1
|
Aayush K, Sharma K, Singh GP, Chiu I, Chavan P, Shandilya M, Roy S, Ye H, Sharma S, Yang T. Development and characterization of edible and active coating based on xanthan gum nanoemulsion incorporating betel leaf extract for fresh produce preservation. Int J Biol Macromol 2024; 270:132220. [PMID: 38754654 DOI: 10.1016/j.ijbiomac.2024.132220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Developing an edible and active coating, incorporating environmentally-friendly antimicrobial agents into edible polymers, provides an eco-friendly alternative to conventional packaging and exhibits significant potential in preserving the quality of postharvest food. Herein, we aim to develop a novel edible and active coating based on xanthan gum (XG) nanoemulsion (NE) incorporating betel leaf extract (BLE) for the preservation of fresh produce. The total phenolic content, total flavonoid content, and antioxidant capacity of the methanol extract of BLE at various concentrations were characterized. Further development of the active coating at different formulations of Tween 80 (1 % and 3 % w/v), XG (0.1 % to 0.5 % w/v), and BLE (1 % to 5 % w/v) was characterized by physical stability, viscosity, and antimicrobial properties. Results showed that the active coating at 1 % BLE showed significant antimicrobial properties against diverse bacterial and fungal foodborne pathogens (e.g., B. cereus, S. aureus) and fungal cultures (e.g., C. albicans). The study also examined the shelf-life of tomatoes coated with the BLE-XG NE solution, stored at 4 °C for 27 days. Analyses of weight retention, soluble solids, pH, texture, sensory attributes, and microbial populations showed that the coating effectively preserved tomato quality, highlighting its potential to preserve fresh produce and enhance food security.
Collapse
Affiliation(s)
- Krishna Aayush
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Kanika Sharma
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Gurvendra Pal Singh
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Ivy Chiu
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Prafull Chavan
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Mamta Shandilya
- School of Physics and Material Science, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India; Department of Food Technology and Nutrition, School of Agricultural, Lovely Professional University, Phagwara 144411, India
| | - Haoxin Ye
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Somesh Sharma
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India.
| | - Tianxi Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
2
|
Marena GD, Carvalho GC, Ruiz-Gaitán A, Onisto GS, Bugalho BCM, Genezini LMV, Santos MOD, Blanco AL, Chorilli M, Bauab TM. Potential Activity of Micafungin and Amphotericin B Co-Encapsulated in Nanoemulsion against Systemic Candida auris Infection in a Mice Model. J Fungi (Basel) 2024; 10:253. [PMID: 38667924 PMCID: PMC11051191 DOI: 10.3390/jof10040253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
The Candida auris species is a multidrug-resistant yeast capable of causing systemic and lethal infections. Its virulence and increase in outbreaks are a global concern, especially in hospitals where outbreaks are more recurrent. In many cases, monotherapy is not effective, and drug combinations are opted for. However, resistance to antifungals has increased over the years. In view of this, nanoemulsions (NEs) may represent a nanotechnology strategy in the development of new therapeutic alternatives. Therefore, this study developed a co-encapsulated nanoemulsion with amphotericin B (AmB) and micafungin (MICA) (NEMA) for the control of infections caused by C. auris. NEs were developed in previous studies. Briefly, the NEs were composed of a mixture of 10% sunflower oil and cholesterol as the oil phase (5:1), 10% Polyoxyethylene (20) cetyl ether (Brij® 58) and soy phosphatidylcholine as surfactant/co-surfactant (2:1), and 80% PBS as the aqueous phase. The in vivo assay used BALB/c mice weighing between 25 and 28 g that were immunosuppressed (CEUA/FCF/CAr n° 29/2021) and infected with Candida auris CDC B11903. The in vivo results show the surprising potentiate of the antifungal activity of the co-encapsulated drugs in NE, preventing yeast from causing infection in the lung and thymus. Biochemical assays showed a higher concentration of liver and kidney enzymes under treatment with AmB and MICAmB. In conclusion, this combination of drugs to combat the infection caused by C. auris can be considered an efficient therapeutic option, and nanoemulsions contribute to therapeutic potentiate, proving to be a promising new alternative.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (G.D.M.); (G.C.C.); (G.S.O.); (B.C.M.B.); (L.M.V.G.); (M.O.D.S.); (A.L.B.)
- Department of Drug and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Gabriela Corrêa Carvalho
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (G.D.M.); (G.C.C.); (G.S.O.); (B.C.M.B.); (L.M.V.G.); (M.O.D.S.); (A.L.B.)
- Department of Drug and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Alba Ruiz-Gaitán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Giovana Scaramal Onisto
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (G.D.M.); (G.C.C.); (G.S.O.); (B.C.M.B.); (L.M.V.G.); (M.O.D.S.); (A.L.B.)
| | - Beatriz Chiari Manzini Bugalho
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (G.D.M.); (G.C.C.); (G.S.O.); (B.C.M.B.); (L.M.V.G.); (M.O.D.S.); (A.L.B.)
| | - Letícia Maria Valente Genezini
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (G.D.M.); (G.C.C.); (G.S.O.); (B.C.M.B.); (L.M.V.G.); (M.O.D.S.); (A.L.B.)
| | - Maíra Oliveira Dos Santos
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (G.D.M.); (G.C.C.); (G.S.O.); (B.C.M.B.); (L.M.V.G.); (M.O.D.S.); (A.L.B.)
| | - Ana Lígia Blanco
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (G.D.M.); (G.C.C.); (G.S.O.); (B.C.M.B.); (L.M.V.G.); (M.O.D.S.); (A.L.B.)
| | - Marlus Chorilli
- Department of Drug and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Tais Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (G.D.M.); (G.C.C.); (G.S.O.); (B.C.M.B.); (L.M.V.G.); (M.O.D.S.); (A.L.B.)
| |
Collapse
|
3
|
Khalid A, Arshad MU, Imran A, Haroon Khalid S, Shah MA. Development, stabilization, and characterization of nanoemulsion of vitamin D 3-enriched canola oil. Front Nutr 2023; 10:1205200. [PMID: 37693243 PMCID: PMC10484710 DOI: 10.3389/fnut.2023.1205200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/17/2023] [Indexed: 09/12/2023] Open
Abstract
In this study, the oil-in-water nanoemulsion (NE) was prepared and loaded with vitamin D3 in food-grade (edible) canola oil and stabilized by Tween 80 and Span 80 by using a water titration technique with droplet sizes of 20 to 200 nm. A phase diagram was established for the influence of water, oil, and S-Mix concentration. The outcomes revealed that the particle size of blank canola oil nanoemulsion (NE) ranged from 60.12 to 62.27 (d.nm) and vitamin D3 NE ranged from 93.92 to 185.5 (d.nm). Droplet size and polydispersity index (PDI) of both blank and vitamin D3-loaded NE results were less than 1, and zeta potential results for blank and vitamin D3 loaded NE ranged from -9.71 to -15.32 mV and -7.29 to -13.56 mV, respectively. Furthermore, the pH and electrical conductivity of blank NE were 6.0 to 6.2 and 20 to 100 (μs/cm), respectively, whereas vitamin D3-loaded NE results were 6.0 to 6.2 and 30 to 100 (μs/cm), respectively. The viscosity results of blank NE ranged from 0.544 to 0.789 (mPa.s), while that of vitamin D3-loaded NE ranged from 0.613 to 0.793 (mPa.s). In this study, the long-term stability (3 months) of canola oil NE containing vitamin D3 at room temperature (25 C) and high temperature (40 C) was observed.
Collapse
Affiliation(s)
- Aafia Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Ali Imran
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Government College University, Faisalabad, Pakistan
| | - Mohd Asif Shah
- School of Business, Woxsen University, Hyderabad, Telangana, India
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
- School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Economics, Kabridahar University, Somali, Ethiopia
| |
Collapse
|
4
|
Hussain A, Altamimi MA, Imam SS, Ahmad MS, Alnemer OA. Green Nanoemulsion Water/Ethanol/Transcutol/LabM-Based Treatment of Pharmaceutical Antibiotic Erythromycin-Contaminated Aqueous Bulk Solution. ACS OMEGA 2022; 7:48100-48112. [PMID: 36591121 PMCID: PMC9798490 DOI: 10.1021/acsomega.2c06095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Contaminated wastewater released from hospital, domestic, and industrial sources is a major challenge to aquatic animals and human health. In this study, we addressed removal of erythromycin (ERN) from contaminated water employing water/ethanol/Transcutol/Labrafil M 1944 CS (LabM) green nanoemulsions as a nanocarrier system. ERN is a major antibiotic contaminant harming aquatic and human lives. Green nanoemulsions were prepared and evaluated for size, size distribution (measuring polydispersity index), stability, zeta potential, refractive index, and viscosity. Transmission electron microscopy (TEM) was used to visualize morphological behavior. The treated-water was analyzed for ERN by the spectroscopy, scanning electron microscopy-energy-dispersive X-ray analysis mode (SEM-EDX), and inductively coupled plasma-optical emission spectroscopy (ICP-OES) techniques. We studied factors (composition, size, viscosity, and time of exposure) affecting removal efficiency (%RE). The obtained green nanoemulsions (ENE1-ENE5) were stable and clear (<180 nm). ENE5 had the smallest size (58 nm), a low polydispersity index value (0.19), optimal viscosity (∼121.7 cP), and a high negative zeta potential value (-25.4 mV). A high %RE value (98.8%) was achieved with a reduced size, a high water amount, a low Capryol 90 content, and optimal viscosity as evidenced by the obtained results. Moreover, contact time had insignificant effect on %RE. UV-vis spectroscopy, SEM-EDX, and ICP-OES confirmed the absence of ERN from the treated water. Conclusively, ERN can easily be removed from polluted water employing green nanoemulsions prepared from the optimized excipients, and evaluated characteristics.
Collapse
|
5
|
Tan MSA, Pandey P, Lohman RJ, Falconer JR, Siskind DJ, Parekh HS. Fabrication and Characterization of Clozapine Nanoemulsion Sol-Gel for Intranasal Administration. Mol Pharm 2022; 19:4055-4066. [PMID: 36149013 DOI: 10.1021/acs.molpharmaceut.2c00513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clozapine is the most effective antipsychotic for treatment-resistant schizophrenia. However, it causes many adverse drug reactions (ADRs), which lead to poor treatment outcomes. Nose-to-brain (N2B) drug delivery offers a promising approach to reduce peripheral ADRs by minimizing systemic drug exposure. The aim of the present study was to develop and characterize clozapine-loaded nanoemulsion sol-gel (CLZ-NESG) for intranasal administration using high energy sonication method. A range of oils, surfactants, and cosurfactants were screened with the highest clozapine solubility selected for the development of nanoemulsion. Pseudoternary phase diagrams were constructed using a low-energy (spontaneous) method to identify the microemulsion regions (i.e., where mixtures were transparent). The final formulation, CLZ-NESG (pH 5.5 ± 0.2), comprising 1% w/w clozapine, 1% w/w oleic acid, 10% w/w polysorbate 80/propylene glycol (3:1), and 20% w/w poloxamer 407 (P407) solution, had an average globule size of ≤30 nm with PDI 0.2 and zeta potential of -39.7 ± 1.5 mV. The in vitro cumulative drug release of clozapine from the nanoemulsion gel at 34 °C (temperature of nasal cavity) after 72 h was 38.9 ± 4.6% compared to 84.2 ± 3.9% with the control solution. The permeation study using sheep nasal mucosa as diffusion barriers confirmed a sustained release of clozapine with 56.2 ± 2.3% cumulative drug permeated after 8 h. Additionally, the histopathological examination found no severe nasal ciliotoxicity on the mucosal tissues. The thermodynamic stability studies showed that the gel strength and viscosity of CLZ-NESG decreased after temperature cycling but was still seen to be in "gel" form at nasal temperature. However, the accelerated storage stability study showed a decrease in drug concentration after 3 months, which can be expected at elevated stress conditions. The formulation developed in this study showed desirable physicochemical properties for intranasal administration, highlighting the potential value of a nanoemulsion gel for improving drug bioavailability of clozapine for N2B delivery.
Collapse
Affiliation(s)
- Madeleine S A Tan
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.,Medicines Management Unit, Department of Health, Northern Territory Government, Royal Darwin Hospital, 105 Rocklands Drive, Tiwi, Northern Territory 0810, Australia
| | - Preeti Pandey
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Rink-Jan Lohman
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - James R Falconer
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Dan J Siskind
- Faculty of Medicine, The University of Queensland, 20 Weightman Street, Herston, Queensland 4006, Australia.,Metro South Addiction and Mental Health Service, Level 2 Mental Health, Woolloongabba Community Health Centre, 228 Logan Road, Woolloongabba, Queensland 4102, Australia
| | - Harendra S Parekh
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
6
|
Development and Characterization of Azithromycin-Loaded Microemulsions: A Promising Tool for the Treatment of Bacterial Skin Infections. Antibiotics (Basel) 2022; 11:antibiotics11081040. [PMID: 36009909 PMCID: PMC9404999 DOI: 10.3390/antibiotics11081040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, the treatment of bacterial skin infections has been considered a major healthcare issue due to the growing emergence of antibiotic-resistant strains of Staphylococcus aureus. The incorporation of antibiotics in appropriate nanosystems could represent a promising strategy, able to overcome several drawbacks of the topical treatment of infections, including poor drug retention within the skin. The present work aims to develop microemulsions containing azithromycin (AZT), a broad-spectrum macrolide antibiotic. Firstly, AZT solubility in various oils, surfactants and co-surfactants was assessed to select the main components. Subsequently, microemulsions composed of vitamin E acetate, Labrasol® and Transcutol® P were prepared and characterized for their pH, viscosity, droplet size, zeta potential and ability to release the drug and to promote its retention inside porcine skin. Antimicrobial activity against S. aureus methicillin-resistant strains (MRSA) and the biocompatibility of microemulsions were evaluated. Microemulsions showed an acceptable pH and were characterized by different droplet sizes and viscosities depending on their composition. Interestingly, they provided a prolonged release of AZT and promoted its accumulation inside the skin. Finally, microemulsions retained AZT efficacy on MRSA and were not cytotoxic. Hence, the developed AZT-loaded microemulsions could be considered as useful nanocarriers for the treatment of antibiotic-resistant infections of the skin.
Collapse
|
7
|
Venkatesan K, Haider N, Yusuf M, Hussain A, Afzal O, Yasmin S, Altamimi AS. Water/transcutol/lecithin/M−812 green cationic nanoemulsion to treat oxytetracycline contaminated aqueous bulk solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Roy A, Nishchaya K, Rai VK. Nanoemulsion-based dosage forms for the transdermal drug delivery applications: A review of recent advances. Expert Opin Drug Deliv 2022; 19:303-319. [PMID: 35196938 DOI: 10.1080/17425247.2022.2045944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Nanoemulsion-based drug delivery approaches have witnessed massive acceptance over the years and acquired a significant foothold owing to their tremendous benefits over the others. It has widely been used for transdermal delivery of hydrophobic and hydrophilic drugs with solubility, lipophilicity, and bioavailability issues. AREAS COVERED The review highlights the recent advancements and applications of transdermal nanoemulsions. Their utilities and characteristics, clinical pertinence showcasing intellectual properties and advancements, potential in treating disorders accompanying liquid, semisolid, and solid dosage forms, the ability to modulate a drug's physicochemical properties, and regulatory status are thoroughly summarized. EXPERT OPINION Despite tremendous therapeutic utilities and extensive investigations, this field of transdermal nanoemulsion-based technologies yet tackles several challenges such as optimum use of surfactant mixtures, economic burden due to high energy consumption during production, lack of concrete regulatory requirement, etc. Provided with the concrete guidelines on the safe use of surfactants, stability, use of scalable and economical methods, and the use of NE as a transdermal system would solve the purpose best as nanoemulsion shows remarkable improvement in drug release profiles and bioavailability of many drugs. Nevertheless, a better understanding of nanoemulsion technology holds a promising outlook and would land more opportunities and better delivery outcomes.
Collapse
Affiliation(s)
- Ankita Roy
- Department of Pharmacy, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Kumar Nishchaya
- Department of Pharmacy, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Vineet Kumar Rai
- Department of Pharmacy, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
9
|
Abu-Huwaij R, Al-Assaf SF, Hamed R. Recent exploration of nanoemulsions for drugs and cosmeceuticals delivery. J Cosmet Dermatol 2021; 21:3729-3740. [PMID: 34964223 DOI: 10.1111/jocd.14704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nanoemulsions (NEs) have been explored as nanocarriers for the delivery of many drugs and cosmeceuticals. The extraordinary expansion of using NEs is due to their capability to conquer the main challenges of conventional delivery systems such as short residence time with low patient acceptance, poor stability, low aqueous solubility, permeability, and hence bioavailability. METHODS This review recapitulated the most recent pharmaceutical and cosmeceutical applications of NEs as effective delivery nanocarriers. The outputs of our research studies and the literature review on the latest NEs applications were assessed to highlight the NEs components, preparations, applications, and the improved quality and elegance of the used product. RESULTS NEs are stable submicronic translucent dispersions with narrow droplet size distribution. They exhibited excellent ability to efficiently encapsulate therapeutics of diverse nature of drugs and cosmeceuticals. NE formulations showed superiority over conventional delivery approaches with overabundances of advantages through different routes of administration. This novel technology exhibited better aesthetic appeal, higher bioavailability, and a longer duration compared to the conventional delivery systems. CONCLUSION This novel technology holds promise for different therapeutics fields. However, the success of NEs use advocated the development of robust formulations, proper choice of equipment, ample process characterization, and assurance of their efficacy, stability, safety and cosmetic appeal.
Collapse
Affiliation(s)
- Rana Abu-Huwaij
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Al-Salt, Jordan
| | - Sarah F Al-Assaf
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Al-Salt, Jordan
| | - Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| |
Collapse
|
10
|
Hussain A, Afzal O, Altamimi ASA, Ali R. Application of green nanoemulsion to treat contaminated water (bulk aqueous solution) with azithromycin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61696-61706. [PMID: 34184229 DOI: 10.1007/s11356-021-15031-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The present work aimed to remove azithromycin (AZM) from the contaminated aqueous system using a water/ethanol/transcutol/Capryol-90 green nanoemulsion. The drug is identified as a potential pharmaceutical contaminant detrimental for flora and fauna of aquatic lives as well as human health. Green nanoemulsions were tailored and characterized for thermodynamic stability, size, polydispersity index (PDI), zeta potential, viscosity, refractive index (RI), and morphological assessment using a transmission electron microscopy (TEM). Moreover, nanoemulsions were investigated for percent removal efficiency (%RE) and factors affecting percent removal efficiency (%RE). The results suggested that the developed green nanoemulsions (ANE1-ANE5) were transparent (˂ 200 nm) and stable. ANE5 exhibited the lowest value of globular size (49 nm), PDI (0.17), viscosity (~ 93 cP), and optimum zeta potential (-27.8 mV). The value of %RE depended upon the content of water and Capryol-90 of the nanoemulsion. Furthermore, the value of %RE was found to be increased with increased content of water, whereas this was decreased on increasing the Capryol-90 content in the nanoemulsions. Similarly, on decreasing the values of size and viscosity, the %RE values were observed to be increased. There was insignificant impact of the duration of exposure time on %RE. Thus, the maximum %RE value (96.8%) was obtained by ANE5 from the aqueous solution after 20 min of contact time with ANE5. Thus, this method could be a promising approach to remove AZM from the contaminated water and serve as an alternative to conventional methods.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11541, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia.
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11541, Saudi Arabia
| |
Collapse
|
11
|
Rashid SA, Bashir S, Naseem F, Farid A, Rather IA, Hakeem KR. Olive Oil Based Methotrexate Loaded Topical Nanoemulsion Gel for the Treatment of Imiquimod Induced Psoriasis-like Skin Inflammation in an Animal Model. BIOLOGY 2021; 10:biology10111121. [PMID: 34827114 PMCID: PMC8615261 DOI: 10.3390/biology10111121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Simple Summary Psoriasis, being chronic inflammatory illness, provoked by genetic and environmental factors is linked to several other life-threatening diseases. Methotrexate is regarded as gold standard for the management of psoriasis, so an attempt was made to incorporate this drug into nanoemulsion gel. Thus olive oil based formulation was fabricated to target animal model induced psoriasis- like skin inflammation. The optimized methotrexate nanoemulsion gel formulation produced a psoriasis area and severity Index (PASI) decrease that was similar or better than the 91% reduction seen in the methotrexate tablet group. The results of this study revealed effectiveness of methotrexate nanoemulsion gel formulation to treat psoriasis and reduce the remission of psoriasis-like symptoms. Abstract Psoriasis, a chronic inflammatory illness, is on the rise and is linked to several other life-threatening diseases. The primary goal of this study was to create a nanoemulsion gel loaded with methotrexate and olive oil (MTX NEG). The formulation was evaluated for physicochemical characterization, entrapment efficiency, drug release kinetics, skin permeation studies and stability tests. In addition, the efficacy of MTX NEG against psoriasis was tested using imiquimod-induced psoriasis in a rat model. The final optimized MTX NEG was developed with a particle size of 202.6 ± 11.59 nm and a PDI of 0.233 ± 0.01, with a 76.57 ± 2.48% average entrapment efficiency. After 20 h, the release kinetics predicted a 72.47% drug release at pH 5.5. FTIR findings demonstrated that the optimized MTX NEG formulation effectively fluidized both the epidermis and dermis of the skin, potentially increasing drug permeability and retention. The application of Tween 80 and PEG 400, on the other hand, significantly enhanced these effects, as these are well known penetration enhancers. After 24 h, an average of 70.78 ± 5.8 μg/cm2 of methotrexate was permeated from the nanoemulsion gel with a flux value of 2.078 ± 0.42 μg/cm2/h, according to permeation measurements. Finally, in vivo experiments on rabbit skin revealed that the increased skin penetration of methotrexate-loaded nanoemulsion gel was not due to structural alterations in intercellular lipid layers in the stratum corneum. In vivo antipsoriatic studies on rats revealed that MTX NEG produced a PASI decrease that was extremely similar and even better than the 91% reduction seen in the MTX tablet group. According to the pharmacokinetic profile, Cmax was 8.5 μg/mL, Tmax was 12 h, and t1/2 was 15.5 ± 2.37 h. These findings reinforce that MTX-NEG based on olive oil could be a possible treatment for psoriasis and could decrease the remission of psoriasis-like symptoms.
Collapse
Affiliation(s)
- Sheikh Abdur Rashid
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan;
- Correspondence: (S.A.R.); (I.A.R.); (K.R.H.)
| | - Sajid Bashir
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Faiza Naseem
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Arshad Farid
- Gomal Centre of Biochemistry & Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.A.R.); (I.A.R.); (K.R.H.)
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Princess Dr. Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.A.R.); (I.A.R.); (K.R.H.)
| |
Collapse
|
12
|
Hosny K, Asfour H, Rizg W, Alhakamy NA, Sindi A, Alkhalidi H, Abualsunun W, Bakhaidar R, Almehmady AM, Akeel S, Ali S, Alghaith A, Alshehri S, Khallaf R. Formulation, Optimization, and Evaluation of Oregano Oil Nanoemulsions for the Treatment of Infections Due to Oral Microbiota. Int J Nanomedicine 2021; 16:5465-5478. [PMID: 34413644 PMCID: PMC8370598 DOI: 10.2147/ijn.s325625] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/31/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Natural oil-based nanoemulsions (NEs) have been widely investigated in many diseases that affect the oral cavity. NEs are delivery systems that enhance the solubility of lipid therapeutics and improve their delivery to target sites; they are known as self-nanoemulsifying drug delivery systems (SNEDDSs). The current investigation's aim was to produce an oregano essential oil-based nanoemulsion (OEO-SNEDD) that would have antibacterial and antifungal effects against oral microbiota and improve oral health. Methods Several OEO-SNEDDSs were developed using different percentages of OEO (10%, 14%, and 18%), percentages of a surfactant mixture Pluracare L64:Lauroglycol FCC (18%, 32%, and 36%), Smix ratios (1:2, 1:1, and 2:1), and hydrophilic-lipophilic balances (HLBs) of the surfactant mixture (8, 10, and 12) using the Box‒Behnken design. The optimized concentration of excipients was determined using a pseudoternary phase diagram to obtain the NEs. The formulations were evaluated for their droplet size, stability index, and antibacterial and antifungal activities. Results The NEs had a droplet size of 150 to 500 nm and stability index of 47% to 95%, and the produced formulation reached antibacterial and antifungal inhibition zones of up to 19 and 17 mm, respectively. The Box‒Behnken design was adopted to get the optimum formulation, which was 18% OEO, 36% Smix, 10.29 HLB of Smix, and a 1.25:1 Smix ratio. The optimized formulation had a lower ulcer index compared with various other formulations evaluated in rats. Conclusion This study illustrated that OEO-SNEDDSs can provide good protection against oral microbial infections.
Collapse
Affiliation(s)
- Khaled Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hani Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Waleed Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amal Sindi
- Oral diagnostic sciences department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hala Alkhalidi
- Department of Clinical pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Walaa Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rana Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alshaimaa M Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sara Akeel
- Oral diagnostic sciences department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah Ali
- Oral diagnostic sciences department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rasha Khallaf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
13
|
Tan KX, Ng LLE, Loo SCJ. Formulation Development of a Food-Graded Curcumin-Loaded Medium Chain Triglycerides-Encapsulated Kappa Carrageenan (CUR-MCT-KC) Gel Bead Based Oral Delivery Formulation. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2783. [PMID: 34073859 PMCID: PMC8197192 DOI: 10.3390/ma14112783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
In recent years, curcumin has been a major research endeavor in food and biopharmaceutical industries owing to its miscellaneous health benefits. There is an increasing amount of research ongoing in the development of an ideal curcumin delivery system to resolve its limitations and further enhance its solubility, bioavailability and bioactivity. The emergence of food-graded materials and natural polymers has elicited new research interests into enhanced pharmaceutical delivery due to their unique properties as delivery carriers. The current study is to develop a natural and food-graded drug carrier with food-derived MCT oil and a seaweed-extracted polymer called k-carrageenan for oral delivery of curcumin with improved solubility, high gastric resistance, and high encapsulation of curcumin. The application of k-carrageenan as a structuring agent that gelatinizes o/w emulsion is rarely reported and there is so far no MCT-KC system established for the delivery of hydrophobic/lipophilic molecules. This article reports the synthesis and a series of in vitro bio-physicochemical studies to examine the performance of CUR-MCT-KC as an oral delivery system. The solubility of CUR was increased significantly using MCT with a good encapsulation efficiency of 73.98 ± 1.57% and a loading capacity of 1.32 ± 0.03 mg CUR/mL MCT. CUR was successfully loaded in MCT-KC, which was confirmed using FTIR and SEM with good storage and thermal stability. Dissolution study indicated that the solubility of CUR was enhanced two-fold using heated MCT oil as compared to naked or unformulated CUR. In vitro release study revealed that encapsulated CUR was protected from premature burst under simulated gastric environment and released drastically in simulated intestinal condition. The CUR release was active at intestinal pH with the cumulative release of >90% CUR after 5 h incubation, which is the desired outcome for CUR absorption under human intestinal conditions. A similar release profile was also obtained when CUR was replaced with beta-carotene molecules. Hence, the reported findings demonstrate the potencies of MCT-KC as a promising delivery carrier for hydrophobic candidates such as CUR.
Collapse
Affiliation(s)
- Kei-Xian Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
- Esco Aster, Block 71, Ayer Rajah Crescent, Singapore 139951, Singapore
| | - Ling-Ling Evelyn Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Harvard T.H. Chan School of Public Health, Harvard University, 677 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
14
|
Dos Santos Ramos MA, de Toledo LG, Spósito L, Marena GD, de Lima LC, Fortunato GC, Araújo VHS, Bauab TM, Chorilli M. Nanotechnology-based lipid systems applied to resistant bacterial control: A review of their use in the past two decades. Int J Pharm 2021; 603:120706. [PMID: 33991597 DOI: 10.1016/j.ijpharm.2021.120706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
The rate of infections caused by resistant bacteria to the antimicrobials available for human use grows exponentially every year, which generates major impacts on human health and the world economy. In the last two decades, human beings can witness the expressive increase in the Science and Technology worldwide, and areas such as Health Sciences have benefited from these advances in favor of human health, such as the advent of Pharmaceutical Nanotechnology as an important approach applied for bacterial infections treatment with resistance profile to available antibiotics. This review of the scientific literature brings the applicability of nanotechnology-based lipid systems as an innovative tool in the improvement of bacterial infections treatment. Important studies involving the use of liposomes, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, microemulsions and lipid nanocapsules were verified in the period from 2000 to 2020, where important scientific results were found and will serve as a basis for the use of these systems to remain in constant updating. This manuscript shows the use of these drug delivery systems as potential vehicles for antibacterial compounds, which opens a new hope in the complement of the antibacterial therapeutic arsenal. Important studies developed in the last 20 years are present in this review, and thus guarantees an update on the use of these drug delivery systems for researchers from different areas of Health Sciences.
Collapse
Affiliation(s)
- Matheus Aparecido Dos Santos Ramos
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil.
| | - Luciani Gaspar de Toledo
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Larissa Spósito
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Gabriel Davi Marena
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Laura Caminitti de Lima
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Giovanna Capaldi Fortunato
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Victor Hugo Sousa Araújo
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Marlus Chorilli
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil.
| |
Collapse
|
15
|
Hung WH, Chen PK, Fang CW, Lin YC, Wu PC. Preparation and Evaluation of Azelaic Acid Topical Microemulsion Formulation: In Vitro and In Vivo Study. Pharmaceutics 2021; 13:pharmaceutics13030410. [PMID: 33808836 PMCID: PMC8003802 DOI: 10.3390/pharmaceutics13030410] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/05/2022] Open
Abstract
The aim of this study was to design oil in water (O/W) microemulsion formulations for the topical administration of azelaic acid. The permeability of azelaic acid through rat skin and the anti-inflammatory activities of the formulations were conducted to examine the efficacy of the designed formulations. Skin irritation and stability tests were also performed. The permeability of azelaic acid was significantly increased by using O/W microemulsions as carriers. The edema index of ear swelling percentage was significantly recovered by the 5% drug-loaded formulation and a 20% commercial product, demonstrating that the experimental formulation possessed comparable effect with the commercial product on the improvement of inflammation. The experimental formulation did not cause significant skin irritation compared to the negative control group. Moreover, the drug-loaded formulation also showed thermodynamic stability and chemical stability after storage for 30 days. In conclusion, the O/W microemulsion was a potential drug delivery carrier for azelaic acid topical application.
Collapse
Affiliation(s)
- Wan-Hsuan Hung
- Divison of Pharmacy, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City 81342, Taiwan; (W.-H.H.); (C.-W.F.)
| | - Ping-Kang Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan;
| | - Chih-Wun Fang
- Divison of Pharmacy, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City 81342, Taiwan; (W.-H.H.); (C.-W.F.)
| | - Ying-Chi Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan;
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- Correspondence: (Y.-C.L.); (P.-C.W.)
| | - Pao-Chu Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (Y.-C.L.); (P.-C.W.)
| |
Collapse
|
16
|
Talianu MT, Dinu-Pîrvu CE, Ghica MV, Anuţa V, Jinga V, Popa L. Foray into Concepts of Design and Evaluation of Microemulsions as a Modern Approach for Topical Applications in Acne Pathology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2292. [PMID: 33228156 PMCID: PMC7699607 DOI: 10.3390/nano10112292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/19/2023]
Abstract
With a fascinating complexity, governed by multiple physiological processes, the skin is considered a mantle with protective functions which during lifetime are frequently impaired, triggering dermatologic disorders. As one of the most prevalent dermatologic conditions worldwide, characterized by a complex pathogenesis and a high recurrence, acne can affect the patient's quality of life. Smart topical vehicles represent a good option in the treatment of a versatile skin condition. By surpassing the stratum corneum known for diffusional resistance, a superior topical bioavailability can be obtained at the affected place. In this direction, the literature study presents microemulsions as a part of a condensed group of modern formulations. Microemulsions are appreciated for their superior profile in matters of drug delivery, especially for challenging substances with hydrophilic or lipophilic structures. Formulated as transparent and thermodynamically stable systems, using simplified methods of preparation, microemulsions have a simple and clear appearance. Their unique structures can be explained as a function of the formulation parameters which were found to be the mainstay of a targeted therapy.
Collapse
Affiliation(s)
- Marina-Theodora Talianu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Valentina Anuţa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Viorel Jinga
- Department of Clinical Sciences, no.3, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| |
Collapse
|
17
|
Exploration of polysaccharide based nanoemulsions for stabilization and entrapment of curcumin. Int J Biol Macromol 2020; 156:1287-1296. [DOI: 10.1016/j.ijbiomac.2019.11.167] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022]
|
18
|
Fujii MY, Asakawa Y, Fukami T. Potential application of novel liquid crystal nanoparticles of isostearyl glyceryl ether for transdermal delivery of 4-biphenyl acetic acid. Int J Pharm 2020; 575:118935. [PMID: 31816353 DOI: 10.1016/j.ijpharm.2019.118935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/14/2019] [Accepted: 12/02/2019] [Indexed: 11/19/2022]
Abstract
Novel liquid crystal nanoparticles (LCNs) composed of isostearyl glyceryl ether (GE-IS) and ethoxylated hydrogenated castor oil (HCO-60) were developed for the enhanced transdermal delivery of 4-biphenyl acetic acid (BAA). The physical properties and pharmaceutical properties of the LCNs were measured. The interaction between the intercellular lipid model of the stratum corneum and the LCNs was observed to elucidate the skin permeation mechanism. In the formulation, the LCNs form niosomes with mean particles sizes of 180-300 nm. The skin absorption mechanisms of LCNs are different, depending upon the application and buffer concentration. The LCNs composed of GE-IS and HCO-60 are attractive tools for use as transdermal drug delivery systems carriers for medicines and cosmetics, due to their high efficiency and safety.
Collapse
Affiliation(s)
- Mika Yoshimura Fujii
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan
| | - Yoko Asakawa
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan
| | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan.
| |
Collapse
|
19
|
Chaulmoogra oil based methotrexate loaded topical nanoemulsion for the treatment of psoriasis. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Tığlı Aydın RS, Kazancı F. Synthesis and Characterization of Ozonated Oil Nanoemulsions. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- R. Seda Tığlı Aydın
- Department of Biomedical Engineering; Bülent Ecevit University; 67100, İncivez-Zonguldak Turkey
- Department of Nanotechnology Engineering; Bülent Ecevit University; 67100, İncivez-Zonguldak Turkey
| | - Füsun Kazancı
- Department of Nanotechnology Engineering; Bülent Ecevit University; 67100, İncivez-Zonguldak Turkey
| |
Collapse
|
21
|
Ngan CL, Asmawi AA. Lipid-based pulmonary delivery system: a review and future considerations of formulation strategies and limitations. Drug Deliv Transl Res 2018; 8:1527-1544. [DOI: 10.1007/s13346-018-0550-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery. Int J Pharm 2017; 526:425-442. [PMID: 28495500 DOI: 10.1016/j.ijpharm.2017.05.005] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 11/23/2022]
Abstract
Emulsion technology has been utilized extensively in the pharmaceutical industry. This article presents a comprehensive review of the literature on an important subcategory of emulsions, microemulsions. Microemulsions are optically transparent, thermodynamically stable colloidal systems, 10-100nm diameter, that form spontaneously upon mixing of oil, water and emulsifier. This review is the first to address advantages and disadvantages, as well as considerations and challenges in multi-drug delivery. For the period 1 January 2011-30 April 2016, 431 publications related to microemulsion drug delivery were identified and screened according to microemulsion, drug classification, and surfactant types. Results indicate the use of microemulsions predominantly in lipophilic drug delivery (79.4%) via oil-in-water microemulsions and non-ionic surfactants (90%) for oral or topical administration. Cancer is the disease state most targeted followed by inflammatory diseases, microbial infections and cardiovascular disease. Key generalizations from this analysis include: 1) microemulsion formulation is largely based on trial-and-error despite over 1200 publications related to microemulsion drug delivery since their discovery in 1943; 2) characterization using methods including interfacial tension, droplet size, electrical conductivity, turbidity and viscosity may provide additional information for greater predictability; 3) microemulsion drug delivery publications arise primarily from China (27%) and India (21%) suggesting additional research opportunities elsewhere.
Collapse
|
23
|
Ravikumar V, Sankar R. Preparation of Histone Deacetylase Inhibitor Vorinostat-Loaded Poly D, L-Lactide-co-Glycolide Polymeric Nanoparticles by Nanoprecipitation Method. Methods Mol Biol 2017; 1510:399-403. [PMID: 27761838 DOI: 10.1007/978-1-4939-6527-4_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanotechnology is a comparatively new branch of science that includes harnessing the unique properties of particles that are nanometers in scale. Nanoparticles can be tailored in a precise fashion where their size, composition, and surface chemistry can be carefully controlled. The nanoprecipitation is a simple, powerful, and low-energy requiring technique, commonly used for the preparation of defined nanoparticles. Histone deacetylase inhibitor Vorinostat-loaded Poly D, L-lactide-co-glycolide (PLGA) polymeric nanoparticles were prepared by the nanoprecipitation technique. The technique commonly relies on the precipitation of a solvent-dissolved material as nanosize particles after the addition to a non-solvent-containing stabilizer. The particle size and size distribution of the Vorinostat polymeric nanoparticles are significantly influenced by the surfactants used in the fabrication process of the formulation. The surfactants prevent aggregate formation and improve the stability of the nanoparticles. The partitioning and evaporation of organic solvents allowed the formation of Vorinostat-loaded polymeric nanoparticles.
Collapse
Affiliation(s)
- Vilwanathan Ravikumar
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| | - Renu Sankar
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| |
Collapse
|
24
|
Samson S, Basri M, Fard Masoumi HR, Abdul Malek E, Abedi Karjiban R. An Artificial Neural Network Based Analysis of Factors Controlling Particle Size in a Virgin Coconut Oil-Based Nanoemulsion System Containing Copper Peptide. PLoS One 2016; 11:e0157737. [PMID: 27383135 PMCID: PMC4934903 DOI: 10.1371/journal.pone.0157737] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/04/2016] [Indexed: 11/18/2022] Open
Abstract
A predictive model of a virgin coconut oil (VCO) nanoemulsion system for the topical delivery of copper peptide (an anti-aging compound) was developed using an artificial neural network (ANN) to investigate the factors that influence particle size. Four independent variables including the amount of VCO, Tween 80: Pluronic F68 (T80:PF68), xanthan gum and water were the inputs whereas particle size was taken as the response for the trained network. Genetic algorithms (GA) were used to model the data which were divided into training sets, testing sets and validation sets. The model obtained indicated the high quality performance of the neural network and its capability to identify the critical composition factors for the VCO nanoemulsion. The main factor controlling the particle size was found out to be xanthan gum (28.56%) followed by T80:PF68 (26.9%), VCO (22.8%) and water (21.74%). The formulation containing copper peptide was then successfully prepared using optimum conditions and particle sizes of 120.7 nm were obtained. The final formulation exhibited a zeta potential lower than -25 mV and showed good physical stability towards centrifugation test, freeze-thaw cycle test and storage at temperature 25°C and 45°C.
Collapse
Affiliation(s)
- Shazwani Samson
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- * E-mail: (SS); (MB)
| | - Mahiran Basri
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- * E-mail: (SS); (MB)
| | - Hamid Reza Fard Masoumi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Emilia Abdul Malek
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Roghayeh Abedi Karjiban
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|