1
|
Fjaervoll HK, Fjaervoll KA, Yang M, Reiten OK, Bair J, Lee C, Utheim TP, Dartt D. Purinergic agonists increase [Ca 2+] i in rat conjunctival goblet cells through ryanodine receptor type 3. Am J Physiol Cell Physiol 2024; 327:C830-C843. [PMID: 39099424 PMCID: PMC11427011 DOI: 10.1152/ajpcell.00291.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
ATP and benzoylbenzoyl-ATP (BzATP) increase free cytosolic Ca2+ concentration ([Ca2+]i) in conjunctival goblet cells (CGCs) resulting in mucin secretion. The purpose of this study was to investigate the source of the Ca2+i mobilized by ATP and BzATP. First-passage cultured rat CGCs were incubated with Fura-2/AM, and [Ca2+]i was measured under several conditions with ATP and BzATP stimulation. The following conditions were used: 1) preincubation with the Ca2+ chelator EGTA, 2) preincubation with the SERCA inhibitor thapsigargin (10-6 M), which depletes ER Ca2+ stores, 3) preincubation with phospholipase C (PLC) or protein kinase A (PKA) inhibitor, or 4) preincubation with the voltage-gated calcium channel antagonist nifedipine (10-5 M) and the ryanodine receptor (RyR) antagonist dantrolene (10-5 M). Immunofluorescence microscopy (IF) and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to investigate RyR presence in rat and human CGCs. ATP-stimulated peak [Ca2+]i was significantly lower after chelating Ca2+i with 2 mM EGTA in Ca2+-free buffer. The peak [Ca2+]i increase in CGCs preincubated with thapsigargin, the PKA inhibitor H89, nifedipine, and dantrolene, but not the PLC inhibitor, was reduced for ATP at 10-5 M and BzATP at 10-4 M. Incubating CGCs with dantrolene alone decreased [Ca2+]i and induced CGC cell death at a high concentration. RyR3 was detected in rat and human CGCs with IF and RT-qPCR. We conclude that ATP- and BzATP-induced Ca2+i increases originate from the ER and that RyR3 may be an essential regulator of CGC [Ca2+]i. This study contributes to the understanding of diseases arising from defective Ca2+ signaling in nonexcitable cells.NEW & NOTEWORTHY ATP and benzoylbenzoyl-ATP (BzATP) induce mucin secretion through an increase in free cytosolic calcium concentration ([Ca2+]i) in conjunctival goblet cells (CGCs). The mechanisms through which ATP and BzATP increase [Ca2+]i in CGCs are unclear. Ryanodine receptors (RyRs) are fundamental in [Ca2+]i regulation in excitable cells. Herein, we find that ATP and BzATP increase [Ca2+]i through the activation of protein kinase A, voltage-gated calcium channels, and RyRs, and that RyRs are crucial for nonexcitable CGCs' Ca2+i homeostasis.
Collapse
Affiliation(s)
- Haakon K Fjaervoll
- Division of Head, Neck and Reconstructive Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Ketil A Fjaervoll
- Division of Head, Neck and Reconstructive Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Ole K Reiten
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Jeffrey Bair
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Changrim Lee
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Tor P Utheim
- Division of Head, Neck and Reconstructive Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Darlene Dartt
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Huang X, Ma J, Wei Y, Chen H, Chu W. Identification of biomarkers associated with diagnosis of postmenopausal osteoporosis patients based on bioinformatics and machine learning. Front Genet 2023; 14:1198417. [PMID: 37465165 PMCID: PMC10352088 DOI: 10.3389/fgene.2023.1198417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Background: Accumulating evidence suggests that postmenopausal osteoporosis (PMOP) is a common chronic systemic metabolic bone disease, but its specific molecular pathogenesis remains unclear. This study aimed to identify novel genetic diagnostic markers for PMOP. Methods: In this paper, we combined three GEO datasets to identify differentially expressed genes (DEGs) and performed functional enrichment analysis of PMOP-related differential genes. Key genes were analyzed using two machine learning algorithms, namely, LASSO and the Gaussian mixture model, and candidate biomarkers were found after taking the intersection. After further ceRNA network construction, methylation analysis, and immune infiltration analysis, ACACB and WWP1 were finally selected as diagnostic markers. Twenty-four clinical samples were collected, and the expression levels of biomarkers in PMOP were detected by qPCR. Results: We identified 34 differential genes in PMOP. DEG enrichment was mainly related to amino acid synthesis, inflammatory response, and apoptosis. The ceRNA network construction found that XIST-hsa-miR-15a-5p/hsa-miR-15b-5p/hsa-miR-497-5p and hsa-miR-195-5p-WWP1/ACACB may be RNA regulatory pathways regulating PMOP disease progression. ACACB and WWP1 were identified as diagnostic genes for PMOP, and validated in datasets and clinical sample experiments. In addition, these two genes were also significantly associated with immune cells, such as T, B, and NK cells. Conclusion: Overall, we identified two vital diagnostic genes responsible for PMOP. The results may help provide potential immunotherapeutic targets for PMOP.
Collapse
Affiliation(s)
- Xinzhou Huang
- Department of Orthopedics, 3201 Hospital of Xi’an Jiaotong University Health Science Center, Hanzhong, China
| | - Jinliang Ma
- Department of Orthopedics, The First People’s Hospital of Jingzhou (First Affiliated Hospital of Yangtze University), Jingzhou, China
| | - Yongkun Wei
- Department of Orthopedics, 3201 Hospital of Xi’an Jiaotong University Health Science Center, Hanzhong, China
| | - Hui Chen
- Department of Clinical Laboratory, The First People’s Hospital of Jingzhou (First Affiliated Hospital of Yangtze University), Jingzhou, China
| | - Wei Chu
- Department of Orthopedics, The First People’s Hospital of Jingzhou (First Affiliated Hospital of Yangtze University), Jingzhou, China
| |
Collapse
|
3
|
Puri S, Kenyon BM, Hamrah P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines 2022; 10:1985. [PMID: 36009532 PMCID: PMC9406019 DOI: 10.3390/biomedicines10081985] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/21/2022] Open
Abstract
The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems.
Collapse
Affiliation(s)
- Sudan Puri
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Departments of Immunology and Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Cornea Service, Tufts New England Eye Center, Boston, MA 02111, USA
| |
Collapse
|
4
|
Li L, Jasmer KJ, Camden JM, Woods LT, Martin AL, Yang Y, Layton M, Petris MJ, Baker OJ, Weisman GA, Petris CK. Early Dry Eye Disease Onset in a NOD.H-2h4 Mouse Model of Sjögren's Syndrome. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 35727180 PMCID: PMC9233292 DOI: 10.1167/iovs.63.6.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To develop a mouse model of human dry eye disease (DED) for investigation of sex differences in autoimmune-associated dry eye pathology. Methods Ocular surface disease was assessed by quantifying corneal epithelial damage with lissamine green stain in the NOD.H-2h4,IFNγ−/−,CD28−/− (NOD.H-2h4 DKO) mouse model of Sjögren's syndrome (SS). Lacrimal gland function was assessed by tear volume quantification with phenol red thread and lacrimal gland inflammation (i.e., dacryoadenitis) was assessed by quantification of immune cell foci, flow cytometric analysis of immune cell composition, and expression of proinflammatory markers. Results The NOD.H-2h4 DKO mouse model of SS exhibits greater age-dependent increases in corneal damage than in NOD.H-2h4 parental mice and demonstrates an earlier disease onset in females compared to males. The severity of ocular surface disease correlates with loss of goblet cell density, increased conjunctivitis, and dacryoadenitis that is more pronounced in NOD.H-2h4 DKO than NOD.H-2h4 mice. B cells dominate lacrimal infiltrates in 16-week-old NOD.H-2h4 and NOD.H-2h4 DKO mice, but T helper cells and macrophages are also present. Lacrimal gland expression of proinflammatory genes, including the P2X7 and P2Y2 purinergic receptors, is greater in NOD.H-2h4 DKO than NOD.H-2h4 mice and correlates with dacryoadenitis. Conclusions Our results demonstrate for the first time that autoimmune dry eye disease occurs in both sexes of NOD.H-2h4 DKO and NOD.H-2h4 mice, with earlier onset in female NOD.H-2h4 DKO mice when compared to males of the same strain. This study demonstrates that both NOD.H-2h4 and NOD.H-2h4 DKO mice are novel models that closely resemble SS-related and sex-dependent DED.
Collapse
Affiliation(s)
- Lili Li
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States.,Visual Science and Optometry Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Kimberly J Jasmer
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Jean M Camden
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Lucas T Woods
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Adam L Martin
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Yong Yang
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States.,Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Maria Layton
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
| | - Michael J Petris
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States.,Department of Ophthalmology, University of Missouri, Columbia, Missouri, United States
| | - Olga J Baker
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States.,Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, Missouri, United States
| | - Gary A Weisman
- Division of Biochemistry, University of Missouri, Columbia, Missouri, United States.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States
| | - Carisa K Petris
- Department of Ophthalmology, University of Missouri, Columbia, Missouri, United States.,Mason Eye Institute, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
5
|
Markitantova YV, Simirskii VN. The Role of the Purinergic Signaling System in the Control of Histogenesis, Homeostasis, and Pathogenesis of the Vertebrate Retina. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Hallaj S, Mirza-Aghazadeh-Attari M, Arasteh A, Ghorbani A, Lee D, Jadidi-Niaragh F. Adenosine: The common target between cancer immunotherapy and glaucoma in the eye. Life Sci 2021; 282:119796. [PMID: 34245774 DOI: 10.1016/j.lfs.2021.119796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
Adenosine, an endogenous purine nucleoside, is a well-known actor of the immune system and the inflammatory response both in physiologic and pathologic conditions. By acting upon particular, G-protein coupled adenosine receptors, i.e., A1, A2- a & b, and A3 receptors mediate a variety of intracellular and immunomodulatory actions. Several studies have elucidated Adenosine's effect and its up-and downstream molecules and enzymes on the anti-tumor response against several types of cancers. We have also targeted a couple of molecules to manipulate this pathway and get the immune system's desired response in our previous experiences. Besides, the outgrowth of the studies on ocular Adenosine in recent years has significantly enhanced the knowledge about Adenosine and its role in ocular immunology and the inflammatory response of the eye. Glaucoma is the second leading cause of blindness globally, and the recent application of Adenosine and its derivatives has shown the critical role of the adenosine pathway in its pathophysiology. However, despite a very promising background, the phase III clinical trial of Trabodenoson failed to achieve the non-inferiority goals of the study. In this review, we discuss different aspects of the abovementioned pathway in ophthalmology and ocular immunology; following a brief evaluation of the current immunotherapeutic strategies, we try to elucidate the links between cancer immunotherapy and glaucoma in order to introduce novel therapeutic targets for glaucoma.
Collapse
Affiliation(s)
- Shahin Hallaj
- Wills Eye Hospital, Glaucoma Research Center, Philadelphia, PA 19107, USA
| | | | - Amin Arasteh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Anahita Ghorbani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daniel Lee
- Wills Eye Hospital, Glaucoma Research Center, Philadelphia, PA 19107, USA.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Harsing LG, Szénási G, Zelles T, Köles L. Purinergic-Glycinergic Interaction in Neurodegenerative and Neuroinflammatory Disorders of the Retina. Int J Mol Sci 2021; 22:ijms22126209. [PMID: 34201404 PMCID: PMC8228622 DOI: 10.3390/ijms22126209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
Neurodegenerative–neuroinflammatory disorders of the retina seriously hamper human vision. In searching for key factors that contribute to the development of these pathologies, we considered potential interactions among purinergic neuromodulation, glycinergic neurotransmission, and microglia activity in the retina. Energy deprivation at cellular levels is mainly due to impaired blood circulation leading to increased release of ATP and adenosine as well as glutamate and glycine. Interactions between these modulators and neurotransmitters are manifold. First, P2Y purinoceptor agonists facilitate reuptake of glycine by glycine transporter 1, while its inhibitors reduce reverse-mode operation; these events may lower extracellular glycine levels. The consequential changes in extracellular glycine concentration can lead to parallel changes in the activity of NR1/NR2B type NMDA receptors of which glycine is a mandatory agonist, and thereby may reduce neurodegenerative events in the retina. Second, P2Y purinoceptor agonists and glycine transporter 1 inhibitors may indirectly inhibit microglia activity by decreasing neuronal or glial glycine release in energy-compromised retina. These inhibitions may have a role in microglia activation, which is present during development and progression of neurodegenerative disorders such as glaucomatous and diabetic retinopathies and age-related macular degeneration or loss of retinal neurons caused by thromboembolic events. We have hypothesized that glycine transporter 1 inhibitors and P2Y purinoceptor agonists may have therapeutic importance in neurodegenerative–neuroinflammatory disorders of the retina by decreasing NR1/NR2B NMDA receptor activity and production and release of a series of proinflammatory cytokines from microglial cells.
Collapse
Affiliation(s)
- Laszlo G. Harsing
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (T.Z.); (L.K.)
- Correspondence: ; Tel.: +36-1-210-4416
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, H-1089 Budapest, Hungary;
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (T.Z.); (L.K.)
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (T.Z.); (L.K.)
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
| |
Collapse
|
8
|
Zhou Z, Gao Z, Yan W, Zhang Y, Huang J, Xiong K. Adenosine A3 receptor activated in H 2O 2 oxidative stress of primary open-angle glaucoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:526. [PMID: 33987224 DOI: 10.21037/atm-20-6154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Primary open-angle glaucoma (POAG), as one of the leading reasons for blindness, is mainly due to trabecular meshwork (TM) dysfunction. Bioinformatics analysis was used to find related genes involved in TM oxidative stress, which is a major cause of TM fibrosis. Methods A total of three datasets from the Gene Expression Omnibus (GEO) database were used to identify differentially expressed genes (DEGs). Gene expression relationships were enriched by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) pathways. The interaction network was listed by the protein-protein interaction (PPI) network. The expression of adenosine A3 receptor (ADORA3) was validated in POAG tissue and human trabecular meshwork cells (HTMCs) by western blot (WB) and reverse transcription polymerase chain reaction (RT-PCR). Additionally, WB and RT-PCR were used to measure oxidative stress injury relative protein and gene expression, respectively, such as fibronectin (FN), collagen-I (Col-I), and α-smooth muscle actin (α-SMA). Cell migration function and vitality were tested via transwell migration assay and Cell Counting Kit-8 (CCK-8). The cell vitality was measured using CCK-8. Results A total of 61 significant DEGs among the three data sources were analyzed. Among all three different datasets, two significant DEGs [ADORA3 and DNA damage-inducible transcript 4 protein (DDIT4)] were identified. The dataset ADORA3 was selected for further analysis. In the POAG TM tissue, ADORA3 was overexpressed at transcriptional and post-transcriptional levels. Overexpression of ADORA3 reduced TMC viability and migration but upregulated the extracellular matrix (ECM) proteins (FN, Col-I, and α-SMA) expression. It was found that ADORA3 can exacerbate oxidative stress injury in normal TMCs. These results indicated that ADORA3 might play an essential role in the occurrence and progression of POAG. Conclusions A total of 61 novel common DEGs identified are related to the development and prognosis of POAG. In the POAG, ADORA3 was verified as overexpressed; therefore, it may be associated with an oxidative stress injury in TMCs.
Collapse
Affiliation(s)
- Ziyu Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhaolin Gao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Weitao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yun Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
9
|
Krstić L, González-García MJ, Diebold Y. Ocular Delivery of Polyphenols: Meeting the Unmet Needs. Molecules 2021; 26:molecules26020370. [PMID: 33445725 PMCID: PMC7828190 DOI: 10.3390/molecules26020370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Nature has become one of the main sources of exploration for researchers that search for new potential molecules to be used in therapy. Polyphenols are emerging as a class of compounds that have attracted the attention of pharmaceutical and biomedical scientists. Thanks to their structural peculiarities, polyphenolic compounds are characterized as good scavengers of free radical species. This, among other medicinal effects, permits them to interfere with different molecular pathways that are involved in the inflammatory process. Unfortunately, many compounds of this class possess low solubility in aqueous solvents and low stability. Ocular pathologies are spread worldwide. It is estimated that every individual at least once in their lifetime experiences some kind of eye disorder. Oxidative stress or inflammatory processes are the basic etiological mechanisms of many ocular pathologies. A variety of polyphenolic compounds have been proved to be efficient in suppressing some of the indicators of these pathologies in in vitro and in vivo models. Further application of polyphenolic compounds in ocular therapy lacks an adequate formulation approach. Therefore, more emphasis should be put in advanced delivery strategies that will overcome the limits of the delivery site as well as the ones related to the polyphenols in use. This review analyzes different drug delivery strategies that are employed for the formulation of polyphenolic compounds when used to treat ocular pathologies related to oxidative stress and inflammation.
Collapse
Affiliation(s)
- Luna Krstić
- Insituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain; (L.K.); (M.J.G.-G.)
| | - María J. González-García
- Insituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain; (L.K.); (M.J.G.-G.)
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Yolanda Diebold
- Insituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain; (L.K.); (M.J.G.-G.)
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-883423274
| |
Collapse
|
10
|
Choi SH, Oh JW, Ryu JS, Kim HM, Im SH, Kim KP, Kim MK. IRT5 Probiotics Changes Immune Modulatory Protein Expression in the Extraorbital Lacrimal Glands of an Autoimmune Dry Eye Mouse Model. Invest Ophthalmol Vis Sci 2020; 61:42. [PMID: 32232342 PMCID: PMC7401425 DOI: 10.1167/iovs.61.3.42] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose While the association between the gut microbiome and the immune system has been studied in autoimmune disorders, little is known about ocular disease. Previously we reported that IRT5, a mixture of five probiotic strains, could suppress autoimmune dry eye. In this study, we investigated the mechanism by which IRT5 performs its immunomodulatory function in a mouse model of autoimmune dry eye. Methods NOD.B10.H2b mice were used as an autoimmune dry eye model. Either IRT5 or PBS was gavaged orally for 3 weeks, with or without 5 days of antibiotic pretreatment. The effects on clinical features, extraorbital lacrimal gland and spleen proteins, and fecal microbiota were analyzed. Results The ocular staining score was lower, and tear secretion was higher, in the IRT5-treated groups than in the PBS-treated groups. After IRT5 treatment, the downregulated lacrimal gland proteins were enriched in the biological processes of defense response and immune system process. The relative abundances of 33 operational taxonomic units were higher, and 53 were lower, in the feces of the IRT5-treated groups than in those of the PBS-treated groups. IRT5 administration without antibiotic pretreatment also showed immunomodulatory functions with increases in the Lactobacillus helveticus group and Lactobacillus hamsteri. Additional proteomic assays revealed a decrease of proteins related to antigen-presenting processes in the CD11b+ and CD11c+ cells of spleen in the IRT5-treated groups. Conclusions Changes in the gut microbiome after IRT5 treatment improved clinical manifestations in the autoimmune dry eye model via the downregulation of antigen-presenting processes in immune networks.
Collapse
|
11
|
The role of P2Y 6R in cardiovascular diseases and recent development of P2Y 6R antagonists. Drug Discov Today 2020; 25:568-573. [PMID: 31926135 DOI: 10.1016/j.drudis.2019.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/19/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022]
Abstract
As a member of the P2Y receptor family with a typical 7-transmembrane structure, P2Y6 purinergic receptor (P2Y6R) belongs to the G-protein-coupled nucleotide receptor activating the phospholipase-C signaling pathway. P2Y6R is widely involved in a range of human diseases, including atherosclerosis and other cardiovascular diseases, gradually attracting attention owing to its inappropriate or excessive activation. In addition, it was reported that P2Y6R might regulate inflammatory responses by governing the maturation and secretion of proinflammatory cytokines. Hence, several P2Y6R antagonists have been subjected to evaluation as new therapeutic strategies in recent years. This review was aimed at summarizing the role of P2Y6R in the pathogenesis of cardiovascular diseases, with an insight into the recent progress on discovery of P2Y6R antagonists.
Collapse
|
12
|
Jeng YT, Lin SY, Hu HY, Lee OK, Kuo LL. Osteoporosis and dry eye syndrome: A previously unappreciated association that may alert active prevention of fall. PLoS One 2018; 13:e0207008. [PMID: 30395639 PMCID: PMC6218084 DOI: 10.1371/journal.pone.0207008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/23/2018] [Indexed: 01/13/2023] Open
Abstract
Objective Osteoporosis is a multifactorial disease associated with inflammation and hormone imbalance. It is noteworthy that dry eye syndrome shares a similar pathophysiology with osteoporosis. Both diseases are more prevalent among the elderly and females. Dry eye syndrome can result in impaired vision, which increases the risk of fall and fracture when osteoporosis exists. In this study, we investigated whether osteoporosis is associated with an increased risk of developing dry eye syndrome. Methods Claims data from the National Health Insurance Research Database (NHIRD) of Taiwan were used to conduct a retrospective population-based cohort study covering the period from January 1, 2000, to December 31, 2011. Multiple logistic regression was used to determine whether osteoporosis is an independent factor in the risk of developing dry eye syndrome, with risk estimates presented in the form of odds ratios (ORs). Results The exclusion of patients with specific autoimmune diseases and those younger than 50 years old resulted in 42,365 patients in the osteoporosis group and 147,460 patients in the comparison group during the study period. The number of patients newly diagnosed with dry eye syndrome was 6,478 (15.29%) in the osteoporosis group and 15,396 (10.44%) in the comparison group. The crude OR of patients with osteoporosis developing dry eye syndrome was 1.55 and the 95% confidence interval (95% CI) was 1.50–1.60. After adjusting for patients’ age, sex, and underlying comorbidities, the adjusted OR was 1.26 and the 95% CI was 1.22–1.30. Subgroup analysis revealed this association in each age group and among females but not among males. Conclusions Our results demonstrate that osteoporosis is a risk factor for the subsequent development of dry eye syndrome. Clinicians should be aware of the early symptoms of dry eye syndrome in osteoporotic patients in order to prevent further complications.
Collapse
Affiliation(s)
- Yu-Ting Jeng
- Department of Ophthalmology, Taipei City Hospital, Taipei, Taiwan
| | - Shu-Yi Lin
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Hsiao-Yun Hu
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
- Institute of Public Health and Department of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - Oscar K. Lee
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Li-Lin Kuo
- Department of Ophthalmology, Taipei City Hospital, Taipei, Taiwan
- Zhongxiao Branch, Taipei City Hospital, Taipei, Taiwan
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
13
|
Abstract
Caffeine, a popular psychostimulant that acts as an adenosine receptor antagonist, is the most widely used drug in history, consumed daily by people worldwide. Knowledge of the physiological and pathological effects of caffeine is crucial in improving public health because of its widespread use. We provide a summary of the current evidence on the effect of caffeine on the eye. Most of the research conducted to date is in relation to cataract and glaucoma, two of the most common eye diseases among the elderly.
Collapse
|
14
|
Mancini JE, Ortiz G, Potilinstki C, Salica JP, Lopez ES, Croxatto JO, Gallo JE. Possible neuroprotective role of P2X2 in the retina of diabetic rats. Diabetol Metab Syndr 2018; 10:31. [PMID: 29682007 PMCID: PMC5898034 DOI: 10.1186/s13098-018-0332-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Purinergic receptors are expressed in different tissues including the retina. These receptors are involved in processes like cell growth, proliferation, activation and survival. ATP is the major activator of P2 receptors. In diabetes, there is a constant ATP production and this rise of ATP leads to a persistent activation of purinergic receptors. Antagonists of these receptors are used to evaluate their inhibition effects. Recently, the P2X2 has been reported to have a neuroprotective role. METHODS We carried out a study in groups of diabetic and non-diabetic rats (N = 5) treated with intraperitoneal injections of PPADS, at 9 and 24 weeks of diabetes. Control group received only the buffer. Animals were euthanized at 34 weeks of diabetes or at a matching age. Rat retinas were analyzed with immunohistochemistry and western blot using antibodies against GFAP, P2X2, P2Y2 and VEGF-A. RESULTS Diabetic animals treated with PPADS disclosed a much more extended staining of VEGF-A than diabetics without treatment. A lower protein expression of VEGF-A was found at the retina of diabetic animals without treatment of purinergic antagonists compared to diabetics with the antagonist treatment. Inhibition of P2X2 receptor by PPADS decreases cell death in the diabetic rat retina. CONCLUSION Results might be useful for better understanding the pathophysiology of diabetic retinopathy.
Collapse
Affiliation(s)
- Jorge E. Mancini
- Department of Ophthalmology, Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Juan D. Perón 1500, B1629AHJ Pilar, Buenos Aires Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| | - Gustavo Ortiz
- Department of Ophthalmology, Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Juan D. Perón 1500, B1629AHJ Pilar, Buenos Aires Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| | - Constanza Potilinstki
- Department of Ophthalmology, Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Juan D. Perón 1500, B1629AHJ Pilar, Buenos Aires Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| | - Juan P. Salica
- Department of Ophthalmology, Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Juan D. Perón 1500, B1629AHJ Pilar, Buenos Aires Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| | - Emiliano S. Lopez
- Department of Ophthalmology, Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Juan D. Perón 1500, B1629AHJ Pilar, Buenos Aires Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| | - J. Oscar Croxatto
- Department of Ocular Pathology, Fundación Oftalmlógica Argentina “Jorge Malbran”, Buenos Aires, Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| | - Juan E. Gallo
- Department of Ophthalmology, Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Juan D. Perón 1500, B1629AHJ Pilar, Buenos Aires Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| |
Collapse
|
15
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
16
|
Nebbioso M, Del Regno P, Gharbiya M, Sacchetti M, Plateroti R, Lambiase A. Analysis of the Pathogenic Factors and Management of Dry Eye in Ocular Surface Disorders. Int J Mol Sci 2017; 18:E1764. [PMID: 28805710 PMCID: PMC5578153 DOI: 10.3390/ijms18081764] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/30/2017] [Accepted: 08/09/2017] [Indexed: 12/17/2022] Open
Abstract
The tear film represents the interface between the eye and the environment. The alteration of the delicate balance that regulates the secretion and distribution of the tear film determines the dry eye (DE) syndrome. Despite having a multifactorial origin, the main risk factors are female gender and advanced age. Likewise, morphological changes in several glands and in the chemical composition of their secretions, such as proteins, mucins, lipidics, aqueous tears, and salinity, are highly relevant factors that maintain a steady ocular surface. Another key factor of recurrence and onset of the disease is the presence of local and/or systemic inflammation that involves the ocular surface. DE syndrome is one of the most commonly encountered diseases in clinical practice, and many other causes related to daily life and the increase in average life expectancy will contribute to its onset. This review will consider the disorders of the ocular surface that give rise to such a widespread pathology. At the end, the most recent therapeutic options for the management of DE will be briefly discussed according to the specific underlying pathology.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Policlinico Umberto I, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Paola Del Regno
- Department of Sense Organs, Policlinico Umberto I, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Magda Gharbiya
- Department of Sense Organs, Policlinico Umberto I, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Marta Sacchetti
- Department of Sense Organs, Policlinico Umberto I, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Rocco Plateroti
- Department of Sense Organs, Policlinico Umberto I, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Alessandro Lambiase
- Department of Sense Organs, Policlinico Umberto I, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
17
|
Zhang X, M VJ, Qu Y, He X, Ou S, Bu J, Jia C, Wang J, Wu H, Liu Z, Li W. Dry Eye Management: Targeting the Ocular Surface Microenvironment. Int J Mol Sci 2017; 18:E1398. [PMID: 28661456 PMCID: PMC5535891 DOI: 10.3390/ijms18071398] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/19/2017] [Accepted: 06/24/2017] [Indexed: 12/24/2022] Open
Abstract
Dry eye can damage the ocular surface and result in mild corneal epithelial defect to blinding corneal pannus formation and squamous metaplasia. Significant progress in the treatment of dry eye has been made in the last two decades; progressing from lubricating and hydrating the ocular surface with artificial tear to stimulating tear secretion; anti-inflammation and immune regulation. With the increase in knowledge regarding the pathophysiology of dry eye, we propose in this review the concept of ocular surface microenvironment. Various components of the microenvironment contribute to the homeostasis of ocular surface. Compromise in one or more components can result in homeostasis disruption of ocular surface leading to dry eye disease. Complete evaluation of the microenvironment component changes in dry eye patients will not only lead to appropriate diagnosis, but also guide in timely and effective clinical management. Successful treatment of dry eye should be aimed to restore the homeostasis of the ocular surface microenvironment.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Xiamen University affiliated Xiamen Eye Center, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Vimalin Jeyalatha M
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Yangluowa Qu
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Xin He
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Shangkun Ou
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Jinghua Bu
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Changkai Jia
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Junqi Wang
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Han Wu
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Zuguo Liu
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Xiamen University affiliated Xiamen Eye Center, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| | - Wei Li
- Eye Institute of Xiamen University, Xiamen 361102, China.
- Medical College of Xiamen University, Xiamen 361102, China.
- Xiamen University affiliated Xiamen Eye Center, Xiamen 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, China.
| |
Collapse
|
18
|
Panahi Y, Rajaee SM, Sahebkar A. Ocular Effects of Sulfur Mustard and Therapeutic Approaches. J Cell Biochem 2017; 118:3549-3560. [DOI: 10.1002/jcb.25892] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Yunes Panahi
- Chemical Injuries Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Seyyed Mahdi Rajaee
- Chemical Injuries Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | | |
Collapse
|
19
|
Crooke A, Guzman-Aranguez A, Carracedo G, de Lara MJP, Pintor J. Understanding the Presence and Roles of Ap 4A (Diadenosine Tetraphosphate) in the Eye. J Ocul Pharmacol Ther 2017; 33:426-434. [PMID: 28414592 DOI: 10.1089/jop.2016.0146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Diadenosine tetraphosphate abbreviated Ap4A is a naturally occurring dinucleotide, which is present in most of the ocular fluids. Due to its intrinsic resistance to enzyme degradation compared to mononucleotides, this molecule can exhibit profound actions on ocular tissues, including the ocular surface, ciliary body, trabecular meshwork, and probably the retina. The actions of Ap4A are mostly carried out by P2Y2 receptors, but the participation of P2X2 and P2Y6 in processes such as the regulation of intraocular pressure (IOP), together with the P2Y2, is pivotal. Beyond the physiological role, this dinucleotide can present on the ocular surface keeping a right production of tear secretion or regulating IOP. It is important to note that exogenous application of Ap4A to cells or animal models can significantly modify pathophysiological conditions and thus is an attractive therapeutic molecule. The ocular location where Ap4A actions have not been fully elucidated is in the retina. Although some analogues show interesting actions on pathological situations such as retinal detachment, little is known about the real effect of this dinucleotide, this being one of the challenges that require pursuing in the near future.
Collapse
Affiliation(s)
- Almudena Crooke
- 1 Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid , Madrid, Spain
| | - Ana Guzman-Aranguez
- 1 Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid , Madrid, Spain
| | - Gonzalo Carracedo
- 2 Departamento de Optometría y Visión, F. Óptica, Universidad Complutense de Madrid , Madrid, Spain
| | - Maria J Perez de Lara
- 1 Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid , Madrid, Spain
| | - Jesus Pintor
- 1 Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid , Madrid, Spain
| |
Collapse
|
20
|
Nebbioso M, Fameli V, Gharbiya M, Sacchetti M, Zicari AM, Lambiase A. Investigational drugs in dry eye disease. Expert Opin Investig Drugs 2016; 25:1437-1446. [DOI: 10.1080/13543784.2016.1249564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Jacobson KA, Civan MM. Ocular Purine Receptors as Drug Targets in the Eye. J Ocul Pharmacol Ther 2016; 32:534-547. [PMID: 27574786 PMCID: PMC5069731 DOI: 10.1089/jop.2016.0090] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
Agonists and antagonists of various subtypes of G protein coupled adenosine receptors (ARs), P2Y receptors (P2YRs), and ATP-gated P2X receptor ion channels (P2XRs) are under consideration as agents for the treatment of ocular diseases, including glaucoma and dry eye. Numerous nucleoside and nonnucleoside modulators of the receptors are available as research tools and potential therapeutic molecules. Three of the 4 subtypes of ARs have been exploited with clinical candidate molecules for treatment of the eye: A1, A2A, and A3. An A1AR agonist is in clinical trials for glaucoma, A2AAR reduces neuroinflammation, A3AR protects retinal ganglion cells from apoptosis, and both A3AR agonists and antagonists had been reported to lower intraocular pressure (IOP). Extracellular concentrations of endogenous nucleotides, including dinucleoside polyphosphates, are increased in pathological states, activating P2Y and P2XRs throughout the eye. P2YR agonists, including P2Y2 and P2Y6, lower IOP. Antagonists of the P2X7R prevent the ATP-induced neuronal apoptosis in the retina. Thus, modulators of the purinome in the eye might be a source of new therapies for ocular diseases.
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mortimer M. Civan
- Departments of Physiology and Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Carracedo G, Crooke A, Guzman-Aranguez A, Pérez de Lara MJ, Martin-Gil A, Pintor J. The role of dinucleoside polyphosphates on the ocular surface and other eye structures. Prog Retin Eye Res 2016; 55:182-205. [PMID: 27421962 DOI: 10.1016/j.preteyeres.2016.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 11/17/2022]
Abstract
Dinucleoside polyphosphates comprises a group of dinucleotides formed by two nucleosides linked by a variable number of phosphates, abbreviated NpnN (where n represents the number of phosphates). These compounds are naturally occurring substances present in tears, aqueous humour and in the retina. As the consequence of their presence, these dinucleotides contribute to many ocular physiological processes. On the ocular surface, dinucleoside polyphosphates can stimulate tear secretion, mucin release from goblet cells and they help epithelial wound healing by accelerating cell migration rate. These dinucleotides can also stimulate the presence of proteins known to protect the ocular surface against microorganisms, such as lysozyme and lactoferrin. One of the latest discoveries is the ability of some dinucleotides to facilitate the paracellular way on the cornea, therefore allowing the delivery of compounds, such as antiglaucomatous ones, more easily within the eye. The compound Ap4A has been described being abnormally elevated in patient's tears suffering of dry eye, Sjogren syndrome, congenital aniridia, or after refractive surgery, suggesting this molecule as biomarker for dry eye condition. At the intraocular level, some diadenosine polyphosphates are abnormally elevated in glaucoma patients, and this can be related to the stimulation of a P2Y2 receptor that increases the chloride efflux and water movement in the ciliary epithelium. In the retina, the dinucleotide dCp4U, has been proven to be useful to help in the recovery of retinal detachments. Altogether, dinucleoside polyphosphates are a group of compounds which present relevant physiological actions but which also can perform promising therapeutic benefits.
Collapse
Affiliation(s)
- Gonzalo Carracedo
- Department of Optics II (Optometry and Vision), Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Crooke
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria J Pérez de Lara
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Alba Martin-Gil
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
23
|
Giblin JP, Comes N, Strauss O, Gasull X. Ion Channels in the Eye: Involvement in Ocular Pathologies. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 104:157-231. [PMID: 27038375 DOI: 10.1016/bs.apcsb.2015.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The eye is the sensory organ of vision. There, the retina transforms photons into electrical signals that are sent to higher brain areas to produce visual sensations. In the light path to the retina, different types of cells and tissues are involved in maintaining the transparency of avascular structures like the cornea or lens, while others, like the retinal pigment epithelium, have a critical role in the maintenance of photoreceptor function by regenerating the visual pigment. Here, we have reviewed the roles of different ion channels expressed in ocular tissues (cornea, conjunctiva and neurons innervating the ocular surface, lens, retina, retinal pigment epithelium, and the inflow and outflow systems of the aqueous humor) that are involved in ocular disease pathophysiologies and those whose deletion or pharmacological modulation leads to specific diseases of the eye. These include pathologies such as retinitis pigmentosa, macular degeneration, achromatopsia, glaucoma, cataracts, dry eye, or keratoconjunctivitis among others. Several disease-associated ion channels are potential targets for pharmacological intervention or other therapeutic approaches, thus highlighting the importance of these channels in ocular physiology and pathophysiology.
Collapse
Affiliation(s)
- Jonathan P Giblin
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Nuria Comes
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Xavier Gasull
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|