1
|
Hussain Z, Mahmood A, Shah Q, Imran A, Mughal EU, Khan W, Baig A, Iqbal J, Mumtaz A. Synthesis and Evaluation of Amide and Thiourea Derivatives as Carbonic Anhydrase (CA) Inhibitors. ACS OMEGA 2022; 7:47251-47264. [PMID: 36570246 PMCID: PMC9773353 DOI: 10.1021/acsomega.2c06513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Series of sulfonamide-substituted amide (9-11), benzamide (12-15), and 1,3-disubstituted thiourea (17-26) derivatives were synthesized from a common precursor, i.e., substituted benzoyl chlorides. Structures of all of the synthesized compounds were characterized by spectroscopic techniques (1H nuclear magnetic resonance (NMR),13C NMR, and Fourier transform infrared spectroscopy (FTIR)). All of the amide (9-15) and thiourea (17-26) derivatives were screened against human carbonic anhydrases, hCA-II, hCA IX, and hCA-XII. Sulfonamide-substituted amides 9, 11, and 12 were found to be excellent selective inhibitors with IC50 values of 0.18 ± 0.05, 0.17 ± 0.05, and 0.58 ± 0.05 μM against hCA II, hCA IX, and hCA XII, respectively. Compound 9 was found to be highly selective for hCA II and about 6-fold more potent as compared to the standard antagonist, acetazolamide. Safe toxicity profiling of the most potent and selective compounds was determined against normal BHK-21 and HEK-293 T cells. Molecular docking studies were performed, which described the type of interactions between the synthesized compounds and enzyme proteins. In addition, in silico absorption, distribution, metabolism, and excretion (ADME) studies were performed, which showed that all of the synthesized molecules fulfilled the druggability criteria.
Collapse
Affiliation(s)
- Zahid Hussain
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Abid Mahmood
- Center
for Advance Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad22060, Pakistan
| | - Qasim Shah
- Center
for Advance Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad22060, Pakistan
| | - Aqeel Imran
- Center
for Advance Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad22060, Pakistan
| | | | - Wajiha Khan
- Department
of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Ayesha Baig
- Department
of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Jamshed Iqbal
- Center
for Advance Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad22060, Pakistan
| | - Amara Mumtaz
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| |
Collapse
|
2
|
Carboranes in drug discovery, chemical biology and molecular imaging. Nat Rev Chem 2022; 6:486-504. [PMID: 37117309 DOI: 10.1038/s41570-022-00400-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/08/2022]
Abstract
There exists a paucity of structural innovation and limited molecular diversity associated with molecular frameworks in drug discovery and biomolecular imaging/chemical probe design. The discovery and exploitation of new molecular entities for medical and biological applications will necessarily involve voyaging into previously unexplored regions of chemical space. Boron clusters, notably the carboranes, offer an alternative to conventional (poly)cyclic organic frameworks that may address some of the limitations associated with the use of novel molecular frameworks in chemical biology or medicine. The high thermal stability, unique 3D structure and aromaticity, kinetic inertness to metabolism and ability to engage in unusual types of intermolecular interactions, such as dihydrogen bonds, with biological receptors make carboranes exquisite frameworks in the design of probes for chemical biology, novel drug candidates and biomolecular imaging agents. This Review highlights the key developments of carborane derivatives made over the last decade as new design tools in medicinal chemistry and chemical biology, showcasing the versatility of this unique family of boron compounds.
Collapse
|
3
|
Gnanasekaran R, Xu Y. Understanding the Energetic Components Influencing the Thermodynamic Quantities of Carbonic Anhydrase Protein upon Ligand Binding. ChemistrySelect 2022. [DOI: 10.1002/slct.202200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Yao Xu
- Warshel Institute for Computational Biology School of Life and Health Sciences The Chinese University of Hong Kong (Shenzhen) Shenzhen 518172 P. R. China
- School of Life Science University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
4
|
Kugler M, Nekvinda J, Holub J, El Anwar S, Das V, Šícha V, Pospíšilová K, Fábry M, Král V, Brynda J, Kašička V, Hajdúch M, Řezáčová P, Grüner B. Inhibitors of CA IX Enzyme Based on Polyhedral Boron Compounds. Chembiochem 2021; 22:2741-2761. [PMID: 33939874 DOI: 10.1002/cbic.202100121] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/30/2021] [Indexed: 11/12/2022]
Abstract
This review describes recent progress in the design and development of inhibitors of human carbonic anhydrase IX (CA IX) based on space-filling carborane and cobalt bis(dicarbollide) clusters. CA IX enzyme is known to play a crucial role in cancer cell proliferation and metastases. The new class of potent and selective CA IX inhibitors combines the structural motif of a bulky inorganic cluster with an alkylsulfamido or alkylsulfonamido anchor group for Zn2+ ion in the enzyme active site. Detailed structure-activity relationship (SAR) studies of a large series containing 50 compounds uncovered structural features of the cluster-containing inhibitors that are important for efficient and selective inhibition of CA IX activity. Preclinical evaluation of selected compounds revealed low toxicity, favorable pharmacokinetics and ability to reduce tumor growth. Cluster-containing inhibitors of CA IX can thus be considered as promising candidates for drug development and/or for combination therapy in boron neutron capture therapy (BNCT).
Collapse
Affiliation(s)
- Michael Kugler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Jan Nekvinda
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Josef Holub
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Suzan El Anwar
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
| | - Václav Šícha
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Klára Pospíšilová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Vlastimil Král
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| |
Collapse
|
5
|
Šolínová V, Brynda J, Šícha V, Holub J, Grűner B, Kašička V. Determination of acidity constants, ionic mobilities, and hydrodynamic radii of carborane-based inhibitors of carbonic anhydrases by capillary electrophoresis. Electrophoresis 2021; 42:910-919. [PMID: 33405254 DOI: 10.1002/elps.202000298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/08/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022]
Abstract
Capillary electrophoresis (CE) has been applied for determination of the thermodynamic acidity constants (pKa ) of the sulfamidoalkyl and sulfonamidoalkyl groups, the actual and limiting ionic mobilities and hydrodynamic radii of important compounds, eight carborane-based inhibitors of carbonic anhydrases, which are potential new anticancer drugs. Two types of carboranes were investigated, (i) icosahedral cobalt bis(dicarbollide)(1-) ion with sulfamidoalkyl moieties, and (ii) 7,8-nido-dicarbaundecaborate with sulfonamidoalkyl side chains. First, the mixed acidity constants, pKa mix , of the sulfamidoalkyl and sulfonamidoalkyl groups of the above carboranes and their actual ionic mobilities were determined by nonlinear regression analysis of the pH dependences of their effective electrophoretic mobility measured by capillary electrophoresis in the pH range 8.00-12.25, at constant ionic strength (25 mM), and constant temperature (25°C). Second, the pKa mix were recalculated to the thermodynamic pKa s using the Debye-Hückel theory. The sulfamidoalkyl and sulfonamidoalkyl groups were found to be very weakly acidic with the pKa s in the range 10.78-11.45 depending on the type of carborane cluster and on the position and length of the alkyl chain on the carborane scaffold. These pKa s were in a good agreement with the pKa s (10.67-11.27) obtained by new program AnglerFish (freeware at https://echmet.natur.cuni.cz), which provides thermodynamic pKa s and limiting ionic mobilities directly from the raw CE data. The absolute values of the limiting ionic mobilities of univalent and divalent carborane anions were in the range 18.3-27.8 TU (Tiselius unit, 1 × 10-9 m2 /Vs), and 36.4-45.9 TU, respectively. The Stokes hydrodynamic radii of univalent and divalent carborane anions varied in the range 0.34-0.52 and 0.42-0.52 nm, respectively.
Collapse
Affiliation(s)
- Veronika Šolínová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| | - Jiří Brynda
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czechia
| | - Václav Šícha
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež, Czechia
| | - Josef Holub
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež, Czechia
| | - Bohumír Grűner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež, Czechia
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|
6
|
Alberti D, Michelotti A, Lanfranco A, Protti N, Altieri S, Deagostino A, Geninatti Crich S. In vitro and in vivo BNCT investigations using a carborane containing sulfonamide targeting CAIX epitopes on malignant pleural mesothelioma and breast cancer cells. Sci Rep 2020; 10:19274. [PMID: 33159147 PMCID: PMC7648750 DOI: 10.1038/s41598-020-76370-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
This study aims at merging the therapeutic effects associated to the inhibition of Carbonic Anhydrase IX (CAIX), an essential enzyme overexpressed by cancer cells including mesothelioma and breast cancer, with those ones brought by the application of Boron Neutron Capture Therapy (BNCT). This task was pursued by designing a sulfonamido-functionalised-carborane (CA-SF) that acts simultaneously as CAIX inhibitor and boron delivery agent. The CAIX expression, measured by Western blot analysis, resulted high in both mesothelioma and breast tumours. This finding was exploited for the delivery of a therapeutic dose of boron (> 20 μg/g) to the cancer cells. The synergic cytotoxic effects operated by the enzymatic inhibition and neutron irradiation was evaluated in vitro on ZL34, AB22 and MCF7 cancer cells. Next, an in vivo model was prepared by subcutaneous injection of AB22 cells in Balb/c mice and CA-SF was administered as inclusion complex with a β-cyclodextrin oligomer. After irradiation with thermal neutrons tumour growth was evaluated for 25 days by MRI. The obtained results appear very promising as the tumour growth was definitively markedly lower in comparison to controls and the CAIX inhibitor alone. This approach appears promising and it call consideration for the design of new therapeutic routes to cure patients affected by this disease.
Collapse
Affiliation(s)
- Diego Alberti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Alessia Michelotti
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Alberto Lanfranco
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Nicoletta Protti
- Department of Physics, University of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy.,Nuclear Physics National Institute (INFN), Unit of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy
| | - Saverio Altieri
- Department of Physics, University of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy.,Nuclear Physics National Institute (INFN), Unit of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy
| | - Annamaria Deagostino
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy.
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|
7
|
Sulfonamido carboranes as highly selective inhibitors of cancer-specific carbonic anhydrase IX. Eur J Med Chem 2020; 200:112460. [PMID: 32505851 DOI: 10.1016/j.ejmech.2020.112460] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022]
Abstract
Carbonic anhydrase IX (CA IX) is a transmembrane enzyme overexpressed in hypoxic tumors, where it plays an important role in tumor progression. Specific CA IX inhibitors potentially could serve as anti-cancer drugs. We designed a series of sulfonamide inhibitors containing carborane clusters based on prior structural knowledge of carborane binding into the enzyme active site. Two types of carborane clusters, 12-vertex dicarba-closo-dodecaborane and 11-vertex 7,8-dicarba-nido-undecaborate (dicarbollide), were connected to a sulfonamide moiety via aliphatic linkers of varying lengths (1-4 carbon atoms; n = 1-4). In vitro testing of CA inhibitory potencies revealed that the optimal linker length for selective inhibition of CA IX was n = 3. A 1-sulfamidopropyl-1,2-dicarba-closo-dodecaborane (3) emerged as the strongest CA IX inhibitor from this series, with a Ki value of 0.5 nM and roughly 1230-fold selectivity towards CA IX over CA II. X-ray studies of 3 yielded structural insights into their binding modes within the CA IX active site. Compound 3 exhibited moderate cytotoxicity against cancer cell lines and primary cell lines in 2D cultures. Cytotoxicity towards multicellular spheroids was also observed. Moreover, 3 significantly lowered the amount of CA IX on the cell surface both in 2D cultures and spheroids and facilitated penetration of doxorubicin. Although 3 had only a moderate effect on tumor size in mice, we observed favorable ADME properties and pharmacokinetics in mice, and preferential presence in brain over serum.
Collapse
|
8
|
Palese LL. Oxygen-oxygen distances in protein-bound crystallographic water suggest the presence of protonated clusters. Biochim Biophys Acta Gen Subj 2020; 1864:129480. [DOI: 10.1016/j.bbagen.2019.129480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
|
9
|
Grüner B, Brynda J, Das V, Šícha V, Štěpánková J, Nekvinda J, Holub J, Pospíšilová K, Fábry M, Pachl P, Král V, Kugler M, Mašek V, Medvedíková M, Matějková S, Nová A, Lišková B, Gurská S, Džubák P, Hajdúch M, Řezáčová P. Metallacarborane Sulfamides: Unconventional, Specific, and Highly Selective Inhibitors of Carbonic Anhydrase IX. J Med Chem 2019; 62:9560-9575. [PMID: 31568723 DOI: 10.1021/acs.jmedchem.9b00945] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Carbonic anhydrase IX (CAIX) is a transmembrane enzyme that regulates pH in hypoxic tumors and promotes tumor cell survival. Its expression is associated with the occurrence of metastases and poor prognosis. Here, we present nine derivatives of the cobalt bis(dicarbollide)(1-) anion substituted at the boron or carbon sites by alkysulfamide group(s) as highly specific and selective inhibitors of CAIX. Interactions of these compounds with the active site of CAIX were explored on the atomic level using protein crystallography. Two selected derivatives display subnanomolar or picomolar inhibition constants and high selectivity for the tumor-specific CAIX over cytosolic isoform CAII. Both derivatives had a time-dependent effect on the growth of multicellular spheroids of HT-29 and HCT116 colorectal cancer cells, facilitated penetration and/or accumulation of doxorubicin into spheroids, and displayed low toxicity and showed promising pharmacokinetics and a significant inhibitory effect on tumor growth in syngenic breast 4T1 and colorectal HT-29 cancer xenotransplants.
Collapse
Affiliation(s)
- Bohumír Grüner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , 250 68 Řež , Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague , Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences , Flemingovo nam. 2 , 16610 Prague , Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , 77900 Olomouc , Czech Republic
| | - Václav Šícha
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , 250 68 Řež , Czech Republic
| | - Jana Štěpánková
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , 77900 Olomouc , Czech Republic
| | - Jan Nekvinda
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , 250 68 Řež , Czech Republic.,Department of Organic Chemistry, Faculty of Natural Science , Charles University , Hlavova 2030 , 12800 Prague 2, Czech Republic
| | - Josef Holub
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , 250 68 Řež , Czech Republic
| | - Klára Pospíšilová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague , Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics of the Czech Academy of Sciences , Flemingovo nam. 2 , 16610 Prague , Czech Republic
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague , Czech Republic
| | - Vlastimil Král
- Institute of Molecular Genetics of the Czech Academy of Sciences , Flemingovo nam. 2 , 16610 Prague , Czech Republic
| | - Michael Kugler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague , Czech Republic
| | - Vlastimil Mašek
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic
| | - Martina Medvedíková
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic
| | - Stanislava Matějková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague , Czech Republic
| | - Alice Nová
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic
| | - Barbora Lišková
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , 77900 Olomouc , Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine , Olomouc, Hněvotínská 1333/5 , 77900 Olomouc , Czech Republic.,Cancer Research Czech Republic , Hněvotínská 5 , 77900 Olomouc , Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2 , 16610 Prague , Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences , Flemingovo nam. 2 , 16610 Prague , Czech Republic
| |
Collapse
|
10
|
Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Q Rev Biophys 2019; 51:e10. [PMID: 30912486 DOI: 10.1017/s0033583518000082] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of rational drug design is to develop small molecules using a quantitative approach to optimize affinity. This should enhance the development of chemical compounds that would specifically, selectively, reversibly, and with high affinity interact with a target protein. It is not yet possible to develop such compounds using computational (i.e., in silico) approach and instead the lead molecules are discovered in high-throughput screening searches of large compound libraries. The main reason why in silico methods are not capable to deliver is our poor understanding of the compound structure-thermodynamics and structure-kinetics correlations. There is a need for databases of intrinsic binding parameters (e.g., the change upon binding in standard Gibbs energy (ΔGint), enthalpy (ΔHint), entropy (ΔSint), volume (ΔVintr), heat capacity (ΔCp,int), association rate (ka,int), and dissociation rate (kd,int)) between a series of closely related proteins and a chemically diverse, but pharmacophoric group-guided library of compounds together with the co-crystal structures that could help explain the structure-energetics correlations and rationally design novel compounds. Assembly of these data will facilitate attempts to provide correlations and train data for modeling of compound binding. Here, we report large datasets of the intrinsic thermodynamic and kinetic data including over 400 primary sulfonamide compound binding to a family of 12 catalytically active human carbonic anhydrases (CA). Thermodynamic parameters have been determined by the fluorescent thermal shift assay, isothermal titration calorimetry, and by the stopped-flow assay of the inhibition of enzymatic activity. Kinetic measurements were performed using surface plasmon resonance. Intrinsic thermodynamic and kinetic parameters of binding were determined by dissecting the binding-linked protonation reactions of the protein and sulfonamide. The compound structure-thermodynamics and kinetics correlations reported here helped to discover compounds that exhibited picomolar affinities, hour-long residence times, and million-fold selectivities over non-target CA isoforms. Drug-lead compounds are suggested for anticancer target CA IX and CA XII, antiglaucoma CA IV, antiobesity CA VA and CA VB, and other isoforms. Together with 85 X-ray crystallographic structures of 60 compounds bound to six CA isoforms, the database should be of help to continue developing the principles of rational target-based drug design.
Collapse
|
11
|
Goszczyński TM, Fink K, Boratyński J. Icosahedral boron clusters as modifying entities for biomolecules. Expert Opin Biol Ther 2019; 18:205-213. [PMID: 30063861 DOI: 10.1080/14712598.2018.1473369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Icosahedral boron clusters have unique properties useful in medicinal chemistry: rigidity, chemical stability, and three-dimensional aromaticity. Furthermore, these abiotic compounds have low toxicity and are stable in the biological environment. All these features ultimately give them the ability to interact with biological molecules in a different mode than organic compounds. AREAS COVERED In the present article, we aim to introduce boron clusters as a class of entities suitable for modifications of biomolecules to obtain a specific biological effect. We will focus on icosahedral boron clusters, as well as metallacarboranes, and their biological activity and interaction with the biological environment. EXPERT OPINION Boron clusters are suitable for altering structural and functional features of biomolecules and can be used in the development of new drugs and drug delivery systems. The high affinity of boron clusters, especially metallacarboranes, to albumin creates a new possibility to use them to optimize the pharmacokinetics of biologically active peptides. Boron clusters have high potential in biological and medicinal applications. Due to their peculiar properties, they can be used to optimize parameters critical for the biological activity of therapeutic substances and their affinity toward biological targets.
Collapse
Affiliation(s)
- Tomasz M Goszczyński
- a Laboratory of Biomedical Chemistry, Department of Experimental Oncology , Hirszfeld Institute of Immunology and Experimental Therapy, PAS , Wrocław , Poland
| | - Krzysztof Fink
- a Laboratory of Biomedical Chemistry, Department of Experimental Oncology , Hirszfeld Institute of Immunology and Experimental Therapy, PAS , Wrocław , Poland
| | - Janusz Boratyński
- a Laboratory of Biomedical Chemistry, Department of Experimental Oncology , Hirszfeld Institute of Immunology and Experimental Therapy, PAS , Wrocław , Poland
| |
Collapse
|
12
|
De Simone G, Langella E, Esposito D, Supuran CT, Monti SM, Winum JY, Alterio V. Insights into the binding mode of sulphamates and sulphamides to hCA II: crystallographic studies and binding free energy calculations. J Enzyme Inhib Med Chem 2017; 32:1002-1011. [PMID: 28738704 PMCID: PMC6445192 DOI: 10.1080/14756366.2017.1349764] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022] Open
Abstract
Sulphamate and sulphamide derivatives have been largely investigated as carbonic anhydrase inhibitors (CAIs) by means of different experimental techniques. However, the structural determinants responsible for their different binding mode to the enzyme active site were not clearly defined so far. In this paper, we report the X-ray crystal structure of hCA II in complex with a sulphamate inhibitor incorporating a nitroimidazole moiety. The comparison with the structure of hCA II in complex with its sulphamide analogue revealed that the two inhibitors adopt a completely different binding mode within the hCA II active site. Starting from these results, we performed a theoretical study on sulphamate and sulphamide derivatives, demonstrating that electrostatic interactions with residues within the enzyme active site play a key role in determining their binding conformation. These findings open new perspectives in the design of effective CAIs using the sulphamate and sulphamide zinc binding groups as lead compounds.
Collapse
Affiliation(s)
- Giuseppina De Simone
- Istituto di Biostrutture e Bioimagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Emma Langella
- Istituto di Biostrutture e Bioimagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Davide Esposito
- Istituto di Biostrutture e Bioimagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Simona Maria Monti
- Istituto di Biostrutture e Bioimagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Vincenzo Alterio
- Istituto di Biostrutture e Bioimagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| |
Collapse
|
13
|
Ajani H, Pecina A, Eyrilmez SM, Fanfrlík J, Haldar S, Řezáč J, Hobza P, Lepšík M. Superior Performance of the SQM/COSMO Scoring Functions in Native Pose Recognition of Diverse Protein-Ligand Complexes in Cognate Docking. ACS OMEGA 2017; 2:4022-4029. [PMID: 30023710 PMCID: PMC6044937 DOI: 10.1021/acsomega.7b00503] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/18/2017] [Indexed: 06/08/2023]
Abstract
General and reliable description of structures and energetics in protein-ligand (PL) binding using the docking/scoring methodology has until now been elusive. We address this urgent deficiency of scoring functions (SFs) by the systematic development of corrected semiempirical quantum mechanical (SQM) methods, which correctly describe all types of noncovalent interactions and are fast enough to treat systems of thousands of atoms. Two most accurate SQM methods, PM6-D3H4X and SCC-DFTB3-D3H4X, are coupled with the conductor-like screening model (COSMO) implicit solvation model in so-called "SQM/COSMO" SFs and have shown unique recognition of native ligand poses in cognate docking in four challenging PL systems, including metalloprotein. Here, we apply the two SQM/COSMO SFs to 17 diverse PL complexes and compare their performance with four widely used classical SFs (Glide XP, AutoDock4, AutoDock Vina, and UCSF Dock). We observe superior performance of the SQM/COSMO SFs and identify challenging systems. This method, due to its generality, comparability across the chemical space, and lack of need for any system-specific parameters, gives promise of becoming, after comprehensive large-scale testing in the near future, a useful computational tool in structure-based drug design and serving as a reference method for the development of other SFs.
Collapse
Affiliation(s)
- Haresh Ajani
- Department
of Computational Chemistry, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 16610 Praha 6, Czech Republic
- Department
of Physical Chemistry, Palacký University, tř. 17. listopadu 1192/12, 77146 Olomouc, Czech Republic
| | - Adam Pecina
- Department
of Computational Chemistry, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 16610 Praha 6, Czech Republic
| | - Saltuk M. Eyrilmez
- Department
of Computational Chemistry, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 16610 Praha 6, Czech Republic
- Department
of Physical Chemistry, Palacký University, tř. 17. listopadu 1192/12, 77146 Olomouc, Czech Republic
| | - Jindřich Fanfrlík
- Department
of Computational Chemistry, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 16610 Praha 6, Czech Republic
| | - Susanta Haldar
- Department
of Computational Chemistry, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 16610 Praha 6, Czech Republic
| | - Jan Řezáč
- Department
of Computational Chemistry, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 16610 Praha 6, Czech Republic
| | - Pavel Hobza
- Department
of Computational Chemistry, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 16610 Praha 6, Czech Republic
- Department
of Physical Chemistry, Regional Centre of Advanced Technologies and
Materials, Palacký University, 77146 Olomouc, Czech Republic
| | - Martin Lepšík
- Department
of Computational Chemistry, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 16610 Praha 6, Czech Republic
| |
Collapse
|
14
|
Leśnikowski ZJ. Challenges and Opportunities for the Application of Boron Clusters in Drug Design. J Med Chem 2016; 59:7738-58. [PMID: 27124656 DOI: 10.1021/acs.jmedchem.5b01932] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There are two branches in boron medicinal chemistry: the first focuses on single boron atom compounds, and the second utilizes boron clusters. Boron clusters and their heteroatom counterparts belong to the family of cage compounds. A subset of this extensive class of compounds includes dicarbadodecaboranes, which have the general formula C2B10H12, and their metal biscarboranyl complexes, metallacarboranes, with the formula [M(C2B10H12)2(-2)]. The unique properties of boron clusters have resulted in their utilization in applications such as in pharmacophores, as scaffolds in molecular construction, and as modulators of bioactive compounds. This Perspective presents an overview of the properties of boron clusters that are pertinent for drug discovery, recent applications in the design of various classes of drugs, and the potential use of boron clusters in the construction of new pharmaceuticals.
Collapse
Affiliation(s)
- Zbigniew J Leśnikowski
- Institute of Medical Biology, Polish Academy of Sciences , Laboratory of Molecular Virology and Biological Chemistry, 106 Lodowa St., Lodz 93-232, Poland
| |
Collapse
|
15
|
|