1
|
Liao Y, Chen Q, Liu L, Huang H, Sun J, Bai X, Jin C, Li H, Sun F, Xiao X, Zhang Y, Li J, Han W, Fu S. Amino acid is a major carbon source for hepatic lipogenesis. Cell Metab 2024:S1550-4131(24)00397-8. [PMID: 39461344 DOI: 10.1016/j.cmet.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 04/24/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024]
Abstract
Increased de novo lipogenesis is a hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD) in obesity, but the macronutrient carbon source for over half of hepatic fatty acid synthesis remains undetermined. Here, we discover that dietary protein, rather than carbohydrates or fat, is the primary nutritional risk factor for MASLD in humans. Consistently, ex vivo tracing studies identify amino acids as a major carbon supplier for the tricarboxylic acid (TCA) cycle and lipogenesis in isolated mouse hepatocytes. In vivo, dietary amino acids are twice as efficient as glucose in fueling hepatic fatty acid synthesis. The onset of obesity further drives amino acids into fatty acid synthesis through reductive carboxylation, while genetic and chemical interventions that divert amino acid carbon away from lipogenesis alleviate hepatic steatosis. Finally, low-protein diets (LPDs) not only prevent body weight gain in obese mice but also reduce hepatic lipid accumulation and liver damage. Together, this study uncovers the significant role of amino acids in hepatic lipogenesis and suggests a previously unappreciated nutritional intervention target for MASLD.
Collapse
Affiliation(s)
- Yilie Liao
- Zhongshan Institute for Drug Discovery (ZIDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Neurometabolism and Regenerative Medicine, Bioland Laboratories, Guangzhou, Guangdong 510530, China; Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore.
| | - Qishan Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Lei Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haipeng Huang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jingyun Sun
- Center for Neurometabolism and Regenerative Medicine, Bioland Laboratories, Guangzhou, Guangdong 510530, China
| | - Xiaojie Bai
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chenchen Jin
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Honghao Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fangfang Sun
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xia Xiao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yahong Zhang
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Jia Li
- Zhongshan Institute for Drug Discovery (ZIDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China; Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | - Suneng Fu
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China.
| |
Collapse
|
2
|
Smith ME, Bazinet RP. Unraveling brain palmitic acid: Origin, levels and metabolic fate. Prog Lipid Res 2024; 96:101300. [PMID: 39222711 DOI: 10.1016/j.plipres.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In the human brain, palmitic acid (16:0; PAM) comprises nearly half of total brain saturates and has been identified as the third most abundant fatty acid overall. Brain PAM supports the structure of membrane phospholipids, provides energy, and regulates protein stability. Sources underlying the origin of brain PAM are both diet and endogenous synthesis via de novo lipogenesis (DNL), primarily from glucose. However, studies investigating the origin of brain PAM are limited to tracer studies utilizing labelled (14C/11C/3H/2H) PAM, and results vary based on the model and tracer used. Nevertheless, there is evidence PAM is synthesized locally in the brain, in addition to obtained directly from the diet. Herein, we provide an overview of brain PAM origin, entry to the brain, metabolic fate, and factors influencing brain PAM kinetics and levels, the latter in the context of age, as well as neurological diseases and psychiatric disorders. Additionally, we briefly summarize the role of PAM in signaling at the level of the brain. We add to the literature a rudimentary summary on brain PAM metabolism.
Collapse
Affiliation(s)
- Mackenzie E Smith
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
3
|
Smith ME, Chen CT, Gohel CA, Cisbani G, Chen DK, Rezaei K, McCutcheon A, Bazinet RP. Upregulated hepatic lipogenesis from dietary sugars in response to low palmitate feeding supplies brain palmitate. Nat Commun 2024; 15:490. [PMID: 38233416 PMCID: PMC10794264 DOI: 10.1038/s41467-023-44388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Palmitic acid (PAM) can be provided in the diet or synthesized via de novo lipogenesis (DNL), primarily, from glucose. Preclinical work on the origin of brain PAM during development is scarce and contrasts results in adults. In this work, we use naturally occurring carbon isotope ratios (13C/12C; δ13C) to uncover the origin of brain PAM at postnatal days 0, 10, 21 and 35, and RNA sequencing to identify the pathways involved in maintaining brain PAM, at day 35, in mice fed diets with low, medium, and high PAM from birth. Here we show that DNL from dietary sugars maintains the majority of brain PAM during development and is augmented in mice fed low PAM. Importantly, the upregulation of hepatic DNL genes, in response to low PAM at day 35, demonstrates the presence of a compensatory mechanism to maintain total brain PAM pools compared to the liver; suggesting the importance of brain PAM regulation.
Collapse
Affiliation(s)
- Mackenzie E Smith
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada
| | - Chuck T Chen
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada
| | - Chiraag A Gohel
- Department of Biostatistics and Bioinformatics, George Washington University, 950 New Hampshire Ave, NW, Washington, DC, 20052, USA
| | - Giulia Cisbani
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada
| | - Daniel K Chen
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada
| | - Kimia Rezaei
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada
| | - Andrew McCutcheon
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, ON, Canada.
| |
Collapse
|
4
|
Belew GD, Jones JG. De novo lipogenesis in non-alcoholic fatty liver disease: Quantification with stable isotope tracers. Eur J Clin Invest 2022; 52:e13733. [PMID: 34927251 DOI: 10.1111/eci.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is characterized as an abnormal accumulation of triglyceride in hepatocytes. Hepatic de novo lipogenesis may play an important role in the accumulation of lipids in the liver during NAFLD. Due to the importance of lipid biosynthetic fluxes in NAFLD and T2D, tracer methodologies have been developed for their study and quantification. Here, we address novel approaches to measure and quantify DNL using stable isotope tracers. Deuterated water is a widely used tracer for quantifying DNL rates in both animal models and humans. Enrichment of lipid hydrogens from 2 H2O can be resolved and quantified by 2 H NMR and MS spectroscopy of isolated lipids. NMR provides a much higher level of positional enrichment information compared with MS which yields a more detailed picture of lipid biosynthetic. It can also be used to quantify low levels of lipid 13 C enrichment from a second tracer such as [U-13 C]sugar with minimal interference of one tracer with the other. CONCLUSIONS Despite the clear association between elevated DNL activity and increased hepatic triglyceride levels, implementation of non-destructive and novel methods to quantify DNL and its contribution to NAFLD are also of huge interest.
Collapse
Affiliation(s)
- Getachew Debas Belew
- Metabolism, Aging and Disease, Center for Neurosciences and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - John G Jones
- Metabolism, Aging and Disease, Center for Neurosciences and Cell Biology, University of Coimbra, Cantanhede, Portugal
| |
Collapse
|
5
|
Smith ME, Cisbani G, Metherel AH, Bazinet RP. The Majority of Brain Palmitic Acid is Maintained by Lipogenesis from Dietary Sugars and is Augmented in Mice fed Low Palmitic Acid Levels from Birth. J Neurochem 2021; 161:112-128. [PMID: 34780089 DOI: 10.1111/jnc.15539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 11/28/2022]
Abstract
Previously, results from studies investigating if brain palmitic acid (16:0; PAM) was maintained by either dietary uptake or lipogenesis de novo (DNL) varied. Here, we utilize naturally occurring carbon isotope ratios (13 C/12 C; δ13 C) to uncover the origin of brain PAM. Additionally, we explored brain and liver fatty acid concentration, total brain metabolomic profile, and behaviour. BALB/c dams were equilibrated onto either a low PAM diet (LP; <2%) or high PAM diet (HP; >95%) prior to producing one generation of offspring. Offspring stayed on the respective diet of the dam until 15-weeks of age, at which time the Open Field test was conducted in the offspring, prior to euthanasia and tissue lipid extraction. Although liver PAM was lower in offspring fed the LP diet, as well as female offspring, brain PAM was not affected by diet or sex. Across offspring of either sex on both diets, brain 13 C-PAM revealed compared to dietary uptake, DNL from dietary sugars contributed 68.8%-79.5% and 46.6%-58.0% to the total brain PAM pool by both peripheral and local brain DNL, and local brain DNL alone, respectively. DNL was augmented in offspring fed the LP diet, and the ability to upregulate DNL in the liver or the brain depended on sex. Anxiety-like behaviours were decreased in offspring fed the LP diet and were correlated with markers of LP diet consumption including increased liver 13 C-PAM, warranting further investigation. Altogether, our results indicate that DNL from dietary sugars is a compensatory mechanism to maintain brain PAM in response to a LP diet.
Collapse
Affiliation(s)
| | - Giulia Cisbani
- University of Toronto, Department of Nutritional Sciences, Toronto
| | - Adam H Metherel
- University of Toronto, Department of Nutritional Sciences, Toronto
| | | |
Collapse
|
6
|
Beysen C, Ruddy M, Stoch A, Mixson L, Rosko K, Riiff T, Turner SM, Hellerstein MK, Murphy EJ. Dose-dependent quantitative effects of acute fructose administration on hepatic de novo lipogenesis in healthy humans. Am J Physiol Endocrinol Metab 2018; 315:E126-E132. [PMID: 29558206 DOI: 10.1152/ajpendo.00470.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fructose feeding increases hepatic de novo lipogenesis (DNL) and is associated with nonalcoholic fatty liver disease. Little is known, however, about individual variation in susceptibility to fructose stimulation of DNL. In this three-period crossover study, 17 healthy male subjects were enrolled to evaluate the within- and between-subject variability of acute fructose feeding on hepatic fractional DNL. During each assessment, [1-13C1]acetate was infused to measure DNL in the fasting state and during fructose feeding. Subjects randomly received a high dose of fructose (10 mg·kg fat-free mass-1·min-1) on two occasions and a low dose (5 mg·kg fat-free mass-1·min-1) on another. Fructose solutions were administered orally every 30 min for 9.5 h. Ten subjects completed all three study periods. DNL was assessed as the fractional contribution of newly synthesized palmitate into very-low-density lipoprotein triglycerides using mass isotopomer distribution analysis. Mean fasting DNL was 5.3 ± 2.8%, with significant within- and between-subject variability. DNL increased dose dependently during fructose feeding to 15 ± 2% for low- and 29 ± 2% for high-dose fructose. The DNL response to high-dose fructose was very reproducible within an individual ( r = 0.93, P < 0.001) and independent of fasting DNL. However, it was variable between individuals and significantly correlated to influx of unlabeled acetyl-CoA ( r = 0.7, P < 0.001). Unlike fasting DNL, fructose-stimulated DNL is a robust and reproducible measure of hepatic lipogenic activity for a given individual and may be a useful indicator of metabolic disease susceptibility and treatment response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marc K Hellerstein
- KineMed, Emeryville, California
- Department of Nutritional Sciences, University of California Berkeley , Berkeley, California
| | - Elizabeth J Murphy
- KineMed, Emeryville, California
- Department of Medicine, University of California San Francisco, California
- Division of Endocrinology, Zuckerberg San Francisco General, San Francisco, California
| |
Collapse
|