1
|
The Post-Translational Modification Networking in WNK-Centric Hypertension Regulation and Electrolyte Homeostasis. Biomedicines 2022; 10:biomedicines10092169. [PMID: 36140271 PMCID: PMC9496095 DOI: 10.3390/biomedicines10092169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
The with-no-lysine (WNK) kinase family, comprising four serine-threonine protein kinases (WNK1-4), were first linked to hypertension due to their mutations in association with pseudohypoaldosteronism type II (PHAII). WNK kinases regulate crucial blood pressure regulators, SPAK/OSR1, to mediate the post-translational modifications (PTMs) of their downstream ion channel substrates, such as sodium chloride co-transporter (NCC), epithelial sodium chloride (ENaC), renal outer medullary potassium channel (ROMK), and Na/K/2Cl co-transporters (NKCCs). In this review, we summarize the molecular pathways dysregulating the WNKs and their downstream target renal ion transporters. We summarize each of the genetic variants of WNK kinases and the small molecule inhibitors that have been discovered to regulate blood pressure via WNK-triggered PTM cascades.
Collapse
|
2
|
Aljaylani A, Fluitt M, Piselli A, Shepard BD, Tiwari S, Ecelbarger CM. Acid Loading Unmasks Glucose Homeostatic Instability in Proximal-Tubule-Targeted Insulin/Insulin-Like-Growth-Factor-1 Receptor Dual Knockout Mice. Cell Physiol Biochem 2021; 54:682-695. [PMID: 32678535 DOI: 10.33594/000000248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/AIMS Metabolic syndrome and type 2 diabetes are associated with some degree of acidosis. Acidosis has also been shown to upregulate renal gluconeogenesis. Whether impaired insulin or insulin-like-growth factor 1 receptor (IGF1) signaling alter this relationship is not known. Our aim was to determine the effects of deletion of insulin and IGF1 receptors (Insr and Igf1r) from renal proximal tubule (PT) on the gluconeogenic response to acidosis. METHODS We developed a mouse model with PT-targeted dual knockout (KO) of the Insr/Igf1r by driving Cre-recombinase with the gamma-glutamyl transferase (gGT) promoter. Male and female mice were maintained as control or acidotic by treatment with NH4Cl in the drinking water for 1-week. RESULTS Acidosis in both genotypes increased renal expression of phosphoenolpyruvate carboxykinase (PEPCK) and fructose-1-bisphosphatase (FBP1), but not glucose-6-phosphatase catalytic subunit (G6PC), which showed significantly lower expression in the KO regardless of treatment. Several differences between KO and WT suggested a protective role for insulin/IGF1 receptor signaling in maintaining relative euglycemia in the face of acidosis. First, the increase in FBP1 with acid was greater in the KO (significant interactive term). Secondly, proximal-tubule-associated FOXO1 and AKT overall protein levels were suppressed by acid loading in the KO, but not in the WT. Robust intact insulin signaling would be needed to reduce gluconeogenesis in PT. Third, phosphorylated FOXO1 (pS256) levels were markedly reduced by acid loading in the KO PT, but not in the WT. This reduction would support greater gluconeogenesis. Fourth, the sodium-glucose cotransporter (SGLT1) was increased by acid loading in the KO kidney, but not the WT. While this would not necessarily affect gluconeogenesis, it could result in increased circulatory glucose via renal reabsorption. Reduced susceptibility to glucose-homeostatic dysregulation in the WT could potentially relate to the sharp (over 50%) reduction in renal levels of sirtuin-1 (SIRT1), which deacetylates and regulates transcription of a number of genes. This reduction was absent in the KO. CONCLUSION Insulin resistance of the kidney may increase whole-body glucose instability a major risk factor for morbidity in diabetes. High dietary acid loads provide a dilemma for the kidney, as ammoniagenesis liberates α-ketoglutarate, which is a substrate for gluconeogenesis. We demonstrate an important role for insulin and/or IGF1 receptor signaling in the PT to facilitate this process and reduce excursions in blood glucose. Thus, medications and lifestyle changes that improve renal insulin sensitivity may also provide added benefit in type 2 diabetes especially when coupled with metabolic acidosis.
Collapse
Affiliation(s)
- Abdullah Aljaylani
- Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University, Washington, D.C., USA
| | - Maurice Fluitt
- Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University, Washington, D.C., USA
| | - Alexandra Piselli
- Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University, Washington, D.C., USA
| | - Blythe D Shepard
- School of Nursing and Health Studies, Department of Human Science, Georgetown University, Washington, D.C., USA
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Utter Pradesh, India
| | - Carolyn M Ecelbarger
- Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University, Washington, D.C., USA,
| |
Collapse
|
3
|
Marable SS, Chung E, Park JS. Hnf4a Is Required for the Development of Cdh6-Expressing Progenitors into Proximal Tubules in the Mouse Kidney. J Am Soc Nephrol 2020; 31:2543-2558. [PMID: 32764140 DOI: 10.1681/asn.2020020184] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/06/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Hepatocyte NF 4α (Hnf4a) is a major regulator of renal proximal tubule (PT) development. In humans, a mutation in HNF4A impairs PT functions and is associated with Fanconi renotubular syndrome (FRTS). In mice, mosaic deletion of Hnf4a in the developing kidney reduces the population of PT cells, leading to FRTS-like symptoms. The molecular mechanisms underlying the role of Hnf4a in PT development remain unclear. METHODS The gene deletion tool Osr2Cre removed Hnf4a in developing nephrons in mice, generating a novel model for FRTS. Immunofluorescence analysis characterized the mutant phenotype, and lineage analysis tested whether Cadherin-6 (Cdh6)-expressing cells are PT progenitors. Genome-wide mapping of Hnf4a binding sites and differential gene analysis of Hnf4a mutant kidneys identified direct target genes of Hnf4a. RESULTS Deletion of Hnf4a with Osr2Cre led to the complete loss of mature PT cells, lethal to the Hnf4a mutant mice. Cdh6high, lotus tetragonolobus lectin-low (LTLlow) cells serve as PT progenitors and demonstrate higher proliferation than Cdh6low, LTLhigh differentiated PT cells. Additionally, Hnf4a is required for PT progenitors to differentiate into mature PT cells. Genomic analyses revealed that Hnf4a directly regulates the expression of genes involved in transmembrane transport and metabolism. CONCLUSIONS Hnf4a promotes the differentiation of PT progenitors into mature PT cells by regulating the expression of genes associated with reabsorption, the major function of PT cells.
Collapse
Affiliation(s)
- Sierra S Marable
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Eunah Chung
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joo-Seop Park
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio .,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
4
|
Chen SW, Chen ZH, Liang YH, Wang P, Peng JW. Elevated hypertension risk associated with higher dietary acid load: A systematic review and meta-analysis. Clin Nutr ESPEN 2019; 33:171-177. [PMID: 31451256 DOI: 10.1016/j.clnesp.2019.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/06/2019] [Accepted: 05/23/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND & AIMS The association between dietary acid load and hypertension risk is inconclusive. We conducted a systematic review and meta-analysis to summarize effect of dietary acid load on blood pressure. METHODS A comprehensively search was performed in electronic databases including EMBASE, PubMed, Web of Science and Chinese National Knowledge Infrastructure. Summary ORs and their corresponding 95% CIs were computed assuming a randomized model or fixed model. RESULTS Ten publications comprising 4 cohort and 6 cross-sectional studies were eligible for meta-analysis. There were 8 studies about potential renal acid load (PRAL) and 4 about net endogenous acid production (NEAP). Essential hypertension was statistically associated with higher PRAL (OR = 1.14, 95% CI = 1.02-1.17). Our findings also demonstrated a positive impact of higher PRAL on elevating both diastolic pressure (WMD = 0.96, 95% CI = 0.67-1.26) and systolic pressure (WMD = 1.57, 95% CI = 1.12-2.03). A 35% increased risk of hypertension associated with higher NEAP was identified (OR = 1.35, 95% CI = 1.03-1.78). CONCLUSIONS The current study suggests that dietary acid load might be potential risk factor of hypertension.
Collapse
Affiliation(s)
- Shao-Wei Chen
- Department of Health Risk Assessment Research Center, Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, China
| | - Zi-Hui Chen
- Department of Health Risk Assessment Research Center, Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, China
| | | | - Ping Wang
- Department of Health Risk Assessment Research Center, Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, China
| | - Jie-Wen Peng
- Department of Health Risk Assessment Research Center, Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, China.
| |
Collapse
|
5
|
Cameron RB, Gibbs WS, Miller SR, Dupre TV, Megyesi J, Beeson CC, Schnellmann RG. Proximal Tubule β 2-Adrenergic Receptor Mediates Formoterol-Induced Recovery of Mitochondrial and Renal Function after Ischemia-Reperfusion Injury. J Pharmacol Exp Ther 2019; 369:173-180. [PMID: 30709866 PMCID: PMC11046739 DOI: 10.1124/jpet.118.252833] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/04/2019] [Indexed: 04/28/2024] Open
Abstract
Acute kidney injury (AKI) is the rapid loss of renal function after an insult, and renal proximal tubule cells (RPTCs) are central to the pathogenesis of AKI. The β 2-adrenergic receptor (β 2AR) agonist formoterol accelerates the recovery of renal function in mice after ischemia-reperfusion injury (IRI) with associated rescue of mitochondrial proteins; however, the cell type responsible for this recovery remains unknown. The role of RPTCs in formoterol-induced recovery of renal function was assessed in a proximal tubule-specific knockout of the β 2AR (γGT-Cre:ADRB2Flox/Flox). These mice and wild-type controls (ADRB2Flox/Flox) were subjected to renal IRI, followed by once-daily dosing of formoterol beginning 24 hours post-IRI and euthanized at 144 hours. Compared with ADRB2Flox/Flox mice, γGT-Cre:ADRB2Flox/Flox mice had decreased renal cortical mRNA expression of the β 2AR. After IRI, formoterol treatment restored renal function in ADRB2Flox/Flox but not γGT-Cre:ADRB2Flox/Flox mice as measured by serum creatinine, histopathology, and expression of kidney injury marker-1 (KIM-1). Formoterol-treated ADRB2Flox/Flox mice exhibited recovery of mitochondrial proteins and DNA copy number, whereas γGT-Cre:ADRB2Flox/Flox mice treated with formoterol did not. Analysis of mitochondrial morphology by transmission electron microscopy demonstrated that formoterol increased mitochondrial number and density in ADRB2Flox/Flox mice but not in γGT-Cre:ADRB2Flox/Flox mice. These data demonstrate that proximal tubule β 2AR regulates renal mitochondrial homeostasis. Formoterol accelerates the recovery of renal function after AKI by activating proximal tubule β 2AR to induce mitochondrial biogenesis and demonstrates the overall requirement of RPTCs in renal recovery.
Collapse
Affiliation(s)
- Robert B Cameron
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (R.B.C., W.S.G., C.C.B.); College of Pharmacy, University of Arizona (R.B.C., W.S.G., S.R.M., T.V.D., R.G.S.), and Southern Arizona VA Healthcare System (R.G.S.), Tuscon, Arizona; and Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (J.M.)
| | - Whitney S Gibbs
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (R.B.C., W.S.G., C.C.B.); College of Pharmacy, University of Arizona (R.B.C., W.S.G., S.R.M., T.V.D., R.G.S.), and Southern Arizona VA Healthcare System (R.G.S.), Tuscon, Arizona; and Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (J.M.)
| | - Siennah R Miller
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (R.B.C., W.S.G., C.C.B.); College of Pharmacy, University of Arizona (R.B.C., W.S.G., S.R.M., T.V.D., R.G.S.), and Southern Arizona VA Healthcare System (R.G.S.), Tuscon, Arizona; and Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (J.M.)
| | - Tess V Dupre
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (R.B.C., W.S.G., C.C.B.); College of Pharmacy, University of Arizona (R.B.C., W.S.G., S.R.M., T.V.D., R.G.S.), and Southern Arizona VA Healthcare System (R.G.S.), Tuscon, Arizona; and Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (J.M.)
| | - Judit Megyesi
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (R.B.C., W.S.G., C.C.B.); College of Pharmacy, University of Arizona (R.B.C., W.S.G., S.R.M., T.V.D., R.G.S.), and Southern Arizona VA Healthcare System (R.G.S.), Tuscon, Arizona; and Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (J.M.)
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (R.B.C., W.S.G., C.C.B.); College of Pharmacy, University of Arizona (R.B.C., W.S.G., S.R.M., T.V.D., R.G.S.), and Southern Arizona VA Healthcare System (R.G.S.), Tuscon, Arizona; and Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (J.M.)
| | - Rick G Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (R.B.C., W.S.G., C.C.B.); College of Pharmacy, University of Arizona (R.B.C., W.S.G., S.R.M., T.V.D., R.G.S.), and Southern Arizona VA Healthcare System (R.G.S.), Tuscon, Arizona; and Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (J.M.)
| |
Collapse
|
6
|
Melamine promotes calcium crystal formation in three-dimensional microfluidic device. Sci Rep 2019; 9:875. [PMID: 30696888 PMCID: PMC6351636 DOI: 10.1038/s41598-018-37191-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
Melamine, which induces proximal tubular (PT) cell damage has a greater nephrotoxic effect when combined with cyanuric and uric acids; however, it is unknown whether such effect can stimulate calcium phosphate (CaP)/calcium oxalate (CaOx) stone formation. Here, we show that melamine acts as an inducer of CaP, CaOx and CaP + CaOx (mixed) crystal formations in a time and concentration-dependent manner by stabilizing those crystals and further co-aggregating with melamine. To explore the physiological relevance of such melamine-augmented calcium crystal formation, we used 2-dimensional (2D) and 3D microfluidic (MF) device, embedded with PT cells, which also resembled the effect of melamine-stimulated CaP, CaOx and mixed crystal formation. Significantly, addition of preformed CaP and/or CaOx crystal in the presence of melamine, further potentiated those crystal formations in 3D MFs, which helped the growth and aggregation of mixed crystals. Our data show that the mechanism of such predisposition of stone formation could be largely due to co-crystallization between melamine and CaP/CaOx and pronounced effect on induction of stone-forming pathway activation in 3D MF. Taken together, melamine-induced CaP and/or CaOx crystal formation ex-vivo will help us in understanding the larger role of melamine as an environmental toxicant in producing the pathology in similar cellular microenvironments.
Collapse
|
7
|
Rajkumar P, Pluznick JL. Acid-base regulation in the renal proximal tubules: using novel pH sensors to maintain homeostasis. Am J Physiol Renal Physiol 2018; 315:F1187-F1190. [PMID: 30066586 DOI: 10.1152/ajprenal.00185.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kidneys play a critical role in precisely regulating the composition of the plasma to maintain homeostasis. To achieve this, the kidneys must be able to accurately determine or "sense" the concentration of a wide variety of substances and to make adjustments accordingly. Kidneys face a key challenge in the arena of pH balance, as there is a particularly narrow range over which plasma pH varies in a healthy subject (7.35-7.45) and this pH must constantly be protected against a variety of onslaughts (changes in diet, activity, and even elevation). The proximal tubule, the first segment to come into contact with the forming urine, plays an important role in helping the kidneys to maintain pH homeostasis. Recent studies have identified a number of novel proximal tubule proteins and signaling pathways that work to sense changes in pH and subsequently modulate renal pH regulation. In this review, we will highlight the role of novel players in acid-base homeostasis in the proximal tubule.
Collapse
Affiliation(s)
- Premraj Rajkumar
- Department of Physiology, Johns Hopkins University , Baltimore, Maryland.,Recursion Pharmaceuticals, Salt Lake City, Utah
| | | |
Collapse
|
8
|
Gildea JJ, Xu P, Kemp BA, Carlson JM, Tran HT, Bigler Wang D, Langouët-Astrié CJ, McGrath HE, Carey RM, Jose PA, Felder RA. Sodium bicarbonate cotransporter NBCe2 gene variants increase sodium and bicarbonate transport in human renal proximal tubule cells. PLoS One 2018; 13:e0189464. [PMID: 29642240 PMCID: PMC5895442 DOI: 10.1371/journal.pone.0189464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/28/2017] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Salt sensitivity of blood pressure affects >30% of the hypertensive and >15% of the normotensive population. Variants of the electrogenic sodium bicarbonate cotransporter NBCe2 gene, SLC4A5, are associated with increased blood pressure in several ethnic groups. SLC4A5 variants are also highly associated with salt sensitivity, independent of hypertension. However, little is known about how NBCe2 contributes to salt sensitivity, although NBCe2 regulates renal tubular sodium bicarbonate transport. We hypothesized that SLC4A5 rs10177833 and rs7571842 increase NBCe2 expression and human renal proximal tubule cell (hRPTC) sodium transport and may be a cause of salt sensitivity of blood pressure. OBJECTIVE To characterize the hRPTC ion transport of wild-type (WT) and homozygous variants (HV) of SLC4A5. METHODS AND RESULTS The expressions of NBCe2 mRNA and protein were not different between hRPTCs carrying WT or HV SLC4A5 before or after dopaminergic or angiotensin (II and III) stimulation. However, luminal to basolateral sodium transport, NHE3 protein, and Cl-/HCO3- exchanger activity in hRPTCs were higher in HV than WT SLC4A5. Increasing intracellular sodium enhanced the apical location of NBCe2 in HV hRPTCs (4.24±0.35% to 11.06±1.72% (P<0.05, N = 3, 2-way ANOVA, Holm-Sidak test)) as determined by Total Internal Reflection Fluorescence Microscopy (TIRFM). In hRPTCs isolated from kidney tissue, increasing intracellular sodium enhanced bicarbonate-dependent pH recovery rate and increased NBCe2 mRNA and protein expressions to a greater extent in HV than WT SLC4A5 (+38.00±6.23% vs HV normal salt (P<0.01, N = 4, 2-way ANOVA, Holm-Sidak test)). In hRPTCs isolated from freshly voided urine, bicarbonate-dependent pH recovery was also faster in those from salt-sensitive and carriers of HV SLC4A5 than from salt-resistant and carriers of WT SLC4A5. The faster NBCe2-specific bicarbonate-dependent pH recovery rate in HV SCL4A5 was normalized by SLC4A5- but not SLC4A4-shRNA. The binding of purified hepatocyte nuclear factor type 4A (HNF4A) to DNA was increased in hRPTCs carrying HV SLC4A5 rs7571842 but not rs10177833. The faster NBCe2-specific bicarbonate-dependent pH recovery rate in HV SCL4A5 was abolished by HNF4A antagonists. CONCLUSION NBCe2 activity is stimulated by an increase in intracellular sodium and is hyper-responsive in hRPTCs carrying HV SLC4A5 rs7571842 through an aberrant HNF4A-mediated mechanism.
Collapse
Affiliation(s)
- John J. Gildea
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Peng Xu
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Brandon A. Kemp
- The University of Virginia Department of Medicine, Charlottesville, VA, United States of America
| | - Julia M. Carlson
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Hanh T. Tran
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Dora Bigler Wang
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | | | - Helen E. McGrath
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Robert M. Carey
- The University of Virginia Department of Medicine, Charlottesville, VA, United States of America
| | - Pedro A. Jose
- The George Washington University School of Medicine & Health Sciences, Department of Medicine, Division of Renal Disease and Hypertension and Department of Pharmacology and Physiology, Washington, DC, United States of America
| | - Robin A. Felder
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| |
Collapse
|
9
|
Complement Factor B Production in Renal Tubular Cells and Its Role in Sodium Transporter Expression During Polymicrobial Sepsis. Crit Care Med 2016; 44:e289-99. [PMID: 26757165 DOI: 10.1097/ccm.0000000000001566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Toll-like receptors and complement are two components of the innate immunity. Complement factor B is essential for the alternative pathway of complement activation. We have recently reported that complement factor B is significantly up-regulated in the kidney and may contribute to acute tubular injury in an animal model of sepsis. This study investigates the mechanisms responsible for the complement factor B up-regulation and its role in sodium transporter expression in tubular cells during sepsis. DESIGN Animal study. SETTING Laboratory investigation. SUBJECTS C57BL/6 J wild-type, complement factor B(-/-), and Nfkb1(tm1Bal) p50(-/-) mice. INTERVENTIONS Human proximal tubular cells and mouse tubular epithelial cells were stimulated with Toll-like receptor agonists. Bay 11-7082 was used to block nuclear factor-κB pathway. Alternative pathway activation was detected by C3 zymosan deposition. Polymicrobial sepsis was created by cecal ligation and puncture. Sodium transporter gene expression was determined by quantitative reverse transcriptase-polymerase chain reaction. MEASUREMENTS AND MAIN RESULTS The agonists for Toll-like receptor 4 (lipopolysaccharide) or Toll-like receptor 3 (polyinosinic-polycytidylic acid) induced a marked increase in complement factor B expression in human proximal tubular cells and mouse tubular epithelial cells both at gene and protein levels. The Toll-like receptor 1/2 agonist, Pam3cys, induced complement factor B production only in human proximal tubular cells, not in mouse tubular epithelial cells. The Toll-like receptor 9 ligand, CpG oligodeoxynucleotides failed to induce complement factor B production either in human proximal tubular cells or in mouse tubular epithelial cells. Lipopolysaccharide/polyinosinic-polycytidylic acid-induced complement factor B up-regulation was blocked by Bay 11-7082, a potent inhibitor of nuclear factor-κB signaling, and in mouse tubular epithelial cells deficient in p50 subunit of nuclear factor-κB. Media from the lipopolysaccharide-treated mouse tubular epithelial cell cultures contained de novo synthesized complement factor B and led to functional alternative pathway activation. In a cecal ligation and puncture model, wild-type septic mice had down-regulated expression of sodium transporters in the kidney compared with the sham. In comparison, complement factor B mice or mice treated with anti-complement factor B displayed preserved levels of Na⁺/K⁺ ATPase-α1 following sepsis. CONCLUSIONS 1) Toll-like receptor 3/4 activation is sufficient to induce complement factor B production via nuclear factor-κB pathway and to enhance alternative pathway activation in the kidney tubular epithelial cells. 2) Complement factor B may contribute to the down-regulation of certain sodium transporter expression during sepsis.
Collapse
|
10
|
Gildea JJ, Xu P, Carlson JM, Gaglione RT, Bigler Wang D, Kemp BA, Reyes CM, McGrath HE, Carey RM, Jose PA, Felder RA. The sodium-bicarbonate cotransporter NBCe2 (slc4a5) expressed in human renal proximal tubules shows increased apical expression under high-salt conditions. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1447-59. [PMID: 26447209 DOI: 10.1152/ajpregu.00150.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/29/2015] [Indexed: 02/05/2023]
Abstract
The electrogenic sodium bicarbonate cotransporter (NBCe2) is encoded by SLC4A5, variants of which have been associated with salt sensitivity of blood pressure, which affects 25% of the adult population. NBCe2 is thought to mediate sodium bicarbonate cotransport primarily in the renal collecting duct, but NBCe2 mRNA is also found in the rodent renal proximal tubule (RPT). The protein expression or function of NBCe2 has not been demonstrated in the human RPT. We validated an NBCe2 antibody by shRNA and Western blot analysis, as well as overexpression of an epitope-tagged NBCe2 construct in both RPT cells (RPTCs) and human embryonic kidney 293 (HEK293) cells. Using this validated NBCe2 antibody, we found NBCe2 protein expression in the RPT of fresh and frozen human kidney slices, RPTCs isolated from human urine, and isolated RPTC apical membrane. Under basal conditions, NBCe2 was primarily found in the Golgi, while NBCe1 was primarily found at the basolateral membrane. Following an acute short-term increase in intracellular sodium, NBCe2 expression was increased at the apical membrane in cultured slices of human kidney and polarized, immortalized RPTCs. Sodium bicarbonate transport was increased by monensin and overexpression of NBCe2, decreased by NBCe2 shRNA, but not by NBCe1 shRNA, and blocked by 2,2'-(1,2-ethenediyl)bis[5-isothiocyanato-benzenesulfonic acid]. NBCe2 could be important in apical sodium and bicarbonate cotransport under high-salt conditions; the implication of the ex vivo studies to the in vivo situation when salt intake is increased remains unclear. Therefore, future studies will examine the role of NBCe2 in mediating increased renal sodium transport in humans whose blood pressures are elevated by an increase in sodium intake.
Collapse
Affiliation(s)
- John J Gildea
- University of Virginia Department of Pathology, Charlottesville, Virginia;
| | - Peng Xu
- University of Virginia Department of Pathology, Charlottesville, Virginia
| | - Julia M Carlson
- University of Virginia Department of Pathology, Charlottesville, Virginia
| | - Robert T Gaglione
- University of Virginia Department of Pathology, Charlottesville, Virginia
| | - Dora Bigler Wang
- University of Virginia Department of Pathology, Charlottesville, Virginia
| | - Brandon A Kemp
- University of Virginia Department of Medicine, Charlottesville, Virginia; and
| | - Camellia M Reyes
- University of Virginia Department of Pathology, Charlottesville, Virginia
| | - Helen E McGrath
- University of Virginia Department of Pathology, Charlottesville, Virginia
| | - Robert M Carey
- University of Virginia Department of Medicine, Charlottesville, Virginia; and
| | - Pedro A Jose
- University of Maryland School of Medicine, Baltimore, Maryland
| | - Robin A Felder
- University of Virginia Department of Pathology, Charlottesville, Virginia
| |
Collapse
|