1
|
Rahnama-Hezavah M, Mertowska P, Mertowski S, Skiba J, Krawiec K, Łobacz M, Grywalska E. How Can Imbalance in Oral Microbiota and Immune Response Lead to Dental Implant Problems? Int J Mol Sci 2023; 24:17620. [PMID: 38139449 PMCID: PMC10743591 DOI: 10.3390/ijms242417620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Dental implantology is one of the most dynamically developing fields of dentistry, which, despite developing clinical knowledge and new technologies, is still associated with many complications that may lead to the loss of the implant or the development of the disease, including peri-implantitis. One of the reasons for this condition may be the fact that dental implants cannot yield a proper osseointegration process due to the development of oral microbiota dysbiosis and the accompanying inflammation caused by immunological imbalance. This study aims to present current knowledge as to the impact of oral microflora dysbiosis and deregulation of the immune system on the course of failures observed in dental implantology. Evidence points to a strong correlation between these biological disturbances and implant complications, often stemming from improper osseointegration, pathogenic biofilms on implants, as well as an exacerbated inflammatory response. Technological enhancements in implant design may mitigate pathogen colonization and inflammation, underscoring implant success rates.
Collapse
Affiliation(s)
- Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (M.Ł.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Julia Skiba
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Karol Krawiec
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Michał Łobacz
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (M.Ł.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| |
Collapse
|
2
|
Franciotti R, Pignatelli P, D’Antonio DL, Mancinelli R, Fulle S, De Rosa MA, Puca V, Piattelli A, Thomas AM, Onofrj M, Sensi SL, Curia MC. The Immune System Response to Porphyromonas gingivalis in Neurological Diseases. Microorganisms 2023; 11:2555. [PMID: 37894213 PMCID: PMC10609495 DOI: 10.3390/microorganisms11102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Previous studies have reported an association between oral microbial dysbiosis and the development and progression of pathologies in the central nervous system. Porphyromonas gingivalis (Pg), the keystone pathogen of the oral cavity, can induce a systemic antibody response measured in patients' sera using enzyme-linked immunosorbent assays. The present case-control study quantified the immune system's response to Pg abundance in the oral cavities of patients affected by different central nervous system pathologies. The study cohort included 87 participants: 23 healthy controls (HC), 17 patients with an acute neurological condition (N-AC), 19 patients with a chronic neurological condition (N-CH), and 28 patients with neurodegenerative disease (N-DEG). The results showed that the Pg abundance in the oral cavity was higher in the N-DEG patients than in the HC (p = 0.0001) and N-AC patients (p = 0.01). In addition, the Pg abundance was higher in the N-CH patients than the HCs (p = 0.005). Only the N-CH patients had more serum anti-Pg antibodies than the HC (p = 0.012). The inadequate response of the immune system of the N-DEG group in producing anti-Pg antibodies was also clearly indicated by an analysis of the ratio between the anti-Pg antibodies quantity and the Pg abundance. Indeed, this ratio was significantly lower between the N-DEG group than all other groups (p = 0.0001, p = 0.002, and p = 0.03 for HC, N-AC, and N-CH, respectively). The immune system's response to Pg abundance in the oral cavity showed a stepwise model: the response diminished progressively from the patients affected with an acute condition to the patients suffering from chronic nervous system disorders and finally to the patients affected by neurodegenerative diseases.
Collapse
Affiliation(s)
- Raffaella Franciotti
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
| | - Pamela Pignatelli
- COMDINAV DUE, Nave Cavour, Italian Navy, Stazione Navale Mar Grande, Viale Jonio, 74122 Taranto, Italy;
| | - Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (M.C.C.)
- Fondazione Villaserena per la Ricerca, 65013 Città Sant’Angelo, Pescara, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
| | - Matteo Alessandro De Rosa
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Puca
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences, 00131 Rome, Italy;
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
| | - Astrid Maria Thomas
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Luca Sensi
- Department of Neuroscience, Imaging and Clinical Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.); (M.A.D.R.); (A.M.T.); (M.O.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (M.C.C.)
| |
Collapse
|
3
|
Study of oral microbiota diversity among groups of families originally from different countries. Saudi J Biol Sci 2022; 29:103317. [PMID: 35677897 PMCID: PMC9168616 DOI: 10.1016/j.sjbs.2022.103317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/12/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
The diversity of oral microbiota is affected by diets habits, gender, age, ethnic group, and environment. The acquisition of oral microbiota and the role of family on oral microbiota development is poorly understood. This study aims to characterize and compare the oral bacterial microbiota among families using 16S rRNA gene sequencing. This work was conducted in Jeddah city from 2020 to 2021, in which four families composed of 20 members of different ethnicity and lifestyle were recruited. After the collection of saliva samples, the DNA was extracted and processed for 16S rRNA gene metagenomics sequencing. Among 378 OUTs generated, 39 (10.3%) were unique in group A, 13 (3.4%) unique in group B, and 11 (2.9%) were unique in groups C and D. We observed a significant variation at the level of top abundance phylum (14), families (23), genera (24), and species (22) of bacteria among family members. Within family groups, different bacterial species were reported to be more dominant among certain family members than the other; Prevotella melaninogenica, Prevotella histicola and Haemophilus parainfluenzae, Veillonella atypica, Porphyromonas pasteri and Haemophilus pittmaniae were more dominant in parents of some families than the other family member. In summary, this study highlights the precise and perceptible association of oral microbial between family members. Our findings documented the clustering of certain bacterial species in family groups, supporting the role of community in the development of oral microbiota.
Collapse
|
4
|
Hawa F, Vargas EJ, Acosta A, McRae A, Bazerbachi F, Abu Dayyeh BK. Contamination of single fluid-filled intragastric balloons with orogastric fluid is not associated with hyperinflation: an ex-vivo study and systematic review of literature. BMC Gastroenterol 2021; 21:286. [PMID: 34247581 PMCID: PMC8273974 DOI: 10.1186/s12876-021-01863-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Spontaneous hyperinflation is reported to the Food and Drug Administration as a complication of intragastric balloons. It is postulated that orogastric contamination of the intragastric balloon may cause this phenomenon. We sought to investigate the effects of intentional balloon contamination with gastric contents on intragastric balloon perimeter and contents, whether methylene blue plays a role in preventing spontaneous hyperinflation, and review the available literature on spontaneous hyperinflation. METHODS Four pairs of balloons with different combinations of sterile saline, orogastric contaminants, and methylene blue were incubated in a 37 °C water bath for six months to simulate physiological conditions with serial measurements of balloon perimeter. Our findings were compared against a systematic review across multiple databases to summarize the available literature. RESULTS Balloon mean perimeter decreased from 33.5 cm ± 0.53 cm to 28.5 cm ± 0.46 cm (p < 0.0001). No significant differences were seen with the methylene blue group. Only 11 cases were found reported in the literature. CONCLUSIONS Despite contaminating intragastric balloons with gastric aspirates, hyperinflation did not occur, and other factors may be in play to account for this phenomenon, when observed. Rates of hyperinflation remain under-reported in the literature. Further controlled experiments are needed.
Collapse
Affiliation(s)
- Fadi Hawa
- Department of Internal Medicine, St. Joseph Mercy Ann Arbor Hospital, 5333 McAuley Drive, Suite 3009, Ypsilanti, MI, 48197, USA
| | - Eric J Vargas
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Andres Acosta
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Alison McRae
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Fateh Bazerbachi
- Division of Gastroenterology and Hepatology, St. Cloud Hospital, 1406 6th Ave N, St Cloud, MN, 56303, USA
| | - Barham K Abu Dayyeh
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Zanetta P, Squarzanti DF, Sorrentino R, Rolla R, Aluffi Valletti P, Garzaro M, Dell'Era V, Amoruso A, Azzimonti B. Oral microbiota and vitamin D impact on oropharyngeal squamous cell carcinogenesis: a narrative literature review. Crit Rev Microbiol 2021; 47:224-239. [PMID: 33476522 DOI: 10.1080/1040841x.2021.1872487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An emerging body of research is revealing the microbiota pivotal involvement in determining the health or disease state of several human niches, and that of vitamin D also in extra-skeletal regions. Nevertheless, much of the oral microbiota and vitamin D reciprocal impact in oropharyngeal squamous cell carcinogenesis (OPSCC) is still mostly unknown. On this premise, starting from an in-depth scientific bibliographic analysis, this narrative literature review aims to show a detailed view of the state of the art on their contribution in the pathogenesis of this cancer type. Significant differences in the oral microbiota species quantity and quality have been detected in OPSCC-affected patients; in particular, mainly high-risk human papillomaviruses (HR-HPVs), Fusobacterium nucleatum, Porphyromonas gingivalis, Pseudomonas aeruginosa, and Candida spp. seem to be highly represented. Vitamin D prevents and fights infections promoted by the above identified pathogens, thus confirming its homeostatic function on the microbiota balance. However, its antimicrobial and antitumoral actions, well-described for the gut, have not been fully documented for the oropharynx yet. Deeper investigations of the mechanisms that link vitamin D levels, oral microbial diversity and inflammatory processes will lead to a better definition of OPSCC risk factors for the optimization of specific prevention and treatment strategies.
Collapse
Affiliation(s)
- Paola Zanetta
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DSS), School of Medicine, Università del Piemonte Orientale (UPO), Novara, Italy
| | - Diletta Francesca Squarzanti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DSS), School of Medicine, Università del Piemonte Orientale (UPO), Novara, Italy
| | - Rita Sorrentino
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Roberta Rolla
- Clinical Chemistry Unit, University Hospital "Maggiore della Carità", DSS, School of Medicine, UPO, Novara, Italy
| | - Paolo Aluffi Valletti
- ENT Division, University Hospital "Maggiore della Carità", DSS, School of Medicine, UPO, Novara, Italy
| | - Massimiliano Garzaro
- ENT Division, University Hospital "Maggiore della Carità", DSS, School of Medicine, UPO, Novara, Italy
| | - Valeria Dell'Era
- ENT Division, University Hospital "Maggiore della Carità", DSS, School of Medicine, UPO, Novara, Italy
| | | | - Barbara Azzimonti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DSS), School of Medicine, Università del Piemonte Orientale (UPO), Novara, Italy
| |
Collapse
|
6
|
Osypchuk NО, Nastenko VB, Shirobokov VP, Korotkyi YV. Sensitivity of antifungal preparations of Сandida isolates from sub-biotopes of the human oral cavity. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Candidiasis is the commonest opportunistic infection of the oral cavity. As a result of immune-deficiency of the organism, yeasts of Candida genus by acting as commensal organisms transmute into pathogenic organisms. The article presents frequency of isolation, topographic peculiarities, species range, sensitivity of the Candida yeasts to antimycotics and newly-synthesized derivatives of amino alcohols isolated from the sub-biotopes of the oral cavity of patients with oncopathologies. The survey of the material included microscopic, mycologic, statistical-analytical methods. For all the clinical isolates the sensitivity to antifungal preparations was determined. Over the study 492 sub-biotopes of the oral cavity were examined. The extraction of the material was made from the mucous membrane of the cheek, angle of the mouth, mucous membrane of the surface of the tongue and the palate. According to the results of the conducted studies, the level of candidal carriage on the mucous membrane of the oral cavity in the patients with oncopathologies without clinical signs of candidiasis equaled 25.0%, active candidiasis infection was found in 47.0% of cases. Among the clinical strains, we isolated: C. albicans, C. glabrata, C. tropicalis and C. krusei. Among all the isolated strains, in all 4 sub-biotopes C. albicans dominated accounting for 73.1%. In 4 sub-biotopes we detected the association of two species of Candida. Analysis of the obtained results of the susceptibility of strains to modern antymicotics and newly-synthesized substances revealed that the representatives of non-albicans are more resistant to the antifungal preparations. Among the commercial preparations, amphotericin B exerted the highest activity against the clinical isolates of yeast-like fungi. The concentration of 0.97 µg/mL inhibited 50.0% of representatives of non-albicans, and also 75.0% of isolates of C. albicans. Fluconazole exhibited activity in the concentration of 1 µg/mL towards 17.0% of non-albicans and 25.0% of С. albicans. Itraconazole was observed to have no significant antifungal activity. Among the newly-synthesized aryl acyclic amino alcohols, compound Kc22 displayed high activity against both groups of Candida (experimental and control) making it promising for creating new therapeutic preparations. The parameters of resistance of clinical isolates to modern antimycotics indicate the necessity of constant monitoring of the sensitivity of the pathogens of candidiasis and precise species identification for rational use of antifungal preparations and prevention of the development of antimycotic resistance.
Collapse
|
7
|
Interkingdom interactions on the denture surface: Implications for oral hygiene. Biofilm 2019; 1:100002. [PMID: 32201858 PMCID: PMC7067236 DOI: 10.1016/j.bioflm.2019.100002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 11/23/2022] Open
Abstract
Background Evidence to support the role of Candida species in oral disease is limited. Often considered a commensal, this opportunistic yeast has been shown to play a role in denture related disease, though whether it is an active participant or innocent bystander remains to be determined. This study sought to understand the role of Candida species alongside the bacterial microbiome in a denture patient cohort, exploring how the microbiology of the denture was affected by oral hygiene practices. Materials and methods In vitro denture cleansing studies were performed on a complex 9-species interkingdom denture biofilm model, with quantitative assessment of retained bacterial and fungal viable bioburdens. Patient hygiene measures were also collected from 131 patients, including OHIP, frequency of denture cleansing, oral hygiene measure and patient demographics. The bacterial microbiome was analysed from each patient, alongside quantitative PCR assessment of ITS (fungal) and 16S (bacterial) bioburden from denture, mucosa and intact dentition. Results It was shown that following in vitro denture cleansing C. albicans were unresponsive to treatment, whereas bacterial biofilms could repopulate 100-fold, but were susceptible to subsequent treatment. Within the patient cohort, oral hygiene did not impact candidal or bacterial composition, nor diversity. The levels of Candida did not significantly influence the bacterial microbiome, though an observed gradient was suggestive of a microbial composition change in response to Candida load, indicating interkingdom interaction rather than an oral hygiene effect. Indeed, correlation analysis was able to show significant correlations between Candida species and key genera (Lactobacillus, Scardovia, Fusobacterium). Conclusions Overall, this study has shown that the denture microbiome/mycobiome is relatively resilient to oral hygiene challenges, but that Candida species have potential interactions with key oral genera. These interactions may have a bearing on shaping community structure and a shift from health to disease when the opportunity arises.
Collapse
|
8
|
Montelongo-Jauregui D, Lopez-Ribot JL. Candida Interactions with the Oral Bacterial Microbiota. J Fungi (Basel) 2018; 4:jof4040122. [PMID: 30400279 PMCID: PMC6308928 DOI: 10.3390/jof4040122] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
The human oral cavity is normally colonized by a wide range of microorganisms, including bacteria, fungi, Archaea, viruses, and protozoa. Within the different oral microenvironments these organisms are often found as part of highly organized microbial communities termed biofilms, which display consortial behavior. Formation and maintenance of these biofilms are highly dependent on the direct interactions between the different members of the microbiota, as well as on the released factors that influence the surrounding microbial populations. These complex biofilm dynamics influence oral health and disease. In the latest years there has been an increased recognition of the important role that interkingdom interactions, in particular those between fungi and bacteria, play within the oral cavity. Candida spp., and in particular C. albicans, are among the most important fungi colonizing the oral cavity of humans and have been found to participate in these complex microbial oral biofilms. C. albicans has been reported to interact with individual members of the oral bacterial microbiota, leading to either synergistic or antagonistic relationships. In this review we describe some of the better characterized interactions between Candida spp. and oral bacteria.
Collapse
Affiliation(s)
- Daniel Montelongo-Jauregui
- Department of Biology, South Texas Center for Emerging Infections Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Jose L Lopez-Ribot
- Department of Biology, South Texas Center for Emerging Infections Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
9
|
De-La-Torre J, Quindós G, Marcos-Arias C, Marichalar-Mendia X, Gainza ML, Eraso E, Acha-Sagredo A, Aguirre-Urizar JM. Oral Candida colonization in patients with chronic periodontitis. Is there any relationship? Rev Iberoam Micol 2018; 35:134-139. [PMID: 30082174 DOI: 10.1016/j.riam.2018.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 02/13/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Candida can be implicated in the pathology of chronic periodontitis. AIMS To analyze the oral Candida carriage in patients suffering from chronic periodontitis (CP) and its correlation with the severity of this condition. METHODS Microbiological samples were taken from 155 patients using the oral rinse (OR) technique and by using paper points in the periodontal pockets (GPP). These patients were divided into 3 groups: 89 patients without CP (control), 47 with moderate CP, and 19 with severe CP. Samples were cultured in a Candida chromogenic agar for Candida. Species were identified by microbiological and molecular methods. RESULTS Candida was isolated in the OR of 45 (50.6%), 21 (44.7%), and 11 (57.9%) patients, respectively, and in the GPP of 32 (36%), 14 (29.2%), and 10 (42.6%) patients from the control, moderate CP and severe CP groups, respectively. Candida was isolated more frequently and in a greater burden in OR than in GPP (p<0.01). Candida albicans was the most prevalent species. GPP of patients with CP had poor fungal biodiversity (p<0.01). CONCLUSIONS Colonization by Candida was present in the samples of patients without CP, and with both moderate and severe CP. Nonetheless, patients with severe CP had a higher rate of Candida colonization, especially by C. albicans.
Collapse
Affiliation(s)
- Janire De-La-Torre
- Department of Immunology, Microbiology and Parasitology, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain; Department of Stomatology II, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain.
| | - Guillermo Quindós
- Department of Immunology, Microbiology and Parasitology, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Cristina Marcos-Arias
- Department of Immunology, Microbiology and Parasitology, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Xabier Marichalar-Mendia
- Department of Stomatology II, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - María Luisa Gainza
- Department of Dental Surgery, Faculty of Dental Surgery, University of Malta, Malta
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Amelia Acha-Sagredo
- Department of Stomatology II, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - José Manuel Aguirre-Urizar
- Department of Stomatology II, Unidad de formación e investigación multidisciplinar "Microbios y Salud" (UFI 11/25), Faculty of Medicine and Dentistry, University of the Basque Country/Euskal Herriko Unibertsitatea, Leioa, Spain
| |
Collapse
|
10
|
Abstract
Purpose
This paper aims to focus on the utilisation of pre- and probiotics for oral care and the state of knowledge at this time.
Design/methodology/approach
Pre- and probiotics describe beneficial carbohydrates and microbiota, respectively, for optimal gut health. Carbohydrates provide energy selectively for the gut-friendly bacteria. The use of both carbohydrates and bacteria is, however, being expanded into other areas of the body – including the skin, vagina and oral cavity – for health-related applications.
Findings
There is increased interest in both pre- and probiotics for oral care products. The importance of oral microflora and their selective substrates is discussed against a background of contemporary oral care approaches. The issues and benefits are discussed in this review.
Originality/value
It is clear that consumption of prebiotics and probiotics may play a role as potential prophylactic or therapeutic agents for reducing the presence of organisms in the mouth associated with tooth decay. To confirm a beneficial effect of pre- and probiotics further in vivo studies involving healthy human volunteers should be considered.
Collapse
|
11
|
Abstract
Removable dentures are worn by 20% of the UK population and two thirds of these individuals have denture stomatitis. Poor oral hygiene is commonplace among this group, as is smoking and xerostomia, which also contribute to the development of denture stomatitis. A complex polymicrobial biofilm is able to proliferate on the surface of denture materials and matures to form visible denture plaque. This denture plaque biofilm stimulates a local inflammatory process that is detectable clinically as erythema, and hyperplasia. Systemically, denture plaque represents a potential risk factor for systemic disease, in particular aspiration pneumonia. Respiratory pathogens have been detected in the denture plaque and overnight denture wear has been linked to an increased risk of aspiration pneumonia. There is a general lack of evidence on the adequate management of denture stomatitis and we present a protocol for use in the primary care setting.
Collapse
|
12
|
Le Bars P, Kouadio AA, N'goran JK, Badran Z, Soueidan A. Relationship between removable prosthesis and some systemics disorders. J Indian Prosthodont Soc 2016; 15:292-9. [PMID: 26929530 PMCID: PMC4762353 DOI: 10.4103/0972-4052.171828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This article reviews the dental literature concerning the potential impact of the removable prosthesis (RP) on the health status of patients with certain systemic diseases. Literature was surveyed using Medline/PubMed database resources, as well as a manual search, up to 2015 to identify appropriate articles that addressed the aim of this review. The research used keywords about associations between RP and six pathologies: Human immunodeficiency virus infection, diabetes mellitus, pulmonary diseases, gastric-Helicobacter pylori, cancer, and cardiovascular diseases. Analysis of literature showed that in patients with dentures having one or more of the six general conditions listed, Candida albicans organism is more frequently found in the oral flora compared to healthy denture wearer. Although causality has not been established and pending further research on this topic, the hygienic practices necessary to minimize the risk of numerous pathologies should be strengthened in the case of these patients, all the more in the presence of physical or psychological disability. The relationship between the general diseases and increasing of oral candidiasis denture patients is not explained. Therefore, attention to oral hygiene and professional care for removing C. albicans may be beneficial in these medically compromised patients.
Collapse
Affiliation(s)
- Pierre Le Bars
- Department of Prosthodonthics, Faculty of Dentistry, CHU Nantes, 1 Place Alexis Ricordeau, 44042 Nantes, France
| | - Alain Ayepa Kouadio
- Department of Prosthodonthics, Faculty of Dentistry, CHU Nantes, 1 Place Alexis Ricordeau, 44042 Nantes, France; Department of Prosthodonthics, Faculty of Dentistry, CHU, Abidjan 22 BP 612, Abidjan, Cote d'Ivoire
| | - Justin Koffi N'goran
- Department of Prosthodonthics, Faculty of Dentistry, CHU, Abidjan 22 BP 612, Abidjan, Cote d'Ivoire
| | - Zahi Badran
- Department of Periodontology, Faculty of Dentistry, CHU Nantes, 1 Place Alexis Ricordeau, 44042 Nantes, France
| | - Assem Soueidan
- Department of Periodontology, Faculty of Dentistry, CHU Nantes, 1 Place Alexis Ricordeau, 44042 Nantes, France
| |
Collapse
|
13
|
De-la-Torre J, Marichalar-Mendia X, Varona-Barquin A, Marcos-Arias C, Eraso E, Aguirre-Urizar JM, Quindós G. Caries andCandidacolonisation in adult patients in Basque Country (Spain). Mycoses 2016; 59:234-240. [DOI: 10.1111/myc.12453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/20/2015] [Accepted: 12/03/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Janire De-la-Torre
- Departamento de Inmunología; Microbiología y Parasitología; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
- Departamento de Estomatología II; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| | - Xabier Marichalar-Mendia
- Departamento de Estomatología II; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| | - Aketza Varona-Barquin
- Departamento de Inmunología; Microbiología y Parasitología; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| | - Cristina Marcos-Arias
- Departamento de Inmunología; Microbiología y Parasitología; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| | - Elena Eraso
- Departamento de Inmunología; Microbiología y Parasitología; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| | - José Manuel Aguirre-Urizar
- Departamento de Estomatología II; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| | - Guillermo Quindós
- Departamento de Inmunología; Microbiología y Parasitología; Unidad de Formación e Investigación multidisciplinar «Microbios y Salud» (UFI 11/25); Facultad de Medicina y Odontología; Universidad del País Vasco/Euskal Herriko Unibertsitatea; Bilbao Spain
| |
Collapse
|