1
|
Dinesh Babu KS, Janakiraman V, Palaniswamy H, Kasirajan L, Gomathi R, Ramkumar TR. A short review on sugarcane: its domestication, molecular manipulations and future perspectives. GENETIC RESOURCES AND CROP EVOLUTION 2022; 69:2623-2643. [PMID: 36159774 PMCID: PMC9483297 DOI: 10.1007/s10722-022-01430-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/11/2022] [Indexed: 06/16/2023]
Abstract
Sugarcane (Saccharum spp.) is a special crop plant that underwent anthropogenic evolution from a wild grass species to an important food, fodder, and energy crop. Unlike any other grass species which were selected for their kernels, sugarcane was selected for its high stem sucrose accumulation. Flowering in sugarcane is not favored since flowering diverts the stored sugar resources for the reproductive and developmental energy needs. Cultivars are vegetatively propagated and sugarcane breeding is still essentially focused on conventional methods, since the knowledge of sugarcane genetics has lagged that of other major crops. Cultivar improvement has been extremely challenging due to its polyploidy and aneuploidy nature derived from a few interspecific hybridizations between Saccharum officinarum and Saccharum spontaneum, revealing the coexistence of two distinct genome organization modes in the modern variety. Alongside implementation of modern agricultural techniques, generation of hybrid clones, transgenics and genome edited events will help to meet the ever-growing bioenergy needs. Additionally, there are two common biotechnological approaches to improve plant stress tolerance, which includes marker-assisted selection (MAS) and genetic transformation. During the past two decades, the use of molecular approaches has contributed greatly to a better understanding of the genetic and biochemical basis of plant stress-tolerance and in some cases, it led to the development of plants with enhanced tolerance to abiotic stress. Hence, this review mainly intends on the events that shaped the sugarcane as what it is now and what challenges ahead and measures taken to further improve its yield, production and maximize utilization to beat the growing demands.
Collapse
Affiliation(s)
| | - Vardhana Janakiraman
- Department of Biotechnology, Vels Institute of Science, Technology & Advanced studies (VISTAS), Chennai, TN 600117 India
| | - Harunipriya Palaniswamy
- Tissue Culture Laboratory, Division of Crop Improvement, ICAR‐Sugarcane Breeding Institute, Coimbatore, TN 641007 India
| | - Lakshmi Kasirajan
- Genomics Laboratory, Division of Crop Improvement, ICAR‐Sugarcane Breeding Institute, Coimbatore, TN 641007 India
| | - Raju Gomathi
- Plant Physiology Laboratory, Division of Crop Production, ICAR‐Sugarcane Breeding Institute, Coimbatore, TN 641007 India
| | - Thakku R. Ramkumar
- Agronomy Department, IFAS, University of Florida, Gainesville, FL 32611 USA
- Department of Biological Sciences, Delaware State University, Dover, DE 19001 USA
| |
Collapse
|
2
|
Ovrutska I. Aquaporins in regulation of plant protective responses to drought. UKRAINIAN BOTANICAL JOURNAL 2021. [DOI: 10.15407/ukrbotj78.03.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plasmolemma permeability is an integral indicator of the functional state of plant cells under stress. Aquaporins (AQPs), specialized transmembrane proteins that form water channels and play an important role in the adaptation of plants to adverse conditions and, in particular, to lack or excess of water, are involved in the formation of the response to drought. The main function of AQPs is to facilitate the movement of water across cell membranes and maintain aqueous cell homeostasis. Under stressful conditions, there is both an increase and decrease in the expression of individual aquaporin genes. Analysis of the data revealed differences in the expression of AQPs genes in stable and sensitive plant genotypes. It turned out that aquaporins in different stress-resistant varieties of the same species also respond differently to drought. The review provides brief information on the history of the discovery of aquaporins, the structure and function of these proteins, summarizes the latest information on the role of aquaporins in the regulation of metabolism and the response of plants to stressors, with particular emphasis on aquaporins in drought protection. The discovery and study of AQPs expands the possibilities of using genetic engineering methods for the selection of new plant species, in particular, more resistant to drought and salinization of the soil, as well as to increase their productivity. The use of aquaporins in biotechnology to improve drought resistance of various species has many prospects.
Collapse
|
3
|
Li X, Liu Q, Feng H, Deng J, Zhang R, Wen J, Dong J, Wang T. Dehydrin MtCAS31 promotes autophagic degradation under drought stress. Autophagy 2019; 16:862-877. [PMID: 31362589 PMCID: PMC7144882 DOI: 10.1080/15548627.2019.1643656] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Drought stress seriously affects crop yield, and the mechanism underlying plant resistance to drought stress via macroautophagy/autophagy is not clear. Here, we show that a dehydrin, Medicago truncatula MtCAS31 (cold acclimation-specific 31), a positive regulator of drought response, plays a key role in autophagic degradation. A GFP cleavage assay and treatment with an autophagy-specific inhibitor indicated that MtCAS31 participates in the autophagic degradation pathway and that overexpressing MtCAS31 promotes autophagy under drought stress. Furthermore, we discovered that MtCAS31 interacts with the autophagy-related protein ATG8a in the AIM-like motif YXXXI, supporting its function in autophagic degradation. In addition, we identified a cargo protein of MtCAS31, the aquaporin MtPIP2;7, by screening an M. truncatula cDNA library. We found that MtPIP2;7 functions as a negative regulator of drought response. Under drought stress, MtCAS31 facilitated the autophagic degradation of MtPIP2;7 and reduced root hydraulic conductivity, thus reducing water loss and improving drought tolerance. Taken together, our results reveal a novel function of dehydrins in promoting the autophagic degradation of proteins, which extends our knowledge of the function of dehydrins.Abbreviations: AIM: ATG8-interacting motif; ATG: autophagy-related; ATI1: ATG8-interacting protein1; BiFC: Biomolecular fluorescence complementation; CAS31: cold acclimation-specific 31; ConcA: concanamycin A; DSK2: dominant suppressor of KAR2; ER: endoplasmic reticulum; ERAD: ER-associated degradation; NBR1: next to BRCA1 gene 1; PM: plasma membrane; PIPs: plasma membrane intrinsic proteins; TALEN: transcription activator-like effector nuclease; TSPO: tryptophan-rich sensory protein/translocator; UPR: unfolded protein response; VC: vector control.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianwen Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Rongxue Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Research Institute, Ardmore, OK, USA
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Khan S, Thomas BR, de la Mata R, Randall MJ, Zhang W, Zwiazek JJ. Variation in Aquaporin and Physiological Responses Among Pinus contorta Families Under Different Moisture Conditions. PLANTS 2019; 8:plants8010013. [PMID: 30621354 PMCID: PMC6359517 DOI: 10.3390/plants8010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/22/2018] [Accepted: 12/31/2018] [Indexed: 01/05/2023]
Abstract
A population of eight open pollinated families of Pinus contorta was selected from sites varying in precipitation regimes and elevation to examine the possible role of aquaporins in adaptation to different moisture conditions. Five Pinus contorta aquaporins encoding PiconPIP2;1, PiconPIP2;2, PiconPIP2;3, PiconPIP1;2, and PiconTIP1;1 were cloned and detailed structural analyses were conducted to provide essential information that can explain their biological and molecular function. All five PiconAQPs contained hydrophilic aromatic/arginine selective filters to facilitate the transport of water. Transcript abundance patterns of PiconAQPs varied significantly across the P. contorta families under varying soil moisture conditions. The transcript abundance of five PiconPIPs remained unchanged under control and water-stress conditions in two families that originated from the sites with lower precipitation levels. These two families also displayed a different adaptive strategy of photosynthesis to cope with drought stress, which was manifested by reduced sensitivity in photosynthesis (maintaining the same rate) while exhibiting a reduction in stomatal conductance. In general, root:shoot ratios were not affected by drought stress, but some variation was observed between families. The results showed variability in drought coping mechanisms, including the expression of aquaporin genes and plant biomass allocation among eight families of Pinus contorta.
Collapse
Affiliation(s)
- Shanjida Khan
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB T6G 2E3, Canada.
| | - Barb R Thomas
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB T6G 2E3, Canada.
| | - Raul de la Mata
- Institut de Recerca i Tecnología Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain.
| | - Morgan J Randall
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB T6G 2E3, Canada.
| | - Wenqing Zhang
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB T6G 2E3, Canada.
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB T6G 2E3, Canada.
| |
Collapse
|
5
|
Ferreira THS, Tsunada MS, Bassi D, Araújo P, Mattiello L, Guidelli GV, Righetto GL, Gonçalves VR, Lakshmanan P, Menossi M. Sugarcane Water Stress Tolerance Mechanisms and Its Implications on Developing Biotechnology Solutions. FRONTIERS IN PLANT SCIENCE 2017; 8:1077. [PMID: 28690620 PMCID: PMC5481406 DOI: 10.3389/fpls.2017.01077] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/06/2017] [Indexed: 05/20/2023]
Abstract
Sugarcane is a unique crop with the ability to accumulate high levels of sugar and is a commercially viable source of biomass for bioelectricity and second-generation bioethanol. Water deficit is the single largest abiotic stress affecting sugarcane productivity and the development of water use efficient and drought tolerant cultivars is an imperative for all major sugarcane producing countries. This review summarizes the physiological and molecular studies on water deficit stress in sugarcane, with the aim to help formulate more effective research strategies for advancing our knowledge on genes and mechanisms underpinning plant response to water stress. We also overview transgenic studies in sugarcane, with an emphasis on the potential strategies to develop superior sugarcane varieties that improve crop productivity in drought-prone environments.
Collapse
Affiliation(s)
- Thais H. S. Ferreira
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Max S. Tsunada
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Denis Bassi
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Pedro Araújo
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Lucia Mattiello
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Giovanna V. Guidelli
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Germanna L. Righetto
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Vanessa R. Gonçalves
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | | | - Marcelo Menossi
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| |
Collapse
|
6
|
Ferreira THS, Tsunada MS, Bassi D, Araújo P, Mattiello L, Guidelli GV, Righetto GL, Gonçalves VR, Lakshmanan P, Menossi M. Sugarcane Water Stress Tolerance Mechanisms and Its Implications on Developing Biotechnology Solutions. FRONTIERS IN PLANT SCIENCE 2017; 8:1077. [PMID: 28690620 PMCID: PMC5481406 DOI: 10.3389/fpls.2017.01077/full 10.3389/fpls.2017.01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sugarcane is a unique crop with the ability to accumulate high levels of sugar and is a commercially viable source of biomass for bioelectricity and second-generation bioethanol. Water deficit is the single largest abiotic stress affecting sugarcane productivity and the development of water use efficient and drought tolerant cultivars is an imperative for all major sugarcane producing countries. This review summarizes the physiological and molecular studies on water deficit stress in sugarcane, with the aim to help formulate more effective research strategies for advancing our knowledge on genes and mechanisms underpinning plant response to water stress. We also overview transgenic studies in sugarcane, with an emphasis on the potential strategies to develop superior sugarcane varieties that improve crop productivity in drought-prone environments.
Collapse
Affiliation(s)
- Thais H. S. Ferreira
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Max S. Tsunada
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Denis Bassi
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Pedro Araújo
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Lucia Mattiello
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Giovanna V. Guidelli
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Germanna L. Righetto
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Vanessa R. Gonçalves
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | | | - Marcelo Menossi
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
- *Correspondence: Marcelo Menossi
| |
Collapse
|
7
|
McGaughey SA, Osborn HL, Chen L, Pegler JL, Tyerman SD, Furbank RT, Byrt CS, Grof CPL. Roles of Aquaporins in Setaria viridis Stem Development and Sugar Storage. FRONTIERS IN PLANT SCIENCE 2016; 7:1815. [PMID: 28018372 PMCID: PMC5147461 DOI: 10.3389/fpls.2016.01815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/17/2016] [Indexed: 05/29/2023]
Abstract
Setaria viridis is a C4 grass used as a model for bioenergy feedstocks. The elongating internodes in developing S. viridis stems grow from an intercalary meristem at the base, and progress acropetally toward fully expanded cells that store sugar. During stem development and maturation, water flow is a driver of cell expansion and sugar delivery. As aquaporin proteins are implicated in regulating water flow, we analyzed elongating and mature internode transcriptomes to identify putative aquaporin encoding genes that had particularly high transcript levels during the distinct stages of internode cell expansion and maturation. We observed that SvPIP2;1 was highly expressed in internode regions undergoing cell expansion, and SvNIP2;2 was highly expressed in mature sugar accumulating regions. Gene co-expression analysis revealed SvNIP2;2 expression was highly correlated with the expression of five putative sugar transporters expressed in the S. viridis internode. To explore the function of the proteins encoded by SvPIP2;1 and SvNIP2;2, we expressed them in Xenopus laevis oocytes and tested their permeability to water. SvPIP2;1 and SvNIP2;2 functioned as water channels in X. laevis oocytes and their permeability was gated by pH. Our results indicate that SvPIP2;1 may function as a water channel in developing stems undergoing cell expansion and SvNIP2;2 is a candidate for retrieving water and possibly a yet to be determined solute from mature internodes. Future research will investigate whether changing the function of these proteins influences stem growth and sugar yield in S. viridis.
Collapse
Affiliation(s)
- Samantha A. McGaughey
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, CallaghanNSW, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
| | - Hannah L. Osborn
- Australian Research Council Centre of Excellence for Translational Photosynthesis, College of Medicine, Biology and Environment, Australian National University, CanberraACT, Australia
| | - Lily Chen
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, CallaghanNSW, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, College of Medicine, Biology and Environment, Australian National University, CanberraACT, Australia
| | - Joseph L. Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, CallaghanNSW, Australia
| | - Stephen D. Tyerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
| | - Robert T. Furbank
- Australian Research Council Centre of Excellence for Translational Photosynthesis, College of Medicine, Biology and Environment, Australian National University, CanberraACT, Australia
| | - Caitlin S. Byrt
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, CallaghanNSW, Australia
| |
Collapse
|
8
|
Li H, Yao W, Fu Y, Li S, Guo Q. De novo assembly and discovery of genes that are involved in drought tolerance in Tibetan Sophora moorcroftiana. PLoS One 2015; 10:e111054. [PMID: 25559297 PMCID: PMC4283959 DOI: 10.1371/journal.pone.0111054] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022] Open
Abstract
Sophora moorcroftiana, a Leguminosae shrub species that is restricted to the arid and semi-arid regions of the Qinghai-Tibet Plateau, is an ecologically important foundation species and exhibits substantial drought tolerance in the Plateau. There are no functional genomics resources in public databases for understanding the molecular mechanism underlying the drought tolerance of S. moorcroftiana. Therefore, we performed a large-scale transcriptome sequencing of this species under drought stress using the Illumina sequencing technology. A total of 62,348,602 clean reads were obtained. The assembly of the clean reads resulted in 146,943 transcripts, including 66,026 unigenes. In the assembled sequences, 1534 transcription factors were identified and classified into 23 different common families, and 9040 SSR loci, from di- to hexa-nucleotides, whose repeat number is greater than five, were presented. In addition, we performed a gene expression profiling analysis upon dehydration treatment. The results indicated significant differences in the gene expression profiles among the control, mild stress and severe stress. In total, 4687, 5648 and 5735 genes were identified from the comparison of mild versus control, severe versus control and severe versus mild stress, respectively. Based on the differentially expressed genes, a Gene Ontology annotation analysis indicated many dehydration-relevant categories, including 'response to water 'stimulus' and 'response to water deprivation'. Meanwhile, the Kyoto Encyclopedia of Genes and Genomes pathway analysis uncovered some important pathways, such as 'metabolic pathways' and 'plant hormone signal transduction'. In addition, the expression patterns of 25 putative genes that are involved in drought tolerance resulting from quantitative real-time PCR were consistent with their transcript abundance changes as identified by RNA-seq. The globally sequenced genes covered a considerable proportion of the S. moorcroftiana transcriptome, and the expression results may be useful to further extend the knowledge on the drought tolerance of this plant species that survives under Plateau conditions.
Collapse
Affiliation(s)
- Huie Li
- Agricultural and Animal Husbandry College, Tibet University, Nyingchi, Tibet, China
| | - Weijie Yao
- Agricultural and Animal Husbandry College, Tibet University, Nyingchi, Tibet, China
- Key Laboratory of Forest Ecology in Tibet Plateau (Tibet University), Ministry of Education, Nyingchi, Tibet, China
- National Key Station for Field Scientific Observation & Experiment, Nyingchi, Tibet, China
| | - Yaru Fu
- Agricultural and Animal Husbandry College, Tibet University, Nyingchi, Tibet, China
- Key Laboratory of Forest Ecology in Tibet Plateau (Tibet University), Ministry of Education, Nyingchi, Tibet, China
- National Key Station for Field Scientific Observation & Experiment, Nyingchi, Tibet, China
| | - Shaoke Li
- Agricultural and Animal Husbandry College, Tibet University, Nyingchi, Tibet, China
- Key Laboratory of Forest Ecology in Tibet Plateau (Tibet University), Ministry of Education, Nyingchi, Tibet, China
- National Key Station for Field Scientific Observation & Experiment, Nyingchi, Tibet, China
| | - Qiqiang Guo
- Agricultural and Animal Husbandry College, Tibet University, Nyingchi, Tibet, China
- Key Laboratory of Forest Ecology in Tibet Plateau (Tibet University), Ministry of Education, Nyingchi, Tibet, China
- National Key Station for Field Scientific Observation & Experiment, Nyingchi, Tibet, China
- * E-mail:
| |
Collapse
|
9
|
Zhang D, Tong J, He X, Xu Z, Xu L, Wei P, Huang Y, Brestic M, Ma H, Shao H. A Novel Soybean Intrinsic Protein Gene, GmTIP2;3, Involved in Responding to Osmotic Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1237. [PMID: 26779248 PMCID: PMC4705450 DOI: 10.3389/fpls.2015.01237] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/20/2015] [Indexed: 05/19/2023]
Abstract
Water is essential for plant growth and development. Water deficiency leads to loss of yield and decreased crop quality. To understand water transport mechanisms in plants, we cloned and characterized a novel tonoplast intrinsic protein (TIP) gene from soybean with the highest similarity to TIP2-type from other plants, and thus designated GmTIP2;3. The protein sequence contains two conserved NPA motifs and six transmembrane domains. The expression analysis indicated that this gene was constitutively expressed in all detected tissues, with higher levels in the root, stem and pod, and the accumulation of GmTIP2;3 transcript showed a significant response to osmotic stresses, including 20% PEG6000 (polyethylene glycol) and 100 μM ABA (abscisic acid) treatments. The promoter-GUS (glucuronidase) activity analysis suggested that GmTIP2;3 was also expressed in the root, stem, and leaf, and preferentially expressed in the stele of root and stem, and the core promoter region was 1000 bp in length, located upstream of the ATG start codon. The GUS tissue and induced expression observations were consistent with the findings in soybean. In addition, subcellular localization showed that GmTIP2;3 was a plasma membrane-localized protein. Yeast heterologous expression revealed that GmTIP2;3 could improve tolerance to osmotic stress in yeast cells. Integrating these results, GmTIP2;3 might play an important role in response to osmotic stress in plants.
Collapse
Affiliation(s)
- Dayong Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
- *Correspondence: Dayong Zhang
| | - Jinfeng Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of SciencesNanjing, China
| | - Xiaolan He
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Zhaolong Xu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Ling Xu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Peipei Wei
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Yihong Huang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Marian Brestic
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
- Department of Plant Physiology, Slovak Agricultural UniversityNitra, Slovakia
| | - Hongxiang Ma
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Hongbo Shao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
- Key Laboratory of Coastal Biology and Bioresources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
- Hongbo Shao
| |
Collapse
|
10
|
Validation of novel reference genes for reverse transcription quantitative real-time PCR in drought-stressed sugarcane. ScientificWorldJournal 2014; 2014:357052. [PMID: 24987730 PMCID: PMC4060590 DOI: 10.1155/2014/357052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/20/2014] [Accepted: 04/21/2014] [Indexed: 12/22/2022] Open
Abstract
One of the most challenging aspects of RT-qPCR data analysis is the identification of reliable reference genes. Ideally, they should be neither induced nor repressed under different experimental conditions. To date, few reference genes have been adequately studied for sugarcane (Saccharum spp.) using statistical approaches. In this work, six candidate genes (αTUB, GAPDH, H1, SAMDC, UBQ, and 25S rRNA) were tested for gene expression normalization of sugarcane root tissues from drought-tolerant and -sensitive accessions after continuous dehydration (24 h). By undergoing different approaches (GeNorm, NormFinder, and BestKeeper), it was shown that most of them could be used in combinations for normalization purposes, with the exception of SAMDC. Nevertheless three of them (H1, αTUB, and GAPDH) were considered the most reliable reference genes. Their suitability as reference genes validated the expression profiles of two targets (AS and PFPα1), related to SuperSAGE unitags, in agreement with results revealed by previous in silico analysis. The other two sugarcane unitags (ACC oxidase and PIP1-1), after salt stress (100 mM NaCl), presented their expressions validated in the same way. In conclusion, these reference genes will be useful for dissecting gene expression in sugarcane roots under abiotic stress, especially in transcriptomic studies using SuperSAGE or RNAseq approaches.
Collapse
|