1
|
Scott GY, Worku D. HIV vaccination: Navigating the path to a transformative breakthrough-A review of current evidence. Health Sci Rep 2024; 7:e70089. [PMID: 39319247 PMCID: PMC11420300 DOI: 10.1002/hsr2.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Background and Aim Human immunodeficiency virus (HIV) remains a significant global health challenge, with approximately 39 million people living with HIV worldwide as of 2022. Despite progress in antiretroviral therapy, achieving the UNAIDS "95-95-95" target to end the HIV epidemic by 2025 faces challenges, particularly in sub-Saharan Africa. The pursuit of an HIV vaccine is crucial, offering durable immunity and the potential to end the epidemic. Challenges in vaccine development include the lack of known immune correlates, suitable animal models, and HIV's high mutation rate. This study aims to explore the current state of HIV vaccine development, focusing on the challenges and innovative approaches being investigated. Methods In writing this review, we conducted a search of medical databases such as PubMed, ResearchGate, Web of Science, Google Scholar, and Scopus. The exploration of messenger ribonucleic acid vaccines, which have proven successful in the SARS-CoV-2 pandemic, presents a promising avenue for HIV vaccine development. Understanding HIV-1's ability to infiltrate various bodily compartments, establish reservoirs, and manipulate immune responses is critical. Robust cytotoxic T lymphocytes and broadly neutralizing antibodies are identified as key components, though their production faces challenges. Innovative approaches, including computational learning and advanced drug delivery systems, are being investigated to effectively activate the immune system. Results and Conclusions Discrepancies between animal models and human responses have hindered the progress of vaccine development. Despite these challenges, ongoing research is focused on overcoming these obstacles through advanced methodologies and technologies. Addressing the challenges in HIV vaccine development is paramount to realizing an effective HIV-1 vaccine and achieving the goal of ending the epidemic. The integration of innovative approaches and a deeper understanding of HIV-1's mechanisms are essential steps toward this transformative breakthrough.
Collapse
Affiliation(s)
- Godfred Yawson Scott
- Department of Medical DiagnosticsKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Dominic Worku
- Infectious Diseases DepartmentMorriston Hospital, Heol Maes EglwysMorristonUnited Kingdom
- Public Health WalesCardiffUnited Kingdom
| |
Collapse
|
2
|
Heggi MT, Nour El-Din HT, Morsy DI, Abdelaziz NI, Attia AS. Microbial evasion of the complement system: a continuous and evolving story. Front Immunol 2024; 14:1281096. [PMID: 38239357 PMCID: PMC10794618 DOI: 10.3389/fimmu.2023.1281096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
The complement system is a fundamental part of the innate immune system that plays a key role in the battle of the human body against invading pathogens. Through its three pathways, represented by the classical, alternative, and lectin pathways, the complement system forms a tightly regulated network of soluble proteins, membrane-expressed receptors, and regulators with versatile protective and killing mechanisms. However, ingenious pathogens have developed strategies over the years to protect themselves from this complex part of the immune system. This review briefly discusses the sequence of the complement activation pathways. Then, we present a comprehensive updated overview of how the major four pathogenic groups, namely, bacteria, viruses, fungi, and parasites, control, modulate, and block the complement attacks at different steps of the complement cascade. We shed more light on the ability of those pathogens to deploy more than one mechanism to tackle the complement system in their path to establish infection within the human host.
Collapse
Affiliation(s)
- Mariam T. Heggi
- Clinical Pharmacy Undergraduate Program, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanzada T. Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Ahmed S. Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Herd CL, Mellet J, Mashingaidze T, Durandt C, Pepper MS. Consequences of HIV infection in the bone marrow niche. Front Immunol 2023; 14:1163012. [PMID: 37497228 PMCID: PMC10366613 DOI: 10.3389/fimmu.2023.1163012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Dysregulation of the bone marrow niche resulting from the direct and indirect effects of HIV infection contributes to haematological abnormalities observed in HIV patients. The bone marrow niche is a complex, multicellular environment which functions primarily in the maintenance of haematopoietic stem/progenitor cells (HSPCs). These adult stem cells are responsible for replacing blood and immune cells over the course of a lifetime. Cells of the bone marrow niche support HSPCs and help to orchestrate the quiescence, self-renewal and differentiation of HSPCs through chemical and molecular signals and cell-cell interactions. This narrative review discusses the HIV-associated dysregulation of the bone marrow niche, as well as the susceptibility of HSPCs to infection by HIV.
Collapse
|
4
|
Masenga SK, Mweene BC, Luwaya E, Muchaili L, Chona M, Kirabo A. HIV-Host Cell Interactions. Cells 2023; 12:1351. [PMID: 37408185 DOI: 10.3390/cells12101351] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The development of antiretroviral drugs (ARVs) was a great milestone in the management of HIV infection. ARVs suppress viral activity in the host cell, thus minimizing injury to the cells and prolonging life. However, an effective treatment has remained elusive for four decades due to the successful immune evasion mechanisms of the virus. A thorough understanding of the molecular interaction of HIV with the host cell is essential in the development of both preventive and curative therapies for HIV infection. This review highlights several inherent mechanisms of HIV that promote its survival and propagation, such as the targeting of CD4+ lymphocytes, the downregulation of MHC class I and II, antigenic variation and an envelope complex that minimizes antibody access, and how they collaboratively render the immune system unable to mount an effective response.
Collapse
Affiliation(s)
- Sepiso K Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Bislom C Mweene
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Emmanuel Luwaya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Lweendo Muchaili
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Makondo Chona
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Annet Kirabo
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| |
Collapse
|
5
|
van Heuvel Y, Schatz S, Rosengarten JF, Stitz J. Infectious RNA: Human Immunodeficiency Virus (HIV) Biology, Therapeutic Intervention, and the Quest for a Vaccine. Toxins (Basel) 2022; 14:toxins14020138. [PMID: 35202165 PMCID: PMC8876946 DOI: 10.3390/toxins14020138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Different mechanisms mediate the toxicity of RNA. Genomic retroviral mRNA hijacks infected host cell factors to enable virus replication. The viral genomic RNA of the human immunodeficiency virus (HIV) encompasses nine genes encoding in less than 10 kb all proteins needed for replication in susceptible host cells. To do so, the genomic RNA undergoes complex alternative splicing to facilitate the synthesis of the structural, accessory, and regulatory proteins. However, HIV strongly relies on the host cell machinery recruiting cellular factors to complete its replication cycle. Antiretroviral therapy (ART) targets different steps in the cycle, preventing disease progression to the acquired immunodeficiency syndrome (AIDS). The comprehension of the host immune system interaction with the virus has fostered the development of a variety of vaccine platforms. Despite encouraging provisional results in vaccine trials, no effective vaccine has been developed, yet. However, novel promising vaccine platforms are currently under investigation.
Collapse
Affiliation(s)
- Yasemin van Heuvel
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Stefanie Schatz
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Jamila Franca Rosengarten
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Jörn Stitz
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Correspondence:
| |
Collapse
|
6
|
The function of adipsin and C9 protein in the complement system in HIV-associated preeclampsia. Arch Gynecol Obstet 2021; 304:1467-1473. [PMID: 33881585 DOI: 10.1007/s00404-021-06069-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/09/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE In preeclampsia, there are excessive complement components expressed due to increased complement activation; therefore, this study investigated the concentration of adipsin and C9 in HIV-associated preeclampsia. METHOD The study population (n = 76) was stratified by pregnancy type (normotensive pregnant and preeclampsia) and by HIV status. Serum was assayed for the concentration of adipsin and C9 using a Bioplex immunoassay procedure. RESULTS Maternal weight did not differ (p = 0.1196) across the study groups. The concentration of adipsin was statistically different between the PE vs normotensive pregnant groups, irrespective of HIV status (p = 0.0439). There was no significant difference in adipsin concentration between HIV-negative vs HIV-positive groups, irrespective of pregnancy type (p = 0.6290). Additionally, there was a significant difference in adipsin concentration between HIV-negative normotensive vs HIV-negative preeclampsia (p < 0.05), as well as a difference between HIV-negative preeclampsia vs HIV-positive preeclampsia (p < 0.05). C9 protein expression was not statistically different between the normotensive and PE groups, regardless of HIV status (p = 0.5365). No statistical significance in C9 expression was found between HIV-positive vs HIV-negative groups, regardless of pregnancy type (p = 0.3166). Similarly, no statistical significance was noted across all study groups (p = 0.0774). CONCLUSION This study demonstrates that there is a strong correlation between the up-regulation of adipsin and PE and that adipsin is a promising biomarker to use as a diagnostic tool for PE.
Collapse
|
7
|
Dai X, Hakizimana O, Zhang X, Kaushik AC, Zhang J. Orchestrated efforts on host network hijacking: Processes governing virus replication. Virulence 2021; 11:183-198. [PMID: 32050846 PMCID: PMC7051146 DOI: 10.1080/21505594.2020.1726594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With the high pervasiveness of viral diseases, the battle against viruses has never ceased. Here we discuss five cellular processes, namely "autophagy", "programmed cell death", "immune response", "cell cycle alteration", and "lipid metabolic reprogramming", that considerably guide viral replication after host infection in an orchestrated manner. On viral infection, "autophagy" and "programmed cell death" are two dynamically synchronized cell survival programs; "immune response" is a cell defense program typically suppressed by viruses; "cell cycle alteration" and "lipid metabolic reprogramming" are two altered cell housekeeping programs tunable in both directions. We emphasize on their functionalities in modulating viral replication, strategies viruses have evolved to tune these processes for their benefit, and how these processes orchestrate and govern cell fate upon viral infection. Understanding how viruses hijack host networks has both academic and industrial values in providing insights toward therapeutic strategy design for viral disease control, offering useful information in applications that aim to use viral vectors to improve human health such as gene therapy, and providing guidelines to maximize viral particle yield for improved vaccine production at a reduced cost.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | - Xuanhao Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Aman Chandra Kaushik
- School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Jianying Zhang
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Department of Biological Sciences, University of Texas at El Paso, EI Paso, TX, USA
| |
Collapse
|
8
|
Nainu F, Abidin RS, Bahar MA, Frediansyah A, Emran TB, Rabaan AA, Dhama K, Harapan H. SARS-CoV-2 reinfection and implications for vaccine development. Hum Vaccin Immunother 2020; 16:3061-3073. [PMID: 33393854 PMCID: PMC8641611 DOI: 10.1080/21645515.2020.1830683] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/07/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic continues to constitute a public health emergency of international concern. Multiple vaccine candidates for COVID-19, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have entered clinical trials. However, some evidence suggests that patients who have recovered from COVID-19 can be reinfected. For example, in China, two discharged COVID-19 patients who had recovered and fulfilled the discharge criteria for COVID-19 were retested positive to a reverse transcription polymerase chain reaction (RT-PCR) assay for the virus. This finding is critical and could hamper COVID-19 vaccine development. This review offers literature-based evidence of reinfection with SARS-CoV-2, provides explanation for the possibility of SARS-CoV-2 reinfection both from the agent and host points of view, and discusses its implication for COVID-19 vaccine development.
Collapse
Affiliation(s)
- Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, 90245, Tamalanrea, Makassar, Indonesia
| | - Rufika Shari Abidin
- Faculty of Medicine, Hasanuddin University, 90245, Tamalanrea, Makassar, Indonesia
| | - Muh. Akbar Bahar
- Faculty of Pharmacy, Hasanuddin University, 90245, Tamalanrea, Makassar, Indonesia
| | - Andri Frediansyah
- Research Division for Natural Product Technology (BPTBA), Indonesian Institute of Sciences (LIPI), 55861, Wonosari, Indonesia
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, 72076, Tübingen, Germany
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, 4381, Chittagong, Bangladesh
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, 31311, Dhahran, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, 243122, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, 23111, Banda Aceh, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, 23111, Banda Aceh, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, 23111, Banda Aceh, Indonesia
| |
Collapse
|
9
|
Hò GGT, Hiemisch W, Pich A, Behrens GMN, Blasczyk R, Bade-Doeding C. The Loss of HLA-F/KIR3DS1 Ligation Is Mediated by Hemoglobin Peptides. Int J Mol Sci 2020; 21:ijms21218012. [PMID: 33126487 PMCID: PMC7672607 DOI: 10.3390/ijms21218012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
The human leukocyte antigen (HLA)-Ib molecule, HLA-F, is known as a CD4+ T-cell protein and mediator of HIV progression. While HLA-Ia molecules do not have the chance to select and present viral peptides for immune recognition due to protein downregulation, HLA-F is upregulated. Post HIV infection, HLA-F loses the affinity to its activating receptor KIR3DS1 on NK cells leading to progression of the HIV infection. Several studies aimed to solve the question of the biophysical interface between HLA ligands and their cognate receptors. It became clear that even an invariant HLA molecule can be structurally modified by the variability of the bound peptide. We recently discovered the ability of HLA-F to select and present peptides and the HLA-F allele-specific peptide selection from the proteomic content using soluble HLA (sHLA) technology and a sophisticated MS method. We established recombinant K562 cells that express membrane-bound HLA-F*01:01, 01:03 or 01:04 complexes. While a recombinant soluble form of KIR3DS1 did not bind to the peptide-HLA-F complexes, acid elution of the peptides resulted in the presentation of HLA-F open conformers, and the binding of the soluble KIR3DS1 receptor increased. We used CD4+/HIV− and CD4+/HIV+ cells and performed an MS proteome analysis. We could detect hemoglobin as significantly upregulated in CD4+ T-cells post HIV infection. The expression of cellular hemoglobin in nonerythroid cells has been described, yet HLA-Ib presentation of hemoglobin-derived peptides is novel. Peptide sequence analysis from HLA-F allelic variants featured hemoglobin peptides as dominant and shared. The reciprocal experiment of binding hemoglobin peptide fractions to the HLA-F open conformers resulted in significantly diminished receptor recognition. These results underpin the molecular involvement of HLA-F and its designated peptide ligand in HIV immune escape.
Collapse
Affiliation(s)
- Gia-Gia T. Hò
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (G.-G.T.H.); (W.H.); (R.B.)
| | - Wiebke Hiemisch
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (G.-G.T.H.); (W.H.); (R.B.)
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Georg M. N. Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
- German Center for Infections Research, partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (G.-G.T.H.); (W.H.); (R.B.)
| | - Christina Bade-Doeding
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (G.-G.T.H.); (W.H.); (R.B.)
- Correspondence: ; Tel.: +49-511-532-9744; Fax: +49-511-532-2079
| |
Collapse
|
10
|
Sherburn R, Tolbert WD, Gottumukkala S, Beaudoin-Bussières G, Finzi A, Pazgier M. Effects of gp120 Inner Domain (ID2) Immunogen Doses on Elicitation of Anti-HIV-1 Functional Fc-Effector Response to C1/C2 (Cluster A) Epitopes in Mice. Microorganisms 2020; 8:microorganisms8101490. [PMID: 32998443 PMCID: PMC7650682 DOI: 10.3390/microorganisms8101490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 01/13/2023] Open
Abstract
Fc-mediated effector functions of antibodies, including antibody-dependent cytotoxicity (ADCC), have been shown to contribute to vaccine-induced protection from HIV-1 infection, especially those directed against non-neutralizing, CD4 inducible (CD4i) epitopes within the gp120 constant 1 and 2 regions (C1/C2 or Cluster A epitopes). However, recent passive immunization studies have not been able to definitively confirm roles for these antibodies in HIV-1 prevention mostly due to the complications of cross-species Fc–FcR interactions and suboptimal dosing strategies. Here, we use our stabilized gp120 Inner domain (ID2) immunogen that displays the Cluster A epitopes within a minimal structural unit of HIV-1 Env to investigate an immunization protocol that induces a fine-tuned antibody repertoire capable of an effective Fc-effector response. This includes the generation of isotypes and the enhanced antibody specificity known to be vital for maximal Fc-effector activities, while minimizing the induction of isotypes know to be detrimental for these functions. Although our studies were done in in BALB/c mice we conclude that when optimally titrated for the species of interest, ID2 with GLA-SE adjuvant will elicit high titers of antibodies targeting the Cluster A region with potent Fc-mediated effector functions, making it a valuable immunogen candidate for testing an exclusive role of non-neutralizing antibody response in HIV-1 protection in vaccine settings.
Collapse
Affiliation(s)
- Rebekah Sherburn
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
| | - William D. Tolbert
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
| | - Suneetha Gottumukkala
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
| | | | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (G.B.-B.); (A.F.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
- Correspondence: ; Tel.: +301-295-3291; Fax: +301-295-355
| |
Collapse
|
11
|
de Carvalho Lima EN, Lima RSA, Arif MS, Piqueira JRC, Diaz RS. Evolutive Temporal Footprint of an HIV-1 Envelope Protein in an Epidemiologically Linked Cluster. Open AIDS J 2020. [DOI: 10.2174/1874613602014010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
The C2V3C3 region of gp 120, encoded by the HIV-1 envelope gene (env), is an important antigenic target, a key determinant for viral evolution and essential for determining epitopes for vaccines.
Methods:
The relationships among genetic sequence diversity, selective pressure, constraints on HIV-1 envelope protein were explored and also correlated this analysis with information entropy; hypermutation; HIV tropism; CD4+ T cell counts or HIV viral load. A total of 179 HIV-1 C2V3C3 sequences derived from cell-free plasma were used, determined from serial samples, in four epidemiologically linked individuals (one infected blood donor, two transfusion recipients and a sexual partner infected by one of the recipients) over a maximum period of 8 years. This study is important because it considers the analysis of patterns in genomic sequences, without drugs and over time.
Results:
A temporal relationship among information entropy, hypermutation, tropism switch, viral load, and CD4+ T cell count was determined. Changes in information entropy were time-dependent, and an increase in entropy was observed in the C2V3C3 region at amino acids G313 and F317-I320 (related to the GPGR-motif and coreceptor tropism), and at amino acids A281 in C2 and A346 in C3, related to immune escape.
Conclusion:
The increase of information entropy over time was correlated with hypermutation and the emergence of nonR5- strains, which are both associated with more variable genomes.
Collapse
|
12
|
Nahand JS, Bokharaei-Salim F, Karimzadeh M, Moghoofei M, Karampoor S, Mirzaei HR, Tbibzadeh A, Jafari A, Ghaderi A, Asemi Z, Mirzaei H, Hamblin MR. MicroRNAs and exosomes: key players in HIV pathogenesis. HIV Med 2020; 21:246-278. [PMID: 31756034 PMCID: PMC7069804 DOI: 10.1111/hiv.12822] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES HIV infection is well known to cause impairment of the human immune system, and until recently was a leading cause of death. It has been shown that T lymphocytes are the main targets of HIV. The virus inactivates T lymphocytes by interfering with a wide range of cellular and molecular targets, leading to suppression of the immune system. The objective of this review is to investigate to what extent microRNAs (miRNAs) are involved in HIV pathogenesis. METHODS The scientific literature (Pubmed and Google scholar) for the period 1988-2019 was searched. RESULTS Mounting evidence has revealed that miRNAs are involved in viral replication and immune response, whether by direct targeting of viral transcripts or through indirect modulation of virus-related host pathways. In addition, exosomes have been found to act as nanoscale carriers involved in HIV pathogenesis. These nanovehicles target their cargos (i.e. DNA, RNA, viral proteins and miRNAs) leading to alteration of the behaviour of recipient cells. CONCLUSIONS miRNAs and exosomes are important players in HIV pathogenesis. Additionally, there are potential diagnostic applications of miRNAs as biomarkers in HIV infection.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Tbibzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| |
Collapse
|
13
|
Sadat Larijani M, Sadat SM, Bolhassani A, Ramezani A. A Shot at Dendritic Cell-Based Vaccine Strategy against HIV-1. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2019. [DOI: 10.29252/jommid.7.4.89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
14
|
Mazarzaei A, Vafaei M, Ghasemian A, Mirforughi SA, Rajabi Vardanjani H, Alwan NAS. Memory and CAR-NK cell-based novel approaches for HIV vaccination and eradication. J Cell Physiol 2019; 234:14812-14817. [PMID: 30779120 DOI: 10.1002/jcp.28280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 01/24/2023]
Abstract
Human immunodeficiency virus (HIV) is one of the critical infectious agents with thousands of newly infected people worldwide. High mutational capability and rapid diversification, inhibition of humoral and cellular immune responses, and thus inability for recognition of an immunogenic region in the viral envelope by the immune system are major challenges. Natural killer (NK) cells are multifunctional, playing a key role in the identification and elimination of HIV-infected cells. These cells identify and eliminate virus-infected cells in a multilateral manner, such as ligand stress, antibody-dependent cell cytotoxicity (ADCC), T follicular helper (Tfh), and the activation of most of the stimulatory receptors. Moreover, these cells release cytokines leading to the activation of cytotoxic lymphocytes (CTLs) and dendritic cells (DCs), contributing to efficient viral elimination. Some subsets of NK cells exhibit putatively enhanced effector functions against viruses following vaccination easily expanded and identified by NK cell lines culture. Furthermore, NK cells promote the elimination of HIV-infected cells which reduce the expression of major histocompatibility complex (MHC) molecules. Memory NK cells have higher functionality and renewable potential. A pioneering strategy to establish an efficacious HIV vaccine would include stimulation of the accumulation and long-term maintenance of these HIV-reactive NK cells. CAR-NK (chimeric antigen receptor-natural killer) cells-based antiviral therapies have emerged as novel approaches with the ability of antigen recognition and more advantages than CAR-T (chimeric antigen receptor-T) cells. Recent development of induced pluripotent stem cell (iPSC)-derived NK cells with enhanced activity and efficiency conferred a promising insight into CAR-NK cell-based therapies. Therefore, memory and CAR-NK cells-based approaches can emerge as novel strategies providing implications for HIV vaccine design and therapy.
Collapse
Affiliation(s)
- Abdulbaset Mazarzaei
- Department of Immunology, Faculty of Medicine, AJA University of Medical Science, Tehran, Iran
| | - Mahtab Vafaei
- Department of Virology Laboratory Sciences, Keyvan Virology Laboratory, Tehran, Iran
| | - Abdolmajid Ghasemian
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Seyede Amene Mirforughi
- Social Determinants of Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hassan Rajabi Vardanjani
- Social Determinants of Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nada A S Alwan
- Professor of Pathology, Director, National Cancer Research Center, Baghdad University, Baghdad, Iraq
| |
Collapse
|
15
|
D Urbano V, De Crignis E, Re MC. Host Restriction Factors and Human Immunodeficiency Virus (HIV-1): A Dynamic Interplay Involving All Phases of the Viral Life Cycle. Curr HIV Res 2019; 16:184-207. [PMID: 30117396 DOI: 10.2174/1570162x16666180817115830] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 02/08/2023]
Abstract
Mammalian cells have evolved several mechanisms to prevent or block lentiviral infection and spread. Among the innate immune mechanisms, the signaling cascade triggered by type I interferon (IFN) plays a pivotal role in limiting the burden of HIV-1. In the presence of IFN, human cells upregulate the expression of a number of genes, referred to as IFN-stimulated genes (ISGs), many of them acting as antiviral restriction factors (RFs). RFs are dominant proteins that target different essential steps of the viral cycle, thereby providing an early line of defense against the virus. The identification and characterization of RFs have provided unique insights into the molecular biology of HIV-1, further revealing the complex host-pathogen interplay that characterizes the infection. The presence of RFs drove viral evolution, forcing the virus to develop specific proteins to counteract their activity. The knowledge of the mechanisms that prevent viral infection and their viral counterparts may offer new insights to improve current antiviral strategies. This review provides an overview of the RFs targeting HIV-1 replication and the mechanisms that regulate their expression as well as their impact on viral replication and the clinical course of the disease.
Collapse
Affiliation(s)
- Vanessa D Urbano
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Elisa De Crignis
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maria Carla Re
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
16
|
Mona Sadat L, Seyed Mehdi S, Amitis R. HIV-1 Immune evasion: The main obstacle toward a successful vaccine. ACTA ACUST UNITED AC 2018. [DOI: 10.29328/journal.aaai.1001013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Pan D, Das A, Srivastav SK, Traina-Dorge V, Didier PJ, Pahar B. Lack of T-cell-mediated IL-2 and TNFα production is linked to decreased CD58 expression in intestinal tissue during acute simian immunodeficiency virus infection. J Gen Virol 2018; 100:26-34. [PMID: 30480508 DOI: 10.1099/jgv.0.001181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For an effective T-cell activation and response, co-stimulation is required in addition to the antigen-specific signal from their antigen receptors. The CD2/CD58 interaction is considered as one of the most important T-cell co-stimulatory pathways for T-cell activation and proliferation, and its role in regulating intestinal T-cell function in acute and chronic SIV -infected macaques is poorly documented. Here, we demonstrated a significant reduction of CD58 expression in both T- and B-cell populations during acute SIV infection along with high plasma viral load and a loss of intestinal CD4+ T cells compared to SIV-uninfected control macaques. The reduction of CD58 expression in T cells was correlated with the reduced expression of T-cell-mediated IL-2 and TNFα production. Together, these results indicate that reduction in the CD2/CD58 interaction pathway in mucosal lymphocytes might play a crucial role in mucosal T-cell dysfunction during acute SIV/HIV infection.
Collapse
Affiliation(s)
- Diganta Pan
- 1Division of Comparative Pathology, Covington, Louisiana
| | - Arpita Das
- 2Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Sudesh K Srivastav
- 3Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, USA
| | - Vicki Traina-Dorge
- 2Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Peter J Didier
- 1Division of Comparative Pathology, Covington, Louisiana
| | - Bapi Pahar
- 1Division of Comparative Pathology, Covington, Louisiana
| |
Collapse
|
18
|
Guo L, Xu XQ, Zhou L, Zhou RH, Wang X, Li JL, Liu JB, Liu H, Zhang B, Ho WZ. Human Intestinal Epithelial Cells Release Antiviral Factors That Inhibit HIV Infection of Macrophages. Front Immunol 2018. [PMID: 29515574 PMCID: PMC5825896 DOI: 10.3389/fimmu.2018.00247] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
As a rich source of CD4+ T cells and macrophages, the gastrointestinal (GI) tract is a major target site for HIV infection. The interplay between GI-resident macrophages and intestinal epithelial cells (IECs) constitutes an important element of GI innate immunity against pathogens. In this study, we investigated whether human IECs have the ability to produce antiviral factors that can inhibit HIV infection of macrophages. We demonstrated that IECs possess functional toll-like receptor 3 (TLR3), the activation of which resulted in induction of key interferon (IFN) regulatory factors (IRF3 and IRF7), IFN-β, IFN-λ, and CC chemokines (MIP-1α, MIP-1β, RANTES), the ligands of HIV entry co-receptor CCR5. In addition, TLR3-activated IECs release exosomes that contained the anti-HIV factors, including IFN-stimulated genes (ISGs: ISG15, ISG56, MxB, OAS-1, GBP5, and Viperin) and HIV restriction miRNAs (miRNA-17, miRNA-20, miRNA-28, miRNA-29 family members, and miRNA-125b). Importantly, treatment of macrophages with supernatant (SN) from the activated IEC cultures inhibited HIV replication. Further studies showed that IEC SN could also induce the expression of antiviral ISGs and cellular HIV restriction factors (Tetherin and APOBEC3G/3F) in HIV-infected macrophages. These findings indicated that IECs might act as an important element in GI innate immunity against HIV infection/replication.
Collapse
Affiliation(s)
- Le Guo
- Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Xi-Qiu Xu
- Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Li Zhou
- Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Run-Hong Zhou
- Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jie-Liang Li
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jin-Biao Liu
- Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Hang Liu
- Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Biao Zhang
- Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Wen-Zhe Ho
- Wuhan University School of Basic Medical Sciences, Wuhan, China.,Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
19
|
Covino DA, Gauzzi MC, Fantuzzi L. Understanding the regulation of APOBEC3 expression: Current evidence and much to learn. J Leukoc Biol 2017; 103:433-444. [DOI: 10.1002/jlb.2mr0717-310r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/28/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | - Laura Fantuzzi
- National Center for Global Health; Istituto Superiore di Sanità; Rome Italy
| |
Collapse
|
20
|
Root-Bernstein R. Human Immunodeficiency Virus Proteins Mimic Human T Cell Receptors Inducing Cross-Reactive Antibodies. Int J Mol Sci 2017; 18:E2091. [PMID: 28972547 PMCID: PMC5666773 DOI: 10.3390/ijms18102091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) hides from the immune system in part by mimicking host antigens, including human leukocyte antigens. It is demonstrated here that HIV also mimics the V-β-D-J-β of approximately seventy percent of about 600 randomly selected human T cell receptors (TCR). This degree of mimicry is greater than any other human pathogen, commensal or symbiotic organism studied. These data suggest that HIV may be evolving into a commensal organism just as simian immunodeficiency virus has done in some types of monkeys. The gp120 envelope protein, Nef protein and Pol protein are particularly similar to host TCR, camouflaging HIV from the immune system and creating serious barriers to the development of safe HIV vaccines. One consequence of HIV mimicry of host TCR is that antibodies against HIV proteins have a significant probability of recognizing the corresponding TCR as antigenic targets, explaining the widespread observation of lymphocytotoxic autoantibodies in acquired immunodeficiency syndrome (AIDS). Quantitative enzyme-linked immunoadsorption assays (ELISA) demonstrated that every HIV antibody tested recognized at least one of twelve TCR, and as many as seven, with a binding constant in the 10-8 to 10-9 m range. HIV immunity also affects microbiome tolerance in ways that correlate with susceptibility to specific opportunistic infections.
Collapse
Affiliation(s)
- Robert Root-Bernstein
- Department of Physiology, Michigan State University, 567 Wilson Road, Room 2201, East Lansing, MI 48824 USA.
| |
Collapse
|
21
|
Zhao F, Ma J, Huang L, Deng Y, Li L, Zhou Y, Li J, Li S, Jiang H, Yang H, Gao S, Wang H, Liu Y. Comparative transcriptome analysis of PBMC from HIV patients pre- and post-antiretroviral therapy. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
22
|
Different Expression of Interferon-Stimulated Genes in Response to HIV-1 Infection in Dendritic Cells Based on Their Maturation State. J Virol 2017; 91:JVI.01379-16. [PMID: 28148784 DOI: 10.1128/jvi.01379-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/20/2017] [Indexed: 11/20/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells whose functions are dependent on their degree of differentiation. In their immature state, DCs capture pathogens and migrate to the lymph nodes. During this process, DCs become resident mature cells specialized in antigen presentation. DCs are characterized by a highly limiting environment for human immunodeficiency virus type 1 (HIV-1) replication due to the expression of restriction factors such as SAMHD1 and APOBEC3G. However, uninfected DCs capture and transfer viral particles to CD4 lymphocytes through a trans-enhancement mechanism in which chemokines are involved. We analyzed changes in gene expression with whole-genome microarrays when immature DCs (IDCs) or mature DCs (MDCs) were productively infected using Vpx-loaded HIV-1 particles. Whereas productive HIV infection of IDCs induced expression of interferon-stimulated genes (ISGs), such induction was not produced in MDCs, in which a sharp decrease in ISG- and CXCR3-binding chemokines was observed, lessening trans-infection of CD4 lymphocytes. Similar patterns of gene expression were found when DCs were infected with HIV-2 that naturally expresses Vpx. Differences were also observed under conditions of restrictive HIV-1 infection, in the absence of Vpx. ISG expression was not modified in IDCs, whereas an increase of ISG- and CXCR3-binding chemokines was observed in MDCs. Overall these results suggest that sensing and restriction of HIV-1 infection are different in IDCs and MDCs. We propose that restrictive infection results in increased virulence through different mechanisms. In IDCs avoidance of sensing and induction of ISGs, whereas in MDCs increased production of CXCR3-binding chemokines, would result in lymphocyte attraction and enhanced infection at the immune synapse.IMPORTANCE In this work we describe for the first time the activation of a different genetic program during HIV-1 infection depending on the state of maturation of DCs. This represents a breakthrough in the understanding of the restriction to HIV-1 infection of DCs. The results show that infection of DCs by HIV-1 reprograms their gene expression pattern. In immature cells, productive HIV-1 infection activates interferon-related genes involved in the control of viral replication, thus inducing an antiviral state in surrounding cells. Paradoxically, restriction of HIV-1 by SAMHD1 would result in lack of sensing and IFN activation, thus favoring initial HIV-1 escape from the innate immune response. In mature DCs, restrictive infection results in HIV-1 sensing and induction of ISGs, in particular CXCR3-binding chemokines, which could favor the transmission of HIV to lymphocytes. Our data support the hypothesis that genetic DC reprograming by HIV-1 infection favors viral escape and dissemination, thus increasing HIV-1 virulence.
Collapse
|
23
|
Sun L, Wang X, Zhou Y, Zhou RH, Ho WZ, Li JL. Exosomes contribute to the transmission of anti-HIV activity from TLR3-activated brain microvascular endothelial cells to macrophages. Antiviral Res 2016; 134:167-171. [PMID: 27496004 DOI: 10.1016/j.antiviral.2016.07.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/01/2016] [Indexed: 12/17/2022]
Abstract
Human brain microvascular endothelial cells (HBMECs), the major cell type in the blood-brain barrier (BBB), play a key role in maintaining brain homeostasis. However, their role in the BBB innate immunity against HIV invasion of the central nervous system (CNS) remains to be determined. Our early work showed that TLR3 signaling of HBMECs could produce the antiviral factors that inhibit HIV replication in macrophages. The present study examined whether exosomes from TLR3-activated HBMECs mediate the intercellular transfer of antiviral factors to macrophages. Primary human macrophages could take up exosomes from TLR3-activated HBMECs. HBMECs-derived exosomes contained multiple antiviral factors, including several key IFN-stimulated genes (ISGs; ISG15, ISG56, and Mx2) at mRNA and protein levels. The depletion of exosomes from TLR3-activated HBMECs culture supernatant diminished HBMECs-mediated anti-HIV activity in macrophages. In conclusion, we demonstrate that exosomes shed by HBMECs are able to transport the antiviral molecules to macrophages. This finding suggests the possibility that HIV nonpermissive BBB cells (HBMECs) can help to restore the antiviral state in HIV-infected macrophages, which may be a defense mechanism against HIV neuroinvasion.
Collapse
Affiliation(s)
- Li Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xu Wang
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430071, China; Department of Pathology and Laboratory Medicine, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Yu Zhou
- Department of Pathology and Laboratory Medicine, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Run-Hong Zhou
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wen-Zhe Ho
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan University, Wuhan, 430071, China; Department of Pathology and Laboratory Medicine, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| | - Jie-Liang Li
- Department of Pathology and Laboratory Medicine, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
24
|
Soen Y, Knafo M, Elgart M. A principle of organization which facilitates broad Lamarckian-like adaptations by improvisation. Biol Direct 2015; 10:68. [PMID: 26631109 PMCID: PMC4668624 DOI: 10.1186/s13062-015-0097-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND During the lifetime of an organism, every individual encounters many combinations of diverse changes in the somatic genome, epigenome and microbiome. This gives rise to many novel combinations of internal failures which are unique to each individual. How any individual can tolerate this high load of new, individual-specific scenarios of failure is not clear. While stress-induced plasticity and hidden variation have been proposed as potential mechanisms of tolerance, the main conceptual problem remains unaddressed, namely: how largely non-beneficial random variation can be rapidly and safely organized into net benefits to every individual. PRESENTATION OF THE HYPOTHESIS We propose an organizational principle which explains how every individual can alleviate a high load of novel stressful scenarios using many random variations in flexible and inherently less harmful traits. Random changes which happen to reduce stress, benefit the organism and decrease the drive for additional changes. This adaptation (termed 'Adaptive Improvisation') can be further enhanced, propagated, stabilized and memorized when beneficial changes reinforce themselves by auto-regulatory mechanisms. This principle implicates stress not only in driving diverse variations in cells tissues and organs, but also in organizing these variations into adaptive outcomes. Specific (but not exclusive) examples include stress reduction by rapid exchange of mobile genetic elements (or exosomes) in unicellular, and rapid changes in the symbiotic microorganisms of animals. In all cases, adaptive changes can be transmitted across generations, allowing rapid improvement and assimilation in a few generations. TESTING THE HYPOTHESIS We provide testable predictions derived from the hypothesis. IMPLICATIONS OF THE HYPOTHESIS The hypothesis raises a critical, but thus far overlooked adaptation problem and explains how random variation can self-organize to confer a wide range of individual-specific adaptations beyond the existing outcomes of natural selection. It portrays gene regulation as an inseparable synergy between natural selection and adaptation by improvisation. The latter provides a basis for Lamarckian adaptation that is not limited to a specific mechanism and readily accounts for the remarkable resistance of tumors to treatment.
Collapse
Affiliation(s)
- Yoav Soen
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Maor Knafo
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Michael Elgart
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
25
|
Chaudhary P, Khan SZ, Rawat P, Augustine T, Raynes DA, Guerriero V, Mitra D. HSP70 binding protein 1 (HspBP1) suppresses HIV-1 replication by inhibiting NF-κB mediated activation of viral gene expression. Nucleic Acids Res 2015; 44:1613-29. [PMID: 26538602 PMCID: PMC4770212 DOI: 10.1093/nar/gkv1151] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
HIV-1 efficiently hijacks host cellular machinery and exploits a plethora of host–viral interactions for its successful survival. Identifying host factors that affect susceptibility or resistance to HIV-1 may offer a promising therapeutic strategy against HIV-1. Previously, we have reported that heat shock proteins, HSP40 and HSP70 reciprocally regulate HIV-1 gene-expression and replication. In the present study, we have identified HSP70 binding protein 1 (HspBP1) as a host-intrinsic inhibitor of HIV-1. HspBP1 level was found to be significantly down modulated during HIV-1 infection and virus production inversely co-related with HspBP1 expression. Our results further demonstrate that HspBP1 inhibits HIV-1 long terminal repeat (LTR) promoter activity. Gel shift and chromatin immunoprecipitation assays revealed that HspBP1 was recruited on HIV-1 LTR at NF-κB enhancer region (κB sites). The binding of HspBP1 to κB sites obliterates the binding of NF-κB hetero-dimer (p50/p65) to the same region, leading to repression in NF-κB mediated activation of LTR-driven gene-expression. HspBP1 also plays an inhibitory role in the reactivation of latently infected cells, corroborating its repressive effect on NF-κB pathway. Thus, our results clearly show that HspBP1 acts as an endogenous negative regulator of HIV-1 gene-expression and replication by suppressing NF-κB-mediated activation of viral transcription.
Collapse
Affiliation(s)
| | | | - Pratima Rawat
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Tracy Augustine
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Deborah A Raynes
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Vince Guerriero
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Debashis Mitra
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| |
Collapse
|
26
|
Boisseau M, Lambotte O, Galicier L, Lerolle N, Marzac C, Aumont C, Coppo P, Fardet L. Epstein-Barr virus viral load in human immunodeficiency virus-positive patients with reactive hemophagocytic syndrome. Infect Dis (Lond) 2015; 47:423-7. [PMID: 25746607 DOI: 10.3109/00365548.2015.1007475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Because human immunodeficiency virus (HIV)-infected patients control Epstein-Barr virus (EBV) replication poorly, we hypothesized that reactive hemophagocytic syndrome (HS) in these patients may be associated with poor control of EBV. The files of 314 patients with a suspected diagnosis of HS were retrospectively reviewed. EBV viral load at the time of HS was compared between HIV-positive and -negative patients. A confirmed diagnosis of HS was made in 162 patients [109 males, median age 48 (35-62) years]. Among them, 61 (38%) were HIV positive [median HIV viral load 3.2 (1.6-5.5) log/ml, median CD4 count 94 (28-190)/mm(3)]. The median EBV viral load was significantly higher in HIV-positive than in HIV-negative patients [4.0 (2.9-4.6) vs 2.5 (0-4.2) log/ml, p = 0.002]. It was higher both in patients with hematological malignancy-associated HS [4.0 (2.9-4.4) vs 2.9 (0-4.9) log/ml, p = 0.03] and in patients with infection-associated HS [3.9 (0-4.9) vs 0 (0-4.1) log/ml, p = 0.14]. However, EBV viral load was not significantly higher in HIV-infected patients with confirmed HS than in HIV-infected patients for whom HS was unlikely [4.0 (2.9-4.6) vs 3.9 (2.6-4.1) log/ml, p = 0.48].The high EBV viral load observed in HIV-infected patients with HS may be more likely to reflect the chronic HIV infection than to be the direct trigger of HS.
Collapse
Affiliation(s)
- Mario Boisseau
- From the AP-HP, Service de Médecine Interne, Hôpital Bichat-Claude Bernard , Paris , France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sabbatucci M, Covino DA, Purificato C, Mallano A, Federico M, Lu J, Rinaldi AO, Pellegrini M, Bona R, Michelini Z, Cara A, Vella S, Gessani S, Andreotti M, Fantuzzi L. Endogenous CCL2 neutralization restricts HIV-1 replication in primary human macrophages by inhibiting viral DNA accumulation. Retrovirology 2015; 12:4. [PMID: 25608886 PMCID: PMC4314729 DOI: 10.1186/s12977-014-0132-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/19/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Macrophages are key targets of HIV-1 infection. We have previously described that the expression of CC chemokine ligand 2 (CCL2) increases during monocyte differentiation to macrophages and it is further up-modulated by HIV-1 exposure. Moreover, CCL2 acts as an autocrine factor that promotes viral replication in infected macrophages. In this study, we dissected the molecular mechanisms by which CCL2 neutralization inhibits HIV-1 replication in monocyte-derived macrophages (MDM), and the potential involvement of the innate restriction factors protein sterile alpha motif (SAM) histidine/aspartic acid (HD) domain containing 1 (SAMHD1) and apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) family members. RESULTS CCL2 neutralization potently reduced the number of p24 Gag+ cells during the course of either productive or single cycle infection with HIV-1. In contrast, CCL2 blocking did not modify entry of HIV-1 based Virus Like Particles, thus demonstrating that the restriction involves post-entry steps of the viral life cycle. Notably, the accumulation of viral DNA, both total, integrated and 2-LTR circles, was strongly impaired by neutralization of CCL2. Looking for correlates of HIV-1 DNA accumulation inhibition, we found that the antiviral effect of CCL2 neutralization was independent of the modulation of SAMHD1 expression or function. Conversely, a strong and selective induction of APOBEC3A expression, to levels comparable to those of freshly isolated monocytes, was associated with the inhibition of HIV-1 replication mediated by CCL2 blocking. Interestingly, the CCL2 neutralization mediated increase of APOBEC3A expression was type I IFN independent. Moreover, the transcriptome analysis of the effect of CCL2 blocking on global gene expression revealed that the neutralization of this chemokine resulted in the upmodulation of additional genes involved in the defence response to viruses. CONCLUSIONS Neutralization of endogenous CCL2 determines a profound restriction of HIV-1 replication in primary MDM affecting post-entry steps of the viral life cycle with a mechanism independent of SAMHD1. In addition, CCL2 blocking is associated with induction of APOBEC3A expression, thus unravelling a novel mechanism which might contribute to regulate the expression of innate intracellular viral antagonists in vivo. Thus, our study may potentially lead to the development of new therapeutic strategies for enhancing innate cellular defences against HIV-1 and protecting macrophages from infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Laura Fantuzzi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
28
|
Wijesundara DK, Xi Y, Ranasinghe C. Unraveling the convoluted biological roles of type I interferons in infection and immunity: a way forward for therapeutics and vaccine design. Front Immunol 2014; 5:412. [PMID: 25221557 PMCID: PMC4148647 DOI: 10.3389/fimmu.2014.00412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/13/2014] [Indexed: 01/04/2023] Open
Abstract
It has been well-established that type I interferons (IFN-Is) have pleiotropic effects and play an early central role in the control of many acute viral infections. However, their pleiotropic effects are not always beneficial to the host and in fact several reports suggest that the induction of IFN-Is exacerbate disease outcomes against some bacterial and chronic viral infections. In this brief review, we probe into this mystery and try to develop answers based on past and recent studies evaluating the roles of IFN-Is in infection and immunity as this is vital for developing effective IFN-Is based therapeutics and vaccines. We also discuss the biological roles of an emerging IFN-I, namely IFN-ε, and discuss its potential use as a mucosal therapeutic and/or vaccine adjuvant. Overall, we anticipate the discussions generated in this review will provide new insights for better exploiting the biological functions of IFN-Is in developing efficacious therapeutics and vaccines in the future.
Collapse
Affiliation(s)
- Danushka Kumara Wijesundara
- Virology Laboratory, Department of Surgery, Basil Hetzel Institute, University of Adelaide , Adelaide, SA , Australia ; Molecular Mucosal Vaccine Immunology Group, The John Curtin School of Medical Research, The Australian National University , Canberra, ACT , Australia
| | - Yang Xi
- Lung and Allergy Research Centre, Translational Research Institute, UQ School of Medicine, The University of Queensland , Woolloongabba, QLD , Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, The John Curtin School of Medical Research, The Australian National University , Canberra, ACT , Australia
| |
Collapse
|
29
|
Almodovar S. The complexity of HIV persistence and pathogenesis in the lung under antiretroviral therapy: challenges beyond AIDS. Viral Immunol 2014; 27:186-99. [PMID: 24797368 DOI: 10.1089/vim.2013.0130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Antiretroviral therapy (ART) represents a significant milestone in the battle against AIDS. However, we continue learning about HIV and confronting challenges 30 years after its discovery. HIV has cleverly tricked both the host immune system and ART. First, the many HIV subtypes and recombinant forms have different susceptibilities to antiretroviral drugs, which may represent an issue in countries where ART is just being introduced. Second, even under the suppressive pressures of ART, HIV still increases inflammatory mediators, deregulates apoptosis and proliferation, and induces oxidative stress in the host. Third, the preference of HIV for CXCR4 as a co-receptor may also have noxious outcomes, including potential malignancies. Furthermore, HIV still replicates cryptically in anatomical reservoirs, including the lung. HIV impairs bronchoalveolar T-lymphocyte and macrophage immune responses, rendering the lung susceptible to comorbidities. In addition, HIV-infected individuals are significantly more susceptible to long-term HIV-associated complications. This review focuses on chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension, and lung cancer. Almost two decades after the advent of highly active ART, we now know that HIV-infected individuals on ART live as long as the uninfected population. Fortunately, its availability is rapidly increasing in low- and middle-income countries. Nevertheless, ART is not risk-free: the developed world is facing issues with antiretroviral drug toxicity, resistance, and drug-drug interactions, while developing countries are confronting issues with immune reconstitution inflammatory syndrome. Several aspects of the complexity of HIV persistence and challenges with ART are discussed, as well as suggestions for new avenues of research.
Collapse
Affiliation(s)
- Sharilyn Almodovar
- Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|
30
|
Iyamba JML, Wambale JM, Takaisi-Kikuni NZB. Antimicrobial susceptibility patterns of enterobacteriaceae isolated from HIV-infected patients in Kinshasa. Pan Afr Med J 2014; 17:179. [PMID: 25392725 PMCID: PMC4225149 DOI: 10.11604/pamj.2014.17.179.3788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/26/2014] [Indexed: 11/30/2022] Open
Abstract
Introduction People infected by Human Immunodeficiency Virus (HIV) are susceptible to develop severe bacterial infections. We set out to determine the frequency and the sensitivity to antibiotics of enterobaceriaceae isolated from urine and feces of HIV-infected persons. Methods Urine and feces samples were collected from HIV-infected patients of the Centre de Traitement Ambulatoire de Kabinda (CTA/Kabinda, Kinshasa) and analyzed at the Reference National Laboratory for HIV/AIDS and Sexually Transmitted Infections. The isolated enterobacteriaceae strains were identified by conventional microbiological methods. Antibiotic sensitivity pattern was carried out by disc diffusion method. Results The following bacteria pathogens were isolated: Escherichia coli, Klebsiella, Enterobacter, Proteus, and Providencia. Most species were sensitive to cefotaxim, ceftriaxon, and gentamicin and resistant to chloramphenicol, cotrimoxazole, tetracycline, and norfloxacin. Conclusion The results of the present study show that the most frequently bacteria isolated were Esherichia coli and cefotaxim, ceftriaxon, and gentamicin were the most active antibiotics.
Collapse
Affiliation(s)
- Jean-Marie Liesse Iyamba
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - José Mulwahali Wambale
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Ntondo Za Balega Takaisi-Kikuni
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| |
Collapse
|