecules in the immune evasion strategy and the potential effect of the induced immunomodulation in some diseases. Identification of parasite components that influence the nematode-host interactions could enhance understanding the molecular basis of nematode pathogenicity. Furthermore, the identification of helminths molecules with immunomodulatory potential could be used in immunotherapies for some diseases.
Collapse
Affiliation(s)
- Iman F Abou-El-Naga
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, 12 Abdel Hamid El Deeb Street, Tharwat, Alexandria, Egypt.
| | - Nermine M F H Mogahed
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, 12 Abdel Hamid El Deeb Street, Tharwat, Alexandria, Egypt
| |
Collapse
|
6
|
Oliveira MM, Bonturi CR, Salu BR, Oliva MLV, Mortara RA, Orikaza CM. Modulation of STAT-1, STAT-3, and STAT-6 activities in THP-1 derived macrophages infected with two Trypanosoma cruzi strains. Front Immunol 2022; 13:1038332. [PMID: 36389843 PMCID: PMC9643828 DOI: 10.3389/fimmu.2022.1038332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 12/03/2022] Open
Abstract
Trypanosoma cruzi is the causative protozoan of Chagas' Disease, a neglected tropical disease that affects 6-7 million people worldwide. Interaction of the parasite with the host immune system is a key factor in disease progression and chronic symptoms. Although the human immune system is capable of controlling the disease, the parasite has numerous evasion mechanisms that aim to maintain intracellular persistence and survival. Due to the pronounced genetic variability of T. cruzi, co-infections or mixed infections with more than one parasite strain have been reported in the literature. The intermodulation in such cases is unclear. This study aimed to evaluate the co-infection of T. cruzi strains G and CL compared to their individual infections in human macrophages derived from THP-1 cells activated by classical or alternative pathways. Flow cytometry analysis demonstrated that trypomastigotes were more infective than extracellular amastigotes (EAs) and that strain G could infect more macrophages than strain CL. Classically activated macrophages showed lower number of infected cells and IL-4-stimulated cells displayed increased CL-infected macrophages. However, co-infection was a rare event. CL EAs decreased the production of reactive oxygen species (ROS), whereas G trypomastigotes displayed increased ROS detection in classically activated cells. Co-infection did not affect ROS production. Monoinfection by strain G or CL mainly induced an anti-inflammatory cytokine profile by decreasing inflammatory cytokines (IFN-γ, TNF-α, IL-1β) and/or increasing IL-4, IL-10, and TGF-β. Co-infection led to a predominant inflammatory milieu, with reduced IL-10 and TGF-β, and/or promotion of IFN-γ and IL-1β release. Infection by strain G reduced activation of intracellular signal transducer and activator of transcription (STAT) factors. In EAs, monoinfections impaired STAT-1 activity and promoted phosphorylation of STAT-3, both changes may prolong cell survival. Coinfected macrophages displayed pronounced activation of all STATs examined. These activations likely promoted parasite persistence and survival of infected cells. The collective results demonstrate that although macrophages respond to both strains, T. cruzi can modulate the intracellular environment, inducing different responses depending on the strain, parasite infective form, and co-infection or monoinfection. The modulation influences parasite persistence and survival of infected cells.
Collapse
Affiliation(s)
- Melissa Martins Oliveira
- ¹Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Camila Ramalho Bonturi
- ²Biochemistry Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Bruno Ramos Salu
- ²Biochemistry Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Maria Luiza Vilela Oliva
- ²Biochemistry Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Renato Arruda Mortara
- ¹Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Cristina Mary Orikaza
- ¹Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| |
Collapse
|
7
|
Shehata O, Aboelhadid SM, Arafa WM, Moawad UK, Hussien KH, Ali MI, El-Ashram S, Gawad SSA, Abdel-Aziz SAA. Assessment of the efficacy of thymol against Toxocara vitulorum in experimentally infected rats. J Parasit Dis 2022; 46:454-465. [DOI: 10.1007/s12639-022-01465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/09/2022] [Indexed: 10/19/2022] Open
|
8
|
Borchard JL, Conrad NL, Pinto NB, Moura MQD, Berne MEA, Leite FPL. Acute and chronic immunomodulatory response mechanisms against Toxocara canis larvae infection in mice. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINÁRIA 2022. [DOI: 10.1590/s1984-29612022056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract The objective of this work was to evaluate the early and late immunological modulation of an experimental infection of T. canis larvae in mice. Mice were infected with 100 infective larvae and euthanized at different period: 24, 48 hours post infection (HPI), 15- and 30 days post infection (DPI). The humoral response was evaluated by indirect ELISA. Quantitative RT–PCR (qPCR) was used to quantify the mRNA transcription of cytokines IL4, IL10, IL12 and Ym1 in the early and late infection periods. Infection with T. canis was able to generate specific total IgG at 15- and 30- DPI. Analyzing the IgG isotype revealed a significant differentiation for IgG1 compared with IgG2a, IgG2b and IgG3, characterizing a Th-2 response. Evaluating the gene transcription at the early phase of infection, higher transcription levels of IL10, IL4 and Ym1 and a downregulation of IL12 were observed. By the late phase, increased transcription levels of IL4, Ym1 and IL12 were observed, and downregulation of IL-10 transcription was observed. The data obtained suggest that during experimental infection with T. canis, the participation of the IL4, IL10, IL12 cytokines and Ym1 can play an important role in T. canis immunomodulation.
Collapse
|
9
|
Identification of Toxocara canis Antigen-Interacting Partners by Yeast Two-Hybrid Assay and a Putative Mechanism of These Host-Parasite Interactions. Pathogens 2021; 10:pathogens10080949. [PMID: 34451413 PMCID: PMC8398310 DOI: 10.3390/pathogens10080949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 01/11/2023] Open
Abstract
Toxocara canis is a zoonotic roundworm that infects humans and dogs all over the world. Upon infection, larvae migrate to various tissues leading to different clinical syndromes. The host–parasite interactions underlying the process of infection remain poorly understood. Here, we describe the application of a yeast two-hybrid assay to screen a human cDNA library and analyse the interactome of T. canis larval molecules. Our data identifies 16 human proteins that putatively interact with the parasite. These molecules were associated with major biological processes, such as protein processing, transport, cellular component organisation, immune response and cell signalling. Some of these identified interactions are associated with the development of a Th2 response, neutrophil activity and signalling in immune cells. Other interactions may be linked to neurodegenerative processes observed during neurotoxocariasis, and some are associated with lung pathology found in infected hosts. Our results should open new areas of research and provide further data to enable a better understanding of this complex and underestimated disease.
Collapse
|
10
|
Abo-Aziza FAM, Zaki AKA, Alajaji AI, Al Barrak SM. Bone marrow mesenchymal stem cell co-adjuvant therapy with albendazole for managing Toxocara vitulorum-rat model. Vet World 2021; 14:347-363. [PMID: 33776300 PMCID: PMC7994112 DOI: 10.14202/vetworld.2021.347-363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022] Open
Abstract
Background and Aim: Toxocara vitulorum is a bovine intestinal nematode. Immune pictures following infection are conflicting and stopping anthelmintic albendazole treatment recording reversed liver abnormalities. The purpose of this work was to evaluate the therapeutic potential of bone marrow mesenchymal stem cells (BMMSCs) therapy, subsequent to albendazole administration in rats infected with T. vitulorum. Materials and Methods: The ultrasonographic and histopathological examinations as well as serum liver enzymes activity and the kinetics of recovery were investigated. The correlation of cell-mediated and humoral immune pictures was assessed by assaying immunoglobulins, splenocytes viability, phagocytic index, and Th1/Th2 cytokines. Results: The cultured BMMSCs counting were 4.21×104 cells/cm2 with 96.03% viability. Flow-cytometric analysis indicated positive CD90 (82%), CD105 (79%) and negative CD34 (0.37%), CD45 (0.42%), attesting to the suitability of the isolated BMMSCs for use in therapy. Transplantation of BMMSCs after albendazole administration significantly reduced the release of liver enzymes (p<0.05) indicating liver cellularity improvement. The ultrasonographic, macroscopic, and histopathological findings confirmed the biochemical results. Significant elevation in the levels of tumor necrosis factor (TNF)-α and interferon (INF)-γ with a decline in interleukin (IL)-4 was observed in the untreated model (p<0.05). However, albendazole treatment followed by BMMSCs therapy significantly lowered the release of TNF-α and INF-γ, associated with significant production of IL-4 and IL-10 (p<0.05). Conclusion: The final results indicated that the liver functions, histopathological findings, and immune parameters were aggravated after experimental T. vitulorum infection. Albendazole treatment followed by BMMSCs therapy was found to assist in regeneration of injured hepatic tissue. Besides, it appeared to modulate host defensive immune responses against T. vitulorum antigens. This work could define more clearly the events that manipulate the host immune, histopathological, and biochemical responses to minimize obstacles in using stem cell therapy in animal toxocariosis.
Collapse
Affiliation(s)
- Faten A M Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Cairo, Egypt
| | - Abdel Kader A Zaki
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Ahmed I Alajaji
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Saleh M Al Barrak
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
11
|
A Dual Role for Macrophages in Modulating Lung Tissue Damage/Repair during L2 Toxocara canis Infection. Pathogens 2019; 8:pathogens8040280. [PMID: 31810203 PMCID: PMC6963574 DOI: 10.3390/pathogens8040280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Macrophages that are classically activated (M1) through the IFN-γ/STAT1 signaling pathway have a major role in mediating inflammation during microbial and parasitic infections. In some cases, unregulated inflammation induces tissue damage. In helminth infections, alternatively activated macrophages (M2), whose activation occurs mainly via the IL-4/STAT6 pathway, have a major role in mediating protection against excessive inflammation, and has been associated with both tissue repair and parasite clearance. During the lung migratory stage of Toxocara canis, the roles of M1 and M2 macrophages in tissue repair remain unknown. To assess this, we orally infected wild-type (WT) and STAT1 and STAT6-deficient mice (STAT1-/- and STAT6-/-) with L2 T. canis, and evaluated the role of M1 or M2 macrophages in lung pathology. The absence of STAT1 favored an M2 activation pattern with Arg1, FIZZ1, and Ym1 expression, which resulted in parasite resistance and lung tissue repair. In contrast, the absence of STAT6 induced M1 activation and iNOS expression, which helped control parasitic infection but generated increased inflammation and lung pathology. Next, macrophages were depleted by intratracheally inoculating mice with clodronate-loaded liposomes. We found a significant reduction in alveolar macrophages that was associated with higher lung pathology in both WT and STAT1-/- mice; in contrast, STAT6-/- mice receiving clodronate-liposomes displayed less tissue damage, indicating critical roles of both macrophage phenotypes in lung pathology and tissue repair. Therefore, a proper balance between inflammatory and anti-inflammatory responses during T. canis infection is necessary to limit lung pathology and favor lung healing.
Collapse
|
12
|
Długosz E, Basałaj K, Zawistowska-Deniziak A. Cytokine production and signalling in human THP-1 macrophages is dependent on Toxocara canis glycans. Parasitol Res 2019; 118:2925-2933. [PMID: 31396715 PMCID: PMC6754358 DOI: 10.1007/s00436-019-06405-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022]
Abstract
The effect of Toxocara canis antigens on cytokine production by human THP-1 macrophages was studied in vitro. Toxocara Excretory–Secretory products (TES) and recombinant mucins (Tc-MUC-2, Tc-MUC-3, Tc-MUC-4, and Tc-MUC-5) as well as deglycosylated forms of these antigens were used in the study. TES products stimulated macrophages to produce the innate proinflammatory IL-1β, IL-6, and TNF-α cytokines regardless of the presence of glycans. Recombinant mucins induced glycan-dependent cytokine production. Sugar moieties led to at least 3-fold higher production of regulatory IL-10 as well as proinflammatory cytokines. The presence of glycans on mucins also affected the downstream signalling pathways in stimulated cells. The most prominent difference was noted in AKT and AMPK kinase activation. AKT phosphorylation was observed in cells stimulated with glycosylated mucins, whereas treatment with deglycosylated antigens led to AMPK phosphorylation. MAP kinase family members such as JNK and p38 and c-Jun transcription factor were phosphorylated in both cases what suggests that toll-like receptor signalling may be involved in mucin-treated macrophages. This pathway is however modified by other signalling molecules as only mucins containing intact sugars significantly induced the production of cytokines.
Collapse
Affiliation(s)
- Ewa Długosz
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Katarzyna Basałaj
- W. Stefański Institute of Parasitology, Twarda 51/55, 00-818, Warsaw, Poland
| | | |
Collapse
|
13
|
Role of Macrophages in the Repair Process during the Tissue Migrating and Resident Helminth Infections. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8634603. [PMID: 27648452 PMCID: PMC5014929 DOI: 10.1155/2016/8634603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/13/2016] [Accepted: 07/19/2016] [Indexed: 12/30/2022]
Abstract
The Th1/Th2/Th17 balance is a fundamental feature in the regulation of the inflammatory microenvironment during helminth infections, and an imbalance in this paradigm greatly contributes to inflammatory disorders. In some cases of helminthiasis, an initial Th1 response could occur during the early phases of infection (acute), followed by a Th2 response that prevails in chronic infections. During the late phase of infection, alternatively activated macrophages (AAMs) are important to counteract the inflammation caused by the Th1/Th17 response and larval migration, limiting damage and repairing the tissue affected. Macrophages are the archetype of phagocytic cells, with the primary role of pathogen destruction and antigen presentation. Nevertheless, other subtypes of macrophages have been described with important roles in tissue repair and immune regulation. These types of macrophages challenge the classical view of macrophages activated by an inflammatory response. The role of these subtypes of macrophages during helminthiasis is a controversial topic in immunoparasitology. Here, we analyze some of the studies regarding the role of AAMs in tissue repair during the tissue migration of helminths.
Collapse
|
14
|
Toxocara canis mucins among other excretory-secretory antigens induce in vitro secretion of cytokines by mouse splenocytes. Parasitol Res 2015; 114:3365-71. [PMID: 26044883 PMCID: PMC4537704 DOI: 10.1007/s00436-015-4561-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/27/2015] [Indexed: 12/16/2022]
Abstract
The effect of Toxocara larval antigens on cytokine secretion by mouse splenocytes was studied in vitro. Recombinant mucins were produced in Pichia pastoris yeast, and Toxocara excretory-secretory (TES) antigens were collected from in vitro culture of L2 larvae. Tc-MUC-2, Tc-MUC-3, Tc-MUC-4, and Tc-MUC-5 were expressed as glycoproteins and were specifically recognized by Toxocara canis-infected dog serum antibodies. Mouse splenocytes stimulated with recombinant mucins produced IL-5, IL-6, and TGF-β. Cell stimulation with whole TES products was more effective and resulted in secretion of IL-4, IL-5, IL-6, IL-10, and TGF-β and downregulation of TNF-α production. IFN-γ and IL-17 secretion was noted only after ConA treatment. Cells originating from infected animals produced significantly smaller amounts of these two cytokines compared to control cells, which suggests that Th1 and Th17 response in infected mice is strongly inhibited. However, splenocyte stimulation with both TES and ConA upregulated the production of IFN-γ and IL-17. This shows that TES antigens have strong immunomodulatory properties and are able to induce a broad range of effects on murine immune cells.
Collapse
|
15
|
Eid MM, El-Kowrany SI, Othman AA, El Gendy DI, Saied EM. Immunopathological changes in the brain of immunosuppressed mice experimentally infected with Toxocara canis. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:51-8. [PMID: 25748709 PMCID: PMC4384791 DOI: 10.3347/kjp.2015.53.1.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/09/2014] [Accepted: 10/20/2014] [Indexed: 11/25/2022]
Abstract
Toxocariasis is a soil-transmitted helminthozoonosis due to infection of humans by larvae of Toxocara canis. The disease could produce cognitive and behavioral disturbances especially in children. Meanwhile, in our modern era, the incidence of immunosuppression has been progressively increasing due to increased incidence of malignancy as well as increased use of immunosuppressive agents. The present study aimed at comparing some of the pathological and immunological alterations in the brain of normal and immunosuppressed mice experimentally infected with T. canis. Therefore, 180 Swiss albino mice were divided into 4 groups including normal (control) group, immunocompetent T. canis-infected group, immunosuppressed group (control), and immunosuppressed infected group. Infected mice were subjected to larval counts in the brain, and the brains from all mice were assessed for histopathological changes, astrogliosis, and IL-5 mRNA expression levels in brain tissues. The results showed that under immunosuppression, there were significant increase in brain larval counts, significant enhancement of reactive gliosis, and significant reduction in IL-5 mRNA expression. All these changes were maximal in the chronic stage of infection. In conclusion, the immunopathological alterations in the brains of infected animals were progressive over time, and were exaggerated under the effect of immunosuppression as did the intensity of cerebral infection.
Collapse
Affiliation(s)
- Mohamed M Eid
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Gharbiya, Egypt
| | - Samy I El-Kowrany
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Gharbiya, Egypt
| | - Ahmad A Othman
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Gharbiya, Egypt
| | - Dina I El Gendy
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Gharbiya, Egypt
| | - Eman M Saied
- Department of Pathology, Faculty of Medicine, Kafr El-Sheikh University, Egypt
| |
Collapse
|