1
|
Sadeghi-Kiakhani M, Hashemi E, Norouzi MM. Clean synthesis of silver nanoparticles (AgNPs) on polyamide fabrics by Verbascum thapsus L. (mullein) extract: characterization, colorimetric, antibacterial, and colorfastness studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32637-32648. [PMID: 38658510 DOI: 10.1007/s11356-024-33373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
The production of antibacterial colored textiles using nanomaterials (NMs) has become an ideal goal from both a research and industrial perspective. In this study, the clean synthesis and characterization of silver nanoparticles (AgNPs) on polyamide fabrics were performed using mullein extract for the first time. Natural dyes were extracted from mullein leaves using an ultrasonic method, with an optimal amount of 15 g/L. The synthesized AgNPs in different ratios of mullein extract and Ag ions were analyzed (using UV-visible spectroscopy) and dynamic light scattering (DLS). It was found that AgNPs synthesized with a ratio of 1:4 of mullein extract: to Ag ions had a diameter of 85 nm. The active site groups of the synthesized AgNPs were characterized using Fourier transform infrared spectroscopy (FT-IR). Nylon fabrics dyed with different ratios of mullein extract and Ag ions exhibited acceptable color strength values (K/S) of 3.36. Furthermore, the reduction in bacterial growth for dyed fabrics improved with an increase in the ratio of Ag ions, with a 100% reduction observed for a sample dyed with mullein extract: Ag ions at a ratio of 1:4. Overall, this method offers a simple, low-cost, and compatible process with environment without the consumption of any chemicals to producing nylon with acceptable antibacterial and dyeing properties.
Collapse
Affiliation(s)
- Mousa Sadeghi-Kiakhani
- Department of Organic Colorants, Institute for Color Science and Technology, Tehran, Iran.
| | - Elaheh Hashemi
- Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad-Mahdi Norouzi
- Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
2
|
Gonçalves MJ, de Oliveira ACV, Colla Prando A, Krebs de Souza C, Siqueira Curto Valle RDC, Barcellos IO, Tavares LBB. Application of different concentrations of the natural dye potassium norbixinate (annatto) in polyamide 6.6 fabrics. Nat Prod Res 2023:1-8. [PMID: 37950732 DOI: 10.1080/14786419.2023.2280178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/02/2023] [Indexed: 11/13/2023]
Abstract
Polyamide fabrics were dyed with concentrations ranging from 4% to 0.25% (o.w.f.) of the natural dye, potassium norbixinate (annatto). The exhaustion, chromatic coordinates, colouristic intensity (K/S), and fastness to washing and rubbing were evaluated. The natural dye was characterised, and its maximum absorption peaks were identified at 452 nm and 482 nm through UV-vis scanning. Its main chemical groups were identified by FTIR-ATR. All dyeings exhibited high exhaustion percentage, with a maximum of 98.4% for 1% dye concentration. The dyed samples displayed visually appealing orange hues, with a maximum K/S value of 6.9. Most of the fastness test results were rated between 5 and 4/5, remaining within the standards established by most textile industries. Potassium norbixinate exhibited a similar tinctorial behaviour to synthetic acid dyes for polyamide, suggesting ionic chemical reaction interaction between dye and polyamide, highlighting the potential use in the textile industry.
Collapse
Affiliation(s)
- Marcel Jefferson Gonçalves
- Postgraduate Program in Environmental Engineering, Regional University of Blumenau (FURB), Blumenau, Brazil
- Chemical Engineering Department, Regional University of Blumenau (FURB), Blumenau, Brazil
| | | | - Amábile Colla Prando
- Chemical Engineering Department, Regional University of Blumenau (FURB), Blumenau, Brazil
| | | | | | | | | |
Collapse
|
3
|
Epelle EI, Macfarlane A, Cusack M, Burns A, Okolie JA, Mackay W, Rateb M, Yaseen M. Ozone application in different industries: A review of recent developments. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 454:140188. [PMID: 36373160 PMCID: PMC9637394 DOI: 10.1016/j.cej.2022.140188] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 06/01/2023]
Abstract
Ozone - a powerful antimicrobial agent, has been extensively applied for decontamination purposes in several industries (including food, water treatment, pharmaceuticals, textiles, healthcare, and the medical sectors). The advent of the COVID-19 pandemic has led to recent developments in the deployment of different ozone-based technologies for the decontamination of surfaces, materials and indoor environments. The pandemic has also highlighted the therapeutic potential of ozone for the treatment of COVID-19 patients, with astonishing results observed. The key objective of this review is to summarize recent advances in the utilisation of ozone for decontamination applications in the above-listed industries while emphasising the impact of key parameters affecting microbial reduction efficiency and ozone stability for prolonged action. We realise that aqueous ozonation has received higher research attention, compared to the gaseous application of ozone. This can be attributed to the fact that water treatment represents one of its earliest applications. Furthermore, the application of gaseous ozone for personal protective equipment (PPE) and medical device disinfection has not received a significant number of contributions compared to other applications. This presents a challenge for which the correct application of ozonation can mitigate. In this review, a critical discussion of these challenges is presented, as well as key knowledge gaps and open research problems/opportunities.
Collapse
Affiliation(s)
- Emmanuel I Epelle
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
- ACS Clothing, 6 Dovecote Road Central Point Logistics Park ML1 4GP, United Kingdom
| | - Andrew Macfarlane
- ACS Clothing, 6 Dovecote Road Central Point Logistics Park ML1 4GP, United Kingdom
| | - Michael Cusack
- ACS Clothing, 6 Dovecote Road Central Point Logistics Park ML1 4GP, United Kingdom
| | - Anthony Burns
- ACS Clothing, 6 Dovecote Road Central Point Logistics Park ML1 4GP, United Kingdom
| | - Jude A Okolie
- Gallogly College of Engineering, University of Oklahoma, USA
| | - William Mackay
- School of Health & Life Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
| | - Mostafa Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
| | - Mohammed Yaseen
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
| |
Collapse
|
4
|
Abou Elmaaty T, Sayed-Ahmed K, Magdi M, Elsisi H. An eco-friendly method of extracting alizarin from Rubia tinctorum roots under supercritical carbon dioxide and its application to wool dyeing. Sci Rep 2023; 13:30. [PMID: 36593257 PMCID: PMC9807584 DOI: 10.1038/s41598-022-27110-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
Because of its low critical temperature and pressure levels, supercritical carbon dioxide (scCO2) is the most widely used supercritical fluid in the supercritical fluid extraction (SFE) technique. Alizarin was extracted from madder roots (Rubia tinctorum) using scCO2 under different conditions of co-solvent ratio (0-50%), temperature (45-95 °C), pressure (150-250 bar), extraction time (15-120 min), and flow rate (5-9 mL/min). Based on alizarin recovery and minimization of environmental risk, the optimum conditions were determined. SFE was optimum at 90% CO2:10% methanol (Me), 65 °C, 250 bar, 45 min, and 9 mL/min. The alizarin recovery, and its content in R. tinctorum extract (RE) under the optimum conditions were 1.34 g/kg roots, and 6.42%, respectively. Using conventional dyeing methods, wool fabrics were dyed with RE at different concentrations (2-6%). Various types of mordants were also used in the dyeing process, including chemical and bio-mordants. Color and fastness properties of dyed wool fabrics were evaluated based on RE concentration and mordant type. A higher RE concentration and the use of mordants, specifically Punica granatum (P. granatum) peels, increased the color characteristics. RE and dyed fabrics exhibited good antibacterial activity against the tested bacterial strains, especially Pseudomonas aeruginosa and Escherichia coli.
Collapse
Affiliation(s)
- Tarek Abou Elmaaty
- grid.462079.e0000 0004 4699 2981Department of Textile Printing, Dyeing and Finishing, Faculty of Applied Arts, Damietta University, Damietta, 34512 Egypt
| | - Khaled Sayed-Ahmed
- grid.462079.e0000 0004 4699 2981Department of Agricultural Chemistry, Faculty of Agriculture, Damietta University, Damietta, 34512 Egypt
| | - Mai Magdi
- grid.462079.e0000 0004 4699 2981Department of Textile Printing, Dyeing and Finishing, Faculty of Applied Arts, Damietta University, Damietta, 34512 Egypt
| | - Hanan Elsisi
- grid.462079.e0000 0004 4699 2981Department of Textile Printing, Dyeing and Finishing, Faculty of Applied Arts, Damietta University, Damietta, 34512 Egypt
| |
Collapse
|
5
|
Sk MS, Akram W, Mia R, Fang J, Kabir SMM. Fabrication of UV-Protective Polyester Fabric with Polysorbate 20 Incorporating Fluorescent Color. Polymers (Basel) 2022; 14:polym14204366. [PMID: 36297944 PMCID: PMC9610945 DOI: 10.3390/polym14204366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Technological advancement leads researchers to develop multifunctional materials. Considering such trends, this study aimed to conjugate dual functionality in a single material to satisfy aesthetic and functional necessities. We investigated the potentiality of polysorbate 20 to perform as an effective ultraviolet absorber to develop UV-protective fabric. Coumarin derivative (Benzoxazolyl type) disperse dyes are well-known as fluorescent colors. On the other hand, luminescence materials are conspicuous and viable for fashion trends. Deliberate utilization of this inherent property of the dye and incorporation of polysorbate fulfilled the need for dual functionality. In addition, the knitted fabric structure enhanced wearing comfort as well. The effect of polysorbate consolidated the PET fabric as an excellent UV absorber, exhibiting an ultraviolet protection factor (UPF) of 53.71 and a blocking percentage of more than 95% for both UVA and UVB. Surface morphology was studied by scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FTIR) with attenuated mode was used to investigate chemical modification. Moreover, X-ray diffraction (XRD) investigated the crystallography of the surface. Reflectance spectrophotometric analysis unveiled the color strength (K/S) of the dyed polyester fabrics. Finally, light fastness assessment revealed that the developed samples could resist a certain amount of photo fading under a controlled testing environment with the increment of ratings towards betterment.
Collapse
Affiliation(s)
- Md. Salauddin Sk
- Department of Wet Process Engineering, Bangladesh University of Textiles, Tejgaon, Dhaka 1208, Bangladesh
| | - Wasim Akram
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Rony Mia
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
- Correspondence: (R.M.); (J.F.)
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Correspondence: (R.M.); (J.F.)
| | - Shekh Md. Mamun Kabir
- Department of Wet Process Engineering, Bangladesh University of Textiles, Tejgaon, Dhaka 1208, Bangladesh
| |
Collapse
|
6
|
Lordelo R, Botelho JRS, Morais PV, de Sousa HC, Branco R, Dias AMA, Reis MS. Evaluation of the Microbiological Effectiveness of Three Accessible Mask Decontamination Methods and Their Impact on Filtration, Air Permeability and Physicochemical Properties. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6567. [PMID: 35682153 PMCID: PMC9180249 DOI: 10.3390/ijerph19116567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
The need to secure public health and mitigate the environmental impact associated with the massified use of respiratory protective devices (RPD) has been raising awareness for the safe reuse of decontaminated masks by individuals and organizations. Among the decontamination treatments proposed, in this work, three methods with the potential to be adopted by households and organizations of different sizes were analysed: contact with nebulized hydrogen peroxide (H2O2); immersion in commercial bleach (NaClO) (sodium hypochlorite, 0.1% p/v); and contact with steam in microwave steam-sanitizing bags (steam bag). Their decontamination effectiveness was assessed using reference microorganisms following international standards (issued by ISO and FDA). Furthermore, the impact on filtration efficiency, air permeability and several physicochemical and structural characteristics of the masks, were evaluated for untreated masks and after 1, 5 and 10 cycles of treatment. Three types of RPD were analysed: surgical, KN95, and cloth masks. Results demonstrated that the H2O2 protocol sterilized KN95 and surgical masks (reduction of >6 log10 CFUs) and disinfected cloth masks (reduction of >3 log10 CFUs). The NaClO protocol sterilized surgical masks, and disinfected KN95 and cloth masks. Steam bags sterilized KN95 and disinfected surgical and cloth masks. No relevant impact was observed on filtration efficiency.
Collapse
Affiliation(s)
- Roberta Lordelo
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (R.L.); (R.B.)
| | - José Rafael S. Botelho
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II—Pinhal de Marrocos, 3030-790 Coimbra, Portugal; (J.R.S.B.); (H.C.d.S.); (A.M.A.D.)
| | - Paula V. Morais
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (R.L.); (R.B.)
| | - Hermínio C. de Sousa
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II—Pinhal de Marrocos, 3030-790 Coimbra, Portugal; (J.R.S.B.); (H.C.d.S.); (A.M.A.D.)
| | - Rita Branco
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (R.L.); (R.B.)
| | - Ana M. A. Dias
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II—Pinhal de Marrocos, 3030-790 Coimbra, Portugal; (J.R.S.B.); (H.C.d.S.); (A.M.A.D.)
| | - Marco S. Reis
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II—Pinhal de Marrocos, 3030-790 Coimbra, Portugal; (J.R.S.B.); (H.C.d.S.); (A.M.A.D.)
| |
Collapse
|
7
|
Electron beam irradiation treatment of textiles materials: a review. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02952-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractElectron beam irradiation technology has gained more attention as it appears to be a promising economically and environmentally sustainable alternative to traditional wet-chemical processing. It is an advanced approach that is clean, solvent-free, time-saving, and ecologically benign with acceptable handling and operation properties. This review provides a study of the latest literature on the technology of electron beam irradiation surface modification of textile. Considerable emphasis is also placed on the most novel applications of electron beam irradiation such as the functionalization of textile materials, which leads to the development of alternative sustainable techniques or revolutionary advanced materials soon.
Graphical abstract
Collapse
|
8
|
Optical Behavior of Curcuminoid Hybrid Systems as Coatings Deposited on Polyester Fibers. COATINGS 2022. [DOI: 10.3390/coatings12020271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The recent development of the “eco-friendly” current has brought to the attention of researchers natural dyes that are biodegradable, do not cause allergies and generally have anti-UV protection, and antioxidant and antibacterial properties. In this study, we aimed to obtain hybrid materials of the dye–host matrix type, by using the sol–gel process. The silica network was generated by tetraethylorthosilicates and modified with organic siloxane derivatives: phenyltriethoxysilane, 3-glycidoxypropyltriethoxysilane, dimethoxydimethylsilane and dimethoxydiphenylsilane. The nanocomposites obtained by embedding curcumin in siloxane matrices were deposited on polyester fabric and evaluated for their properties, relative to the type of organic network modifier used. Fabrics covered with curcuminoid hybrid systems provide a hydrophobic surface, have fluorescent properties and a UPF +50, and, therefore, they can be used in various fields where it is necessary for textiles to provide signaling, self-cleaning or protection properties against ultraviolet radiation. The coated textile materials have very good resistance properties after several repeated washing cycles, and maintain the original UV protection factor at high values even after washing or during rubbing tests.
Collapse
|
9
|
Hasan MU, Adeel S, Batool F, Ahmad T, Tang RC, Amin N, Khan SR. Sustainable application of Cassia obovata-based chrysophanic acid as potential source of yellow natural colorant for textile dyeing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10740-10753. [PMID: 34524676 DOI: 10.1007/s11356-021-16447-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
In the current pandemic scenario, sustainable green products particularly antiviral, antioxidant, and antibacterial in nature are gaining worldwide fame in almost every walk of life. Cassia obovata (C. obovata) has been valorized as a source of yellow natural dye for nylon dyeing. For the isolation of dye extracts and for surface tuning, nylon fabrics were treated with microwave rays up to 10 min. For getting new shades with good to excellent fastness characteristics, sustainable bio-mordants in comparison with chemical mordants have been used at 60 °C, 70 °C, and 80°C. It has been found that for getting effective colorant yield, acidic extract should be exposed to MW ray treatment up to 6 min, and for getting improved fastness rating, bio-mordants have given excellent color characteristics. Statistical optimization of dyeing variable shows that application of 40 mL of C. obovata acidic extract of RE of 6 pH containing 3 g/100 mL of salt when employed at 55 °C for 45 min has given excellent results onto irradiated nylon fabric (RNF). It is inferred that Cassia obovata has an excellent potential for coloration of surface-modified fabrics, where the application of low amount of bio-mordants under statistical optimized conditions has made process more ecological, economical, and sustainable.
Collapse
Affiliation(s)
- Mahmood Ul Hasan
- Department of Chemistry, Govt. College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shahid Adeel
- Department of Chemistry, Govt. College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Fatima Batool
- Department of Botany, Division of Science and Technology, University of Education Lahore, Lahore, Pakistan
| | - Tanvir Ahmad
- Department of Statistics, Govt. College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ren-Cheng Tang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Nimra Amin
- Department of Applied Chemistry, Govt. College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shahid Rehman Khan
- Applied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore, Pakistan
| |
Collapse
|
10
|
Prewetting Induced Hydrophilicity to Augment Photocatalytic Activity of Nanocalcite @ Polyester Fabric. Polymers (Basel) 2022; 14:polym14020295. [PMID: 35054700 PMCID: PMC8777986 DOI: 10.3390/polym14020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/01/2022] [Accepted: 01/06/2022] [Indexed: 11/29/2022] Open
Abstract
To eliminate imidacloprid insecticide from wastewater, nanocalcite was grafted onto the surface of pretreated polyester fabric. The process of seeding was followed by the low temperature hydrothermal method for the growth of nanocalcite for the functionalization of fabric. The goal of this study was to improve the hydrophilicity of the nanocalcite photocatalyst that had been grafted onto the surface of polyester fabric (PF) using acidic and basic prewetting techniques. The morphological characteristics, crystalline nature, surface charge density, functional groups of surface-modified nanocalcite @ PF were determined via SEM, XRD, FTIR, and Zeta potential (ZP), respectively. Characterization results critically disclosed surface roughness due to excessive induction of hydroxyl groups, rhombohedral crystal structure, and high charge density (0.721 mS/cm). Moreover, contact angle of nanocalcite @ PF was calculated to be 137.54° while after acidic and basic prewetting, it was reduced to 87.17° and 48.19°. Similarly, bandgap of the as fabricated nanocalcite was found to be 3.5 eV, while basic prewetted PF showed a reduction in band gap (2.9 eV). The solar photocatalytic mineralization of imidacloprid as a probe pollutant was used to assess the improvement in photocatalytic activity of nanocalcite @ PF after prewetting. Response surface methodology was used to statistically optimize the solar exposure time, concentration of the oxidant, and initial pH of the reaction mixture. Maximum solar photocatalytic degradation of the imidacloprid was achieved by basic prewetted nanocalcite @ PF (up to 91.49%), which was superior to acidic prewetted fabric and as-fabricated nanocalcite @ PF. Furthermore, HPLC and FTIR findings further indicated that imidacloprid was decomposed vastly to harmless species by basic prewetted nanocalcite @ PF.
Collapse
|
11
|
Andra S, Balu SK, Jeevanandam J, Muthalagu M. Emerging nanomaterials for antibacterial textile fabrication. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1355-1382. [PMID: 33710422 DOI: 10.1007/s00210-021-02064-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022]
Abstract
In recent times, the search for innovative material to fabricate smart textiles has been increasing to satisfy the expectation and needs of the consumers, as the textile material plays a key role in the evolution of human culture. Further, the textile materials provide an excellent environment for the microbes to grow, because of their large surface area and ability to retain moisture. In addition, the growth of harmful bacteria on the textile material not only damages them but also leads to intolerable foul odour and significant danger to public health. In particular, the pathogenic bacteria present in the fabric surface can cause severe skin infections such as skin allergy and irritation via direct human contact and even can lead to heart problems and pneumonia in certain cases. Recently, nanoparticles and nanomaterials play a significant role in textile industries for developing functional smart textiles with self-cleaning, UV-protection, insect repellent, waterproof, anti-static, flame-resistant and antimicrobial-resistant properties. Thus, this review is an overview of various textile fibres that favour bacterial growth and potential antibacterial nanoparticles that can inhibit the growth of bacteria on fabric surfaces. In addition, the probable antibacterial mechanism of nanoparticles and the significance of the fabric surface modification and fabric finishes in improving the long-term antibacterial efficacy of nanoparticle-coated fabrics were also discussed.
Collapse
Affiliation(s)
- Swetha Andra
- Department of Textile Technology, Anna University, Chennai, India
| | | | - Jaison Jeevanandam
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | | |
Collapse
|
12
|
Brudzyńska P, Sionkowska A, Grisel M. Plant-Derived Colorants for Food, Cosmetic and Textile Industries: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3484. [PMID: 34201459 PMCID: PMC8269454 DOI: 10.3390/ma14133484] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 11/16/2022]
Abstract
This review provides a report on properties and recent research advances in the application of plant-derived colorants in food, cosmetics and textile materials. The following colorants are reviewed: Polyphenols (anthocyanins, flavonol-quercetin and curcumin), isoprenoids (iridoids, carotenoids and quinones), N-heterocyclic compounds (betalains and indigoids), melanins and tetrapyrroles with potential application in industry. Future aspects regarding applications of plant-derived colorants in the coloration of various materials are also discussed.
Collapse
Affiliation(s)
- Patrycja Brudzyńska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland;
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland;
| | - Michel Grisel
- Chemistry Department, UNILEHAVRE, FR 3038 CNRS, URCOM EA3221, Normandie University, 76600 Le Havre, France;
| |
Collapse
|
13
|
Palacios-Mateo C, van der Meer Y, Seide G. Analysis of the polyester clothing value chain to identify key intervention points for sustainability. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:2. [PMID: 33432280 PMCID: PMC7787125 DOI: 10.1186/s12302-020-00447-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/08/2020] [Indexed: 05/04/2023]
Abstract
Clothing is one of the primary human needs, and the demand is met by the global production of thousands of tons of textile fibers, fabrics and garments every day. Polyester clothing manufactured from oil-based polyethylene terephthalate (PET) is the market leader. Conventional PET creates pollution along its entire value chain-during the production, use and end-of-life phases-and also contributes to the unsustainable depletion of resources. The consumption of PET garments thus compromises the quality of land, water and air, destroys ecosystems, and endangers human health. In this article, we discuss the different stages of the value chain for polyester clothing from the perspective of sustainability, describing current environmental challenges such as pollution from textile factory wastewater, and microfibers released from clothing during the laundry cycle. We also consider potential solutions such as enhanced reuse and recycling. Finally, we propose a series of recommendations that should be applied to polyester clothing at all stages along the value chain, offering the potential for meaningful and effective change to improve the environmental sustainability of polyester textiles on a global scale.
Collapse
Affiliation(s)
- Cristina Palacios-Mateo
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Yvonne van der Meer
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Gunnar Seide
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
14
|
El-Alfy EA, El-Bisi MK, Taha GM, Ibrahim HM. Preparation of biocompatible chitosan nanoparticles loaded by tetracycline, gentamycin and ciprofloxacin as novel drug delivery system for improvement the antibacterial properties of cellulose based fabrics. Int J Biol Macromol 2020; 161:1247-1260. [DOI: 10.1016/j.ijbiomac.2020.06.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022]
|
15
|
Mihiri Ekanayake U, Dissanayake D, Rathuwadu N, Kumarasinghe R, Rodrigo SK, Mantilaka M. Facile fabrication of fluoro-polymer self-assembled ZnO nanoparticles mediated, durable and robust omniphobic surfaces on polyester fabrics. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Anjum AS, Ali M, Sun KC, Riaz R, Jeong SH. Self-assembled nanomanipulation of silica nanoparticles enable mechanochemically robust super hydrophobic and oleophilic textile. J Colloid Interface Sci 2019; 563:62-73. [PMID: 31865049 DOI: 10.1016/j.jcis.2019.12.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Non-wettable fabric surfaces with excellent mechanochemical robustness for practical applications have attracted much attention from researchers in recent years. However, such surfaces suffer from stability issues when exposed to harsh environments because of the weak bonding of the functional materials. EXPERIMENTS A unique facile approach is proposed to enhance the adhesion strength and hydrophobicity by improving the hierarchal roughness and opposite charge attraction using alkali and cationized bovine serum albumin (cBSA) respectively. Alkaline etching generated the microroughness and functional groups which facilitated the enhanced adsorption of material on fiber surfaces. The etched fabrics were further treated with cBSA to introduce the positive charged functional groups which enabled the crosslinking of silica nanoparticles with the fiber surfaces through strong electrostatic attraction. FINDINGS Benefitting from this novel approach, the improved properties of the samples were confirmed through the water contact angle (WCA), self-cleaning effect, chemical/mechanical stability, and selective absorption of organic solvents. Superhydrophobic fabric with WCA of 171° was fabricated by alkaline etching followed by cationization. Along with the excellent hydrophobicity, superhydrophobic fabric exhibited strong chemical, and mechanical stability and self-cleaning property. The superhydrophobic fabric was utilized for the selective absorption of organic solvents from water because of its superoleophilic characteristics. The significant fabrication strategy and promising performance of superhydrophobic fabrics make these fabrics feasible for large-scale production for various industrial applications i.e. in harsh chemical industries and waste water treatment.
Collapse
Affiliation(s)
- Aima Sameen Anjum
- Department of Organic and Nano Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Mumtaz Ali
- Department of Organic and Nano Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Kyung Chul Sun
- Department of Organic and Nano Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Rabia Riaz
- Department of Organic and Nano Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sung Hoon Jeong
- Department of Organic and Nano Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
17
|
Pat S, Korkmaz Ş, Özen S, Şenay V. Optical, surface and magnetic properties of the Ti-doped GaN nanosheets on glass and PET substrates by thermionic vacuum arc (TVA) method. PARTICULATE SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1080/02726351.2017.1368753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Suat Pat
- Physics Department, Eskisehir Osmangazi University, Eskişehir, Turkey
| | - Şadan Korkmaz
- Physics Department, Eskisehir Osmangazi University, Eskişehir, Turkey
| | - Soner Özen
- Physics Department, Eskisehir Osmangazi University, Eskişehir, Turkey
| | - Volkan Şenay
- Primary Science Education Department, Bayburt University, Bayburt, Turkey
| |
Collapse
|