1
|
Haleem MIA, Gaballa MMS, El-Far AH, Taie HAA, Elshopakey GE. Mitigating impact of Glycyrrhiza glabra on virulent Newcastle disease virus challenge in chickens: clinical studies, histopathological alterations and molecular docking. Vet Res Commun 2024; 48:3823-3845. [PMID: 39316350 PMCID: PMC11538193 DOI: 10.1007/s11259-024-10530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Newcastle disease (ND) is widely regarded as one of the most virulent and destructive viral infections that create chaos in the poultry industry and cause widespread epidemics and consequentially debilitating economic losses on a global scale in terms of chicken products. The current experiment evaluates the protective effect of Glycyrrhiza glabra ( G. glabra) against the Newcastle disease virus (NDV) in chickens. Ninety (90) 1-day-old SPF chicks were treated according to ethical approval (BUFVTM 05-02-22) as follows (1) non-treated non-challenged control group; (2) NDV group: Challenged with genotype VII ND virus; and (3) LE/NDV group: Challenged with the virus and intermittently treated with powdered extract of G. glabra roots (LE) in drinking water (0.5 g/L) before and after viral challenge. RESULT The water medication of NDV-challenged chicks has resulted in a significant decrease in the severity of clinical symptoms, morbidity, and mortality rates, as well as the quantity of virus shed, compared with the NDV group. Treatment with LE has led to a significant reduction in serum ALT and AST activities, blood glucose level, urea, and creatinine, and significant restoration of serum proteins. In addition, the treatment has resulted in a decrease in MDA and NO levels, as well as an increase in T-SOD and catalase activities compared with untreated challenged chicks. LE decreased IFN-γ and TLR-3 gene expression in comparison with the NDV group. The treated challenged birds had fewer macroscopically detectable lesions in their respiratory, digestive, and lymphoid organs than the untreated challenged birds. Microscopically, the LE/NDV group exhibited mild to moderate pathological changes in the respiratory and digestive systems as well as lymphoid tissues, in contrast to the NDV group, which exhibited severe pathological changes. Furthermore, molecular docking assessment proved the efficacy of G. glabra against viral proliferation and invasion. CONCLUSION We concluded that Glycyrrhiza glabra powdered extract at a dose of 0.5 g/L drinking water can effectively mitigate the debilitating effects of Newcastle disease in chickens.
Collapse
Affiliation(s)
- Marwa I Abdel Haleem
- Department of Avian and Rabbit Diseases, Faculty of Veterinary Medicine, Benha University, Benha, 13736, Egypt
| | - Mohamed M S Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Benha, 13736, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour, University, Damanhour, 22511, Egypt
| | - Hanan A A Taie
- Plant Biochemistry Department, National Research Centre, 33 El-Bohouth St. (Former El- Tahrir St.), Dokki, Giza, 12622, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
2
|
Assar DH, Elhabashi N, Mokhbatly AAA, Ragab AE, Elbialy ZI, Rizk SA, Albalawi AE, Althobaiti NA, Al Jaouni S, Atiba A. Wound healing potential of licorice extract in rat model: Antioxidants, histopathological, immunohistochemical and gene expression evidences. Biomed Pharmacother 2021; 143:112151. [PMID: 34507115 DOI: 10.1016/j.biopha.2021.112151] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022] Open
Abstract
Wound healing is a public health concern. Licorice gained a great attention for its antioxidant and anti-inflammatory properties which expand its valuable effects as a herbal medicine. In this study, we pointed out to the wound healing potential and the mechanism by which licorice alcoholic extract can modulate cutaneous wound healing through immune, antioxidant, histopathological, immunohistochemical (IHC) and molecular studies. 24 Wister rats were assigned into 3 groups (n = 8 each); control group, topical and oral supplied groups. Licorice extract administration significantly increased total and differential leucocyte counts, phagocytic activity of neutrophils, antioxidant biomarkers as superoxide dismutase (SOD), glutathione peroxidase activities (GPx) and reduced glutathione (GSH) content with a notable reduction in oxidative stress marker malondialdehyde (MDA). Moreover, histopathological findings detected complete re-epithelialization with increasing collagen synthesis while IHC results revealed a significant enhancement in the expression of α-SMA, PDGFR-α, FGFR1 and Cytokeratin 14 in licorice treated groups compared with the control group. Licorice extract supplementation accelerated wound healing by increasing angiogenesis and collagen deposition through up-regulation of bFGF, VEGF and TGF-β gene expression levels compared with the control group. UPLC-PDA-MS/MS aided to authenticate the studied Glycyrrihza species and recognized 101 potential constituents that may be responsible for licorice-exhibited potentials. Based on our observations we concluded that licorice enhanced cutaneous wound healing via its free radical-scavenging potential, potent antioxidant activities, and anti-inflammatory actions. Therefore, licorice could be used as a potential alternative therapy for wound injury which could overcome the associated limitations of modern therapeutic products.
Collapse
Affiliation(s)
- Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Nagwan Elhabashi
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Abd-Allah A Mokhbatly
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Amany E Ragab
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Zizy I Elbialy
- Fish processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Sally A Rizk
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Aishah E Albalawi
- Faculty of Science, Department of Biology, University of Tabuk, Tabuk 47913, Saudi Arabia.
| | - Norah A Althobaiti
- Biology Department, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Al Quwaiiyah 19247, Saudi Arabia.
| | - Soad Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ayman Atiba
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| |
Collapse
|
3
|
Huan C, Xu Y, Zhang W, Guo T, Pan H, Gao S. Research Progress on the Antiviral Activity of Glycyrrhizin and its Derivatives in Liquorice. Front Pharmacol 2021; 12:680674. [PMID: 34295250 PMCID: PMC8290359 DOI: 10.3389/fphar.2021.680674] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
Liquorice is a traditional medicine. Triterpenoids such as glycyrrhizin and glycyrrhetinic acid are the main active constituents of liquorice. Studies have revealed that these compounds exert inhibitory effects on several viruses, including SARS-CoV-2. The main mechanisms of action of these compounds include inhibition of virus replication, direct inactivation of viruses, inhibition of inflammation mediated by HMGB1/TLR4, inhibition of β-chemokines, reduction in the binding of HMGB1 to DNA to weaken the activity of viruses, and inhibition of reactive oxygen species formation. We herein review the research progress on the antiviral effects of glycyrrhizin and its derivatives. In addition, we emphasise the significance of exploring unknown antiviral mechanisms, structural modifications, and drug combinations in future studies.
Collapse
Affiliation(s)
- Changchao Huan
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Yao Xu
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Wei Zhang
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Tingting Guo
- College of Medicine, Yangzhou University, Yangzhou, China
| | - Haochun Pan
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Song Gao
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| |
Collapse
|
4
|
Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol Ther 2020; 214:107618. [PMID: 32592716 PMCID: PMC7311916 DOI: 10.1016/j.pharmthera.2020.107618] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Safe and efficient drugs to combat the current COVID-19 pandemic are urgently needed. In this context, we have analyzed the anti-coronavirus potential of the natural product glycyrrhizic acid (GLR), a drug used to treat liver diseases (including viral hepatitis) and specific cutaneous inflammation (such as atopic dermatitis) in some countries. The properties of GLR and its primary active metabolite glycyrrhetinic acid are presented and discussed. GLR has shown activities against different viruses, including SARS-associated Human and animal coronaviruses. GLR is a non-hemolytic saponin and a potent immuno-active anti-inflammatory agent which displays both cytoplasmic and membrane effects. At the membrane level, GLR induces cholesterol-dependent disorganization of lipid rafts which are important for the entry of coronavirus into cells. At the intracellular and circulating levels, GLR can trap the high mobility group box 1 protein and thus blocks the alarmin functions of HMGB1. We used molecular docking to characterize further and discuss both the cholesterol- and HMG box-binding functions of GLR. The membrane and cytoplasmic effects of GLR, coupled with its long-established medical use as a relatively safe drug, make GLR a good candidate to be tested against the SARS-CoV-2 coronavirus, alone and in combination with other drugs. The rational supporting combinations with (hydroxy)chloroquine and tenofovir (two drugs active against SARS-CoV-2) is also discussed. Based on this analysis, we conclude that GLR should be further considered and rapidly evaluated for the treatment of patients with COVID-19.
Collapse
|
5
|
Hisham I, Ellakany HF, Selim AA, Abdalla MAM, Zain El-Abideen MA, Kilany WH, Ali A, Elbestawy AR. Comparative Pathogenicity of Duck Hepatitis A Virus-1 Isolates in Experimentally Infected Pekin and Muscovy Ducklings. Front Vet Sci 2020; 7:234. [PMID: 32671102 PMCID: PMC7326108 DOI: 10.3389/fvets.2020.00234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/06/2020] [Indexed: 01/08/2023] Open
Abstract
Duck hepatitis virus (DHV) has always been considered one of the threats endangering duck farming in Egypt since the 1960s. In the current study, suspected DHV samples (n = 30) were obtained from commercial Pekin, Mulard (hybrid), and Muscovy duck farms and backyards in Beheira, Alexandria, Gharbia, Kafr El-Sheikh, and Giza provinces between 2012 and 2017. Diseased 3–21-day-old ducklings showed a clinical history of high mortality rates and nervous signs. Samples were screened by RT-PCR targeting the 5′UTR region and VP1 gene. The PCR-confirmed samples (n = 7) were isolated via allantoic route inoculation onto 9-day-old specific-pathogen-free embryonated chicken eggs. Embryos showed stunting, subcutaneous hemorrhages, and liver necrotic greenish-yellow foci. Duck hepatitis A virus-1 (DHAV-1) isolates were genetically analyzed in comparison to other field and vaccine strains. Phylogenetic analyses of the full-length VP1 gene sequences revealed that the obtained DHAV-1 field isolates clustered into genetic group 4 alongside other Egyptian strains isolated during the same period (95.9–99.72% similarity). Amino acid substitutions in the carboxyl-terminal of VP1 (I180T, G184E, D193N, and M213I) were identified in two strains. Also, deletion mutation at I189 was detected in three DHAV-1 strains. Additionally, the two amino acid residues E205 and N235 were common among the isolated strains and other virulent DHAV-1 strains. Two DHAV-1 isolates originated from Pekin source were selected for conducting the comparative pathogenicity testing based on detected point mutations at C-terminus of VP1. We evaluated the pathogenicity of these isolates by investigating clinical signs, mortality rates, and gross pathological and microscopic lesions. The study revealed that experimentally infected Pekin and Muscovy ducklings showed similar clinical signs including squatting down, lateral recumbency, and spasmodic kicking. Muscovy showed milder pathological changes in the liver compared to Pekin ducklings. Histopathological findings supported the gross pathological lesions detected in both breeds. In conclusion, these data provide updated information on the genetic diversity and pathotyping of Egyptian DHAV-1 strains. To the best of our knowledge, this is the first report of comparative pathogenicity of recent DHAV-1 strains in Pekin and Muscovy ducklings in Egypt and the Middle East region.
Collapse
Affiliation(s)
- Islam Hisham
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute, Damanhour, Egypt
| | - Hany F Ellakany
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Abdullah A Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute, Giza, Egypt
| | - Mohammed A M Abdalla
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute, Damanhour, Egypt
| | - Mohamed A Zain El-Abideen
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute, Giza, Egypt
| | - Walid H Kilany
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute, Giza, Egypt
| | - Ahmed Ali
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
6
|
Karimani A, Heidarpour M, Moghaddam Jafari A. Protective effects of glycyrrhizin on sub-chronic diazinon-induced biochemical, hematological alterations and oxidative stress indices in male Wistar rats. Drug Chem Toxicol 2018; 42:300-308. [PMID: 30203683 DOI: 10.1080/01480545.2018.1497053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The aim of this study was to elucidate the protective effect of glycyrrhizin on diazinon-induced changes in body and organ weights, blood hematology, lipid profile, biochemistry parameters and tissue markers of oxidative stress in male Wistar rats over a 7-week period. Rats were orally given sublethal dose of diazinon (10 mg/kg daily; 0.008 LD50), while glycyrrhizin (25 mg kg-1 daily) was given alone or in combination with diazinon. At the end of 7th week, statistically significant decrease of pseudocholinesterase activity was detected when diazinon- and glycyrrhizin + diazinon-treated groups were compared to the control group. Diazinon treated rats showed weight loss and organ weight changes which were comparable to other groups. There was a statistically significance in hematological indices except mean corpuscular hemoglobin (MCH) when diazinon treated group was compared to glycyrrhizin + diazinon treated rats. Glycyrrhizin protected the liver and kidney from diazinon toxic effects with significantly decrease in serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase activities as well as ameliorated hepatic and renal function indices (such as bilirubin, total protein, albumin, BUN, creatinine glucose). In addition, glycyrrhizin minimized the hazardous effect of diazinon on plasma lipids and lipoproteins. The protective effects of glycyrrhizin were confirmed by tissue markers of oxidative stress analysis as glycyrrhizin in combination diminished malondialdehyde and glycyrrhizin alone or in combination enhanced thiol group and the ferric reducing power. In accordance to these results, our observations demonstrated the beneficial effects of glycyrrhizin in reducing the toxicity of diazinon.
Collapse
Affiliation(s)
- Asieh Karimani
- a Department of Toxicology, School of Veterinary Medicine , Ferdowsi University of Mashhad , Mashhad , Iran.,b Department of Pharmacodynamics and Toxicology, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Heidarpour
- c Department of Clinical Sciences, School of Veterinary Medicine , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Amir Moghaddam Jafari
- a Department of Toxicology, School of Veterinary Medicine , Ferdowsi University of Mashhad , Mashhad , Iran
| |
Collapse
|
7
|
Abstract
Viral hepatitis in poultry is a complex disease syndrome caused by several viruses belonging to different families including avian hepatitis E virus (HEV), duck hepatitis B virus (DHBV), duck hepatitis A virus (DHAV-1, -2, -3), duck hepatitis virus Types 2 and 3, fowl adenoviruses (FAdV), and turkey hepatitis virus (THV). While these hepatitis viruses share the same target organ, the liver, they each possess unique clinical and biological features. In this article, we aim to review the common and unique features of major poultry hepatitis viruses in an effort to identify the knowledge gaps and aid the prevention and control of poultry viral hepatitis. Avian HEV is an Orthohepevirus B in the family Hepeviridae that naturally infects chickens and consists of three distinct genotypes worldwide. Avian HEV is associated with hepatitis-splenomegaly syndrome or big liver and spleen disease in chickens, although the majority of the infected birds are subclinical. Avihepadnaviruses in the family of Hepadnaviridae have been isolated from ducks, snow geese, white storks, grey herons, cranes, and parrots. DHBV evolved with the host as a noncytopathic form without clinical signs and rarely progressed to chronicity. The outcome for DHBV infection varies by the host's ability to elicit an immune response and is dose and age dependent in ducks, thus mimicking the pathogenesis of human hepatitis B virus (HBV) infections and providing an excellent animal model for human HBV. DHAV is a picornavirus that causes a highly contagious virus infection in ducks with up to 100% flock mortality in ducklings under 6 wk of age, while older birds remain unaffected. The high morbidity and mortality has an economic impact on intensive duck production farming. Duck hepatitis virus Types 2 and 3 are astroviruses in the family of Astroviridae with similarity phylogenetically to turkey astroviruses, implicating the potential for cross-species infections between strains. Duck astrovirus (DAstV) causes acute, fatal infections in ducklings with a rapid decline within 1-2 hr and clinical and pathologic signs virtually indistinguishable from DHAV. DAstV-1 has only been recognized in the United Kingdom and recently in China, while DAstV-2 has been reported in ducks in the United States. FAdV, the causative agent of inclusion body hepatitis, is a Group I avian adenovirus in the genus Aviadenovirus. The affected birds have a swollen, friable, and discolored liver, sometimes with necrotic or hemorrhagic foci. Histologic lesions include multifocal necrosis of hepatocytes and acute hepatitis with intranuclear inclusion bodies in the nuclei of the hepatocytes. THV is a picornavirus that is likely the causative agent of turkey viral hepatitis. Currently there are more questions than answers about THV, and the pathogenesis and clinical impacts remain largely unknown. Future research in viral hepatic diseases of poultry is warranted to develop specific diagnostic assays, identify suitable cell culture systems for virus propagation, and develop effective vaccines.
Collapse
Affiliation(s)
- Danielle M Yugo
- A Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24061-0913
| | - Ruediger Hauck
- B Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - H L Shivaprasad
- C California Animal Health and Food Safety Laboratory System, University of California-Davis, Tulare, CA 93274
| | - Xiang-Jin Meng
- A Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24061-0913
| |
Collapse
|
8
|
YE SHAOJUN, ZHU YI, MING YINGZI, SHE XINGGUO, LIU HONG, YE QIFA. Glycyrrhizin protects mice against renal ischemia-reperfusion injury through inhibition of apoptosis and inflammation by downregulating p38 mitogen-activated protein kinase signaling. Exp Ther Med 2014; 7:1247-1252. [PMID: 24940420 PMCID: PMC3991492 DOI: 10.3892/etm.2014.1570] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/07/2014] [Indexed: 01/02/2023] Open
Abstract
Ischemia-reperfusion (I/R) often leads to acute kidney injury, chronic renal failure and kidney transplantation failure. Glycyrrhizin is extracted from Glycyrrhiza glabra roots and is the predominant active component, which exhibits anti-inflammatory effects. However, to the best of our knowledge, the effect of glycyrrhizin on I/R-induced renal injury has not been investigated. In the present study, glycyrrhizin was demonstrated to attenuate renal I/R injury in mice via administration of glycyrrhizin, which suppressed the serum levels of creatinine and blood urea nitrogen 6 h following reperfusion; furthermore, the superoxide anions as well as the activity of superoxide dismutase within renal tissues was reduced by glycyrrhizin pretreatment. Moreover, the protein level of cleaved caspase-3, as well as its activity in renal tissue, was suppressed as a result of the glycyrrhizin pretreatment, indicating that glycyrrhizin inhibits I/R-induced renal cell apoptosis. In addition, glycyrrhizin pretreatment appeared to ameliorate I/R-induced renal injury via inhibition of inflammatory cell infiltration, as well as the production of pro-inflammatory cytokines, including tumor necrosis factor-α, interferon-γ, interleukin (IL)-1β and IL-6. The underlying molecular mechanism was investigated and it was shown that the activity of p38 mitogen-activated protein kinase signaling was downregulated as a result of glycyrrhizin administration. In conclusion, the present study indicated that glycyrrhizin provided significant protection against I/R-induced renal injury in mice by inhibiting inflammatory responses and renal cell apoptosis. Therefore, glycyrrhizin may be used in abdominal surgery and kidney transplantation for the prevention of renal I/R damage.
Collapse
Affiliation(s)
- SHAOJUN YE
- Research Center of the Chinese Health Ministry on Transplantation Medicine Engineering and Technology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - YI ZHU
- Research Center of the Chinese Health Ministry on Transplantation Medicine Engineering and Technology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - YINGZI MING
- Research Center of the Chinese Health Ministry on Transplantation Medicine Engineering and Technology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - XINGGUO SHE
- Research Center of the Chinese Health Ministry on Transplantation Medicine Engineering and Technology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - HONG LIU
- Research Center of the Chinese Health Ministry on Transplantation Medicine Engineering and Technology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - QIFA YE
- Research Center of the Chinese Health Ministry on Transplantation Medicine Engineering and Technology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|