1
|
Xu M, Zhu M, Qin Q, Xing X, Archer M, Ramesh S, Cherief M, Li Z, Levi B, Clemens TL, James AW. Neuronal regulation of bone and tendon injury repair: a focused review. J Bone Miner Res 2024; 39:1045-1060. [PMID: 38836494 DOI: 10.1093/jbmr/zjae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Beyond the sensation of pain, peripheral nerves have been shown to play crucial roles in tissue regeneration and repair. As a highly innervated organ, bone can recover from injury without scar formation, making it an interesting model in which to study the role of nerves in tissue regeneration. As a comparison, tendon is a musculoskeletal tissue that is hypo-innervated, with repair often resulting in scar formation. Here, we reviewed the significance of innervation in 3 stages of injury repair (inflammatory, reparative, and remodeling) in 2 commonly injured musculoskeletal tissues: bone and tendon. Based on this focused review, we conclude that peripheral innervation is essential for phases of proper bone and tendon repair, and that nerves may dynamically regulate the repair process through interactions with the injury microenvironment via a variety of neuropeptides or neurotransmitters. A deeper understanding of neuronal regulation of musculoskeletal repair, and the crosstalk between nerves and the musculoskeletal system, will enable the development of future therapies for tissue healing.
Collapse
Affiliation(s)
- Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Sowmya Ramesh
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Benjamin Levi
- Department of Surgery, University of Texas Southwestern, Dallas, TX 75390, United States
| | - Thomas L Clemens
- Department of Orthopaedics, University of Maryland, Baltimore, MD 21205, United States
- Department of Research Services, Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, United States
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
2
|
Chen Y, Guo B, Ma G, Cao H. Sensory nerve regulation of bone homeostasis: Emerging therapeutic opportunities for bone-related diseases. Ageing Res Rev 2024; 99:102372. [PMID: 38880342 DOI: 10.1016/j.arr.2024.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Understanding the intricate interplay between sensory nerves and bone tissue cells is of paramount significance in the field of bone biology and clinical medicine. The regulatory role of sensory nerves in bone homeostasis offers a novel perspective for the development of targeted therapeutic interventions for a spectrum of bone-related diseases, including osteoarthritis, osteoporosis, and intervertebral disc degeneration. By elucidating the mechanisms through which sensory nerves and their neuropeptides influence the differentiation and function of bone tissue cells, this review aims to shed light on emerging therapeutic targets that harness the neuro-skeletal axis for the treatment and management of debilitating bone disorders. Moreover, a comprehensive understanding of sensory nerve-mediated bone regulation may pave the way for the development of innovative strategies to promote bone health and mitigate the burden of skeletal pathologies in clinical practice.
Collapse
Affiliation(s)
- Yong Chen
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Botao Guo
- The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
3
|
Park EJ, Truong VL, Jeong WS, Min WK. Brain-Derived Neurotrophic Factor (BDNF) Enhances Osteogenesis and May Improve Bone Microarchitecture in an Ovariectomized Rat Model. Cells 2024; 13:518. [PMID: 38534361 DOI: 10.3390/cells13060518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) has gained attention as a therapeutic agent due to its potential biological activities, including osteogenesis. However, the molecular mechanisms involved in the osteogenic activity of BDNF have not been fully understood. This study aimed to investigate the action of BDNF on the osteoblast differentiation in bone marrow stromal cells, and its influence on signaling pathways. In addition, to evaluate the clinical efficacy, an in vivo animal study was performed. METHODS Preosteoblast cells (MC3T3-E1), bone marrow-derived stromal cells (ST2), and a direct 2D co-culture system were treated with BDNF. The effect of BDNF on cell proliferation was determined using the CCK-8 assay. Osteoblast differentiation was assessed based on alkaline phosphatase (ALP) activity and staining and the protein expression of multiple osteoblast markers. Calcium accumulation was examined by Alizarin red S staining. For the animal study, we used ovariectomized Sprague-Dawley rats and divided them into BDNF and normal saline injection groups. MicroCT, hematoxylin and eosin (H&E), and tartrate-resistant acid phosphatase (TRAP) stain were performed for analysis. RESULTS BDNF significantly increased ALP activity, calcium deposition, and the expression of osteoblast differentiation-related proteins, such as ALP, osteopontin, etc., in both ST-2 and the MC3T3-E1 and ST-2 co-culture systems. Moreover, the effect of BDNF on osteogenic differentiation was diminished by blocking tropomyosin receptor kinase B, as well as inhibiting c-Jun N-terminal kinase and p38 MAPK signals. Although the animal study results including bone density and histology showed increased osteoblastic and decreased osteoclastic activity, only a portion of parameters reached statistical significance. CONCLUSIONS Our study results showed that BDNF affects osteoblast differentiation through TrkB receptor, and JNK and p38 MAPK signal pathways. Although not statistically significant, the trend of such effects was observed in the animal experiment.
Collapse
Affiliation(s)
- Eugene J Park
- Department of Orthopedic Surgery, Kyungpook National University Hospital, College of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Van-Long Truong
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Woo-Sik Jeong
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Woo-Kie Min
- Department of Orthopedic Surgery, Kyungpook National University Hospital, College of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Morris AJ, Parker RS, Nazzal MK, Natoli RM, Fehrenbacher JC, Kacena MA, White FA. Cracking the Code: The Role of Peripheral Nervous System Signaling in Fracture Repair. Curr Osteoporos Rep 2024; 22:193-204. [PMID: 38236511 PMCID: PMC10912155 DOI: 10.1007/s11914-023-00846-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW The traditionally understated role of neural regulation in fracture healing is gaining prominence, as recent findings underscore the peripheral nervous system's critical contribution to bone repair. Indeed, it is becoming more evident that the nervous system modulates every stage of fracture healing, from the onset of inflammation to repair and eventual remodeling. RECENT FINDINGS Essential to this process are neurotrophins and neuropeptides, such as substance P, calcitonin gene-related peptide, and neuropeptide Y. These molecules fulfill key roles in promoting osteogenesis, influencing inflammation, and mediating pain. The sympathetic nervous system also plays an important role in the healing process: while local sympathectomies may improve fracture healing, systemic sympathetic denervation impairs fracture healing. Furthermore, chronic activation of the sympathetic nervous system, often triggered by stress, is a potential impediment to effective fracture healing, marking an important area for further investigation. The potential to manipulate aspects of the nervous system offers promising therapeutic possibilities for improving outcomes in fracture healing. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Collapse
Affiliation(s)
- Ashlyn J Morris
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reginald S Parker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jill C Fehrenbacher
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| | - Fletcher A White
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
6
|
Liu N, Liu D, Li Y, Zhang X, He J, Jiang Y, Wang Y, Ma Y, Jin H, Shen L. Effects and mechanisms of substance P on the proliferation and angiogenic differentiation of bone marrow mesenchymal stem cells: Bioinformatics and in vitro experiments. Genomics 2023; 115:110679. [PMID: 37423397 DOI: 10.1016/j.ygeno.2023.110679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
The slight release of substance P (SP) from the end of peripheral nerve fibers causes a neurogenic inflammatory reaction, promotes vascular dilation and increases vascular permeability. However, whether SP can promote the angiogenesis of bone marrow mesenchymal stem cells (BMSCs) under high glucose conditions has not been reported. This study analyzed the targets, biological processes and molecular mechanisms underlying the effects of SP on BMSCs. BMSCs cultured in vitro were divided into a normal control group, high glucose control group, high glucose SP group and high glucose Akt inhibitor group to verify the effects of SP on BMSCs proliferation, migration and angiogenic differentiation. SP was found to act on 28 targets of BMSCs and participate in angiogenesis. Thirty-six core proteins, including AKT1, APP, BRCA1, CREBBP and EGFR, were identified. In a high glucose environment, SP increased the BMSCs proliferation optical density value and cell migration number and reduced the BMSCs apoptosis rate. In addition, SP induced BMSCs to highly express the CD31 protein, maintain the wall structure integrity of the matrix glue mesh and promote increases in the number of matrix glue meshes. These experiments showed that in a high glucose environment, SP acts on 28 targets of BMSCs that encode core proteins, such as AKT1, APP and BRCA1, and improves BMSCs proliferation, migration and angiogenic differentiation through the Akt signaling pathway.
Collapse
Affiliation(s)
- Na Liu
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Danyang Liu
- Department of Histology & Embryology, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Yongtao Li
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Xiaodong Zhang
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Jun He
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Yang Jiang
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Yang Wang
- Department of physiology, Qiqihar Medical University, No. 333, Basic Medical Research Center, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Yong Ma
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Haifeng Jin
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China; Basic Medical Research Center, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China.
| | - Lei Shen
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China; Basic Medical Research Center, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China.
| |
Collapse
|
7
|
Temporospatial Expression of Neuropeptide Substance P in Dental Pulp Stem Cells During Odontoblastic Differentiation in Vitro and Reparative Dentinogenesis in Vivo. J Endod 2023; 49:276-285. [PMID: 36549466 DOI: 10.1016/j.joen.2022.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Substance P (SP) is a neuropeptide released from the nervous fibers in response to injury. In addition to its association with pain and reactions to anxiety and stress, SP exerts various physiological functions by binding to the neurokinin-1 receptor (NK1R). However, the expression and role of SP in reparative dentinogenesis remain elusive. Here, we explored whether SP is involved in odontoblastic differentiation during reparative dentinogenesis. METHODS Dental pulp stem cells (DPSCs) were isolated from healthy human dental pulp tissues and subjected to odontoblastic differentiation. The expression of SP and NK1R during odontoblastic differentiation was investigated in vitro. The effects of SP on odontoblastic differentiation of DPSCs were evaluated using alizarin red staining, alkaline phosphatase staining, and real-time polymerase chain reaction. After direct pulp capping with mineral trioxide aggregate, the expression of SP and NK1R during reparative dentin formation in rats were identified using histological and immunohistochemical staining. RESULTS SP and NK1R expression increased during the odontoblastic differentiation of DPSCs. SP translocated to the nucleus when DPSCs were exposed to differentiation medium. NK1R was always present in the nuclei of DPSCs and odontoblast-like cells. Additionally, we discovered that 10-8 M SP marginally enhanced the odontoblastic differentiation of DPSCs, and that these effects could be impaired by the NK1R antagonist. Furthermore, SP and NK1R were expressed in odontoblast-like and dental pulp cells during reparative dentin formation in vivo. CONCLUSIONS SP contributes to odontoblastic differentiation during reparative dentin formation by binding to the NK1R.
Collapse
|
8
|
Tao R, Mi B, Hu Y, Lin S, Xiong Y, Lu X, Panayi AC, Li G, Liu G. Hallmarks of peripheral nerve function in bone regeneration. Bone Res 2023; 11:6. [PMID: 36599828 PMCID: PMC9813170 DOI: 10.1038/s41413-022-00240-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
Skeletal tissue is highly innervated. Although different types of nerves have been recently identified in the bone, the crosstalk between bone and nerves remains unclear. In this review, we outline the role of the peripheral nervous system (PNS) in bone regeneration following injury. We first introduce the conserved role of nerves in tissue regeneration in species ranging from amphibians to mammals. We then present the distribution of the PNS in the skeletal system under physiological conditions, fractures, or regeneration. Furthermore, we summarize the ways in which the PNS communicates with bone-lineage cells, the vasculature, and immune cells in the bone microenvironment. Based on this comprehensive and timely review, we conclude that the PNS regulates bone regeneration through neuropeptides or neurotransmitters and cells in the peripheral nerves. An in-depth understanding of the roles of peripheral nerves in bone regeneration will inform the development of new strategies based on bone-nerve crosstalk in promoting bone repair and regeneration.
Collapse
Affiliation(s)
- Ranyang Tao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Xuan Lu
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, 02215, MA, USA
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China.
| |
Collapse
|
9
|
Feng H, Jiang B, Xing W, Sun J, Greenblatt MB, Zou W. Skeletal stem cells: origins, definitions, and functions in bone development and disease. LIFE MEDICINE 2022; 1:276-293. [PMID: 36811112 PMCID: PMC9938638 DOI: 10.1093/lifemedi/lnac048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
Skeletal stem cells (SSCs) are tissue-specific stem cells that can self-renew and sit at the apex of their differentiation hierarchy, giving rise to mature skeletal cell types required for bone growth, maintenance, and repair. Dysfunction in SSCs is caused by stress conditions like ageing and inflammation and is emerging as a contributor to skeletal pathology, such as the pathogenesis of fracture nonunion. Recent lineage tracing experiments have shown that SSCs exist in the bone marrow, periosteum, and resting zone of the growth plate. Unraveling their regulatory networks is crucial for understanding skeletal diseases and developing therapeutic strategies. In this review, we systematically introduce the definition, location, stem cell niches, regulatory signaling pathways, and clinical applications of SSCs.
Collapse
Affiliation(s)
- Heng Feng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo Jiang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenhui Xing
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Research Division, Hospital for Special Surgery, New York, NY 10065, USA
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
10
|
Qin Q, Lee S, Patel N, Walden K, Gomez-Salazar M, Levi B, James AW. Neurovascular coupling in bone regeneration. Exp Mol Med 2022; 54:1844-1849. [PMID: 36446849 PMCID: PMC9722927 DOI: 10.1038/s12276-022-00899-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
The mammalian skeletal system is densely innervated by both neural and vascular networks. Peripheral nerves in the skeleton include sensory and sympathetic nerves. The crosstalk between skeletal and neural tissues is critical for skeletal development and regeneration. The cellular processes of osteogenesis and angiogenesis are coupled in both physiological and pathophysiological contexts. The cellular and molecular regulation of osteogenesis and angiogenesis have yet to be fully defined. This review will provide a detailed characterization of the regulatory role of nerves and blood vessels during bone regeneration. Furthermore, given the importance of the spatial relationship between nerves and blood vessels in bone, we discuss neurovascular coupling during physiological and pathological bone formation. A better understanding of the interactions between nerves and blood vessels will inform future novel therapeutic neural and vascular targeting for clinical bone repair and regeneration.
Collapse
Affiliation(s)
- Qizhi Qin
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Seungyong Lee
- grid.260024.20000 0004 0627 4571Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308 USA ,grid.412977.e0000 0004 0532 7395Department of Physical Education, Incheon National University, Incheon, 22012 South Korea
| | - Nirali Patel
- grid.260024.20000 0004 0627 4571Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 USA
| | - Kalah Walden
- grid.260024.20000 0004 0627 4571Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 USA
| | - Mario Gomez-Salazar
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Benjamin Levi
- grid.267313.20000 0000 9482 7121Departments of Surgery, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Aaron W. James
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
11
|
Nacre-mimetic hydroxyapatite/chitosan/gelatin layered scaffolds modifying substance P for subchondral bone regeneration. Carbohydr Polym 2022; 291:119575. [DOI: 10.1016/j.carbpol.2022.119575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022]
|
12
|
Xu J, Zhang Z, Zhao J, Meyers CA, Lee S, Qin Q, James AW. Interaction between the nervous and skeletal systems. Front Cell Dev Biol 2022; 10:976736. [PMID: 36111341 PMCID: PMC9468661 DOI: 10.3389/fcell.2022.976736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
The skeleton is one of the largest organ systems in the body and is richly innervated by the network of nerves. Peripheral nerves in the skeleton include sensory and sympathetic nerves. Crosstalk between bones and nerves is a hot topic of current research, yet it is not well understood. In this review, we will explore the role of nerves in bone repair and remodeling, as well as summarize the molecular mechanisms by which neurotransmitters regulate osteogenic differentiation. Furthermore, we discuss the skeleton’s role as an endocrine organ that regulates the innervation and function of nerves by secreting bone-derived factors. An understanding of the interactions between nerves and bone can help to prevent and treat bone diseases caused by abnormal innervation or nerve function, develop new strategies for clinical bone regeneration, and improve patient outcomes.
Collapse
Affiliation(s)
- Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Academy of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Zhao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Carolyn A. Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Seungyong Lee
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
- Department of Physical Education, Incheon National University, Incheon, South Korea
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Aaron W. James,
| |
Collapse
|
13
|
Liu S, Chen T, Wang R, Huang H, Fu S, Zhao Y, Wang S, Wan L. Exploring the effect of the "quaternary regulation" theory of "peripheral nerve-angiogenesis-osteoclast-osteogenesis" on osteoporosis based on neuropeptides. Front Endocrinol (Lausanne) 2022; 13:908043. [PMID: 35983518 PMCID: PMC9379541 DOI: 10.3389/fendo.2022.908043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoporosis is a common bone metabolic disease among the middle-aged and elderly, with its high incidence rate and a major cause of disability and mortality. Early studies found that bone metabolic homeostasis is achieved through osteogenesis-osteoclast coupling. Although current anti-osteoporosis drugs can attenuate bone loss caused by aging, they present specific side effects. With the discovery of CD31hi Emcnhi blood vessels in 2014, the effect of H-type blood vessels on bone metabolism has been valued by researchers, and the ternary regulation theory of bone metabolism of "Angiogenesis-Osteoclast-Osteogenesis" has also been recognized. Nowadays, more studies have confirmed that peripheral nerves substantially impact bone metabolism. However, due to the complex function of peripheral nerves, the crosstalk mechanism of "Peripheral nerve-Angiogenesis-Osteoclast-Osteogenesis" has not yet been fully revealed. Neuropeptide serves as signaling molecules secreted by peripheral nerves that regulate blood vessels, osteoblasts, and osteoclasts' functions. It is likely to be the breakthrough point of the quaternary regulation theory of "Peripheral nerve-Angiogenesis-Osteoclast-Osteogenesis". Here, we discuss the effect of peripheral nerves on osteoporosis based on neuropeptides.
Collapse
Affiliation(s)
- Shuhua Liu
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tongying Chen
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruolin Wang
- Department of Nephrology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hongxing Huang
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sai Fu
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Zhao
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shihao Wang
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wan
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Lei Wan,
| |
Collapse
|
14
|
Kara Z, Güneş M, Bolayırlı İM, Oşar Siva Z. The Effects of Diabetic Polyneuropathy and Autonomic Neuropathy on Bone Turnover. Metab Syndr Relat Disord 2021; 20:11-19. [PMID: 34818066 DOI: 10.1089/met.2021.0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: The effect of diabetic polyneuropathy (DPN) and autonomic neuropathy (AN) on bone turnover in type 2 diabetes mellitus (DM) is uncertain due to the lack of data. In this study, we tried to determine the effect of DPN and AN on bone metabolism. Materials and Methods: The study included patients with type 2 DM (aged 18-80 years) and age-matched healthy individuals who presented to the Departments of Metabolism and Diabetes, Geriatrics, and General Internal Medicine, Cerrahpaşa Medical School, Istanbul University. The patients were examined to find out whether they had AN, and neuropathy scores were recorded by exploring peripheral neuropathy. Bone mineral density was measured by dual-energy X-ray (DXA). Demographic characteristics, the presence of microvascular complications, and biochemical data were obtained from patients' files. Serum cross-linked C-telopeptide (Ctx), osteocalcin, and bone-specific alkaline phosphatase (B-ALP) were analyzed. Results: The study comprised a total of 64 patients: 23 had type 2 DM and osteoporosis (OP) (duration of diabetes 10.1 ± 7 years; mean age 63 ± 9.1 years; female/male 18/5; Group 1), 41 had type 2 DM and non-OP (duration of diabetes 10.3 ± 7.6 years; mean age 58 ± 7.4 years; female/male 30/11; Group 2), and 26 healthy volunteers made up the control group (mean age 62 ± 11.9 years; female/male 14/12; Group 3). The bone turnover parameters were lower in type 2 DM individuals. The levels of osteocalcin (13.3 ± 5.2 ng/mL) and B-ALP (44.7 ± 10.9 IU/L) in patients with type 2 DM were lower than those of healthy subjects: osteocalcin (20.6 ± 10 ng/mL) and B-ALP (111 ± 31.4 IU/L; P = 0.001 and P = 0.000, respectively). Ctx levels (193.5 ± 49.3; 207.6 ± 40 ng/mL) were recorded to be similar (P = 0.2). AN was also noted as a risk factor for OP. For patients without AN, the likelihood of developing OP (odds ratio) was 0.7. The corresponding ratio for patients with AN was 9.3. Conclusions: Among the independent variables, the neuropathy score was determined to have an impact on bone turnover. AN was identified to be a significant risk factor for OP.
Collapse
Affiliation(s)
- Zehra Kara
- Department of Endocrinology, Metabolism and Diabetes, Cerrahpasa Medical Faculty, University of Istanbul-Cerrahpasa, Istanbul, Turkey
| | - Mutlu Güneş
- Division of Endocrinology, Metabolism and Diabetes, Bursa City Hospital, Bursa, Turkey
| | - İbrahim Murat Bolayırlı
- Department of Biochemistry, Cerrahpaşa Medical School, Istanbul University, Istanbul, Turkey
| | - Zeynep Oşar Siva
- Department of Endocrinology, Metabolism and Diabetes, Cerrahpasa Medical Faculty, University of Istanbul-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
15
|
Winning L, El Karim IA, Linden GJ, Irwin CR, Killough SA, Lundy FT. Differential regulation of NPY and SP receptor expression in STRO-1+ve PDLSCs by inflammatory cytokines. J Periodontal Res 2021; 57:186-194. [PMID: 34773642 DOI: 10.1111/jre.12952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/30/2021] [Accepted: 10/30/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The aims of this study were to investigate neuropeptide receptor expression regulation on STRO-1 +ve periodontal ligament stem cells (PDLSCs) in response to inflammatory cytokines and to investigate a potential osteogenic effect of neuropeptides. BACKGROUND Nerve fibres innervating the periodontal tissues in humans contain several neuropeptides including neuropeptide Y and substance P. The role of neuropeptide receptors on PDLSCs, including their response to the local inflammatory environment of periodontitis, is currently unknown. METHODS A homogenous population of STRO-1 +ve PDLSCs was prepared by immunomagnetic separation of cells obtained by the tissue out-growth method from healthy premolar teeth from a single donor. Regulation of gene expression of the neuropeptide Y Y1 receptor and substance P receptor tachykinin receptor 1 was investigated. A potential osteogenic effect of neuropeptide Y and substance P was also investigated by measuring alkaline phosphatase (ALP) activity, Alizarin red staining and quantifying osteogenic gene expression. RESULTS Treatment of STRO-1 +ve PDLSCs with tumour necrosis factor-alpha or interleukin 1-beta up-regulated the expression of the neuropeptide Y's Y1 receptor, but down-regulated substance P's receptor. Significantly increased ALP activity was observed in STRO-1 +ve PDLSCs treated with neuropeptide Y but not substance P. Further studies showed that neuropeptide Y had a modest osteogenic effect on cells at both a functional level and a gene level. CONCLUSIONS Expression of the neuropeptide Y Y1 receptor gene on STRO-1 +ve PDLSCs was sensitive to local inflammatory cytokines. Treatment of cells with neuropeptide Y was found to produce a modest enhanced osteogenic effect.
Collapse
Affiliation(s)
- Lewis Winning
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland.,Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Ikhlas A El Karim
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Gerard J Linden
- Centre for Dentistry, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Christopher R Irwin
- Centre for Dentistry, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Simon A Killough
- Centre for Dentistry, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Fionnuala T Lundy
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
16
|
Wan Q, Qin W, Ma Y, Shen M, Li J, Zhang Z, Chen J, Tay FR, Niu L, Jiao K. Crosstalk between Bone and Nerves within Bone. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003390. [PMID: 33854888 PMCID: PMC8025013 DOI: 10.1002/advs.202003390] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Indexed: 05/11/2023]
Abstract
For the past two decades, the function of intrabony nerves on bone has been a subject of intense research, while the function of bone on intrabony nerves is still hidden in the corner. In the present review, the possible crosstalk between bone and intrabony peripheral nerves will be comprehensively analyzed. Peripheral nerves participate in bone development and repair via a host of signals generated through the secretion of neurotransmitters, neuropeptides, axon guidance factors and neurotrophins, with additional contribution from nerve-resident cells. In return, bone contributes to this microenvironmental rendezvous by housing the nerves within its internal milieu to provide mechanical support and a protective shelf. A large ensemble of chemical, mechanical, and electrical cues works in harmony with bone marrow stromal cells in the regulation of intrabony nerves. The crosstalk between bone and nerves is not limited to the physiological state, but also involved in various bone diseases including osteoporosis, osteoarthritis, heterotopic ossification, psychological stress-related bone abnormalities, and bone related tumors. This crosstalk may be harnessed in the design of tissue engineering scaffolds for repair of bone defects or be targeted for treatment of diseases related to bone and peripheral nerves.
Collapse
Affiliation(s)
- Qian‐Qian Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Wen‐Pin Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Yu‐Xuan Ma
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Min‐Juan Shen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Jing Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Zi‐Bin Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Ji‐Hua Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Franklin R. Tay
- College of Graduate StudiesAugusta UniversityAugustaGA30912USA
| | - Li‐Na Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
17
|
Cardiopulmonary and Neurologic Dysfunctions in Fibrodysplasia Ossificans Progressiva. Biomedicines 2021; 9:biomedicines9020155. [PMID: 33562570 PMCID: PMC7915901 DOI: 10.3390/biomedicines9020155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/28/2022] Open
Abstract
Fibrodysplasia Ossificans Progressiva (FOP) is an ultra-rare but debilitating disorder characterized by spontaneous, progressive, and irreversible heterotopic ossifications (HO) at extraskeletal sites. FOP is caused by gain-of-function mutations in the Activin receptor Ia/Activin-like kinase 2 gene (Acvr1/Alk2), with increased receptor sensitivity to bone morphogenetic proteins (BMPs) and a neoceptor response to Activin A. There is extensive literature on the skeletal phenotypes in FOP, but a much more limited understanding of non-skeletal manifestations of this disease. Emerging evidence reveals important cardiopulmonary and neurologic dysfunctions in FOP including thoracic insufficiency syndrome, pulmonary hypertension, conduction abnormalities, neuropathic pain, and demyelination of the central nervous system (CNS). Here, we review the recent research and discuss unanswered questions regarding the cardiopulmonary and neurologic phenotypes in FOP.
Collapse
|
18
|
Primary Cilia as a Biomarker in Mesenchymal Stem Cells Senescence: Influencing Osteoblastic Differentiation Potency Associated with Hedgehog Signaling Regulation. Stem Cells Int 2021; 2021:8850114. [PMID: 33574852 PMCID: PMC7857927 DOI: 10.1155/2021/8850114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Bone tissue engineering-based therapy for bone lesions requires the expansion of seeding cells, such as autologous mesenchymal stem cells (MSCs). A major obstacle to this process is the loss of the phenotype and differentiation capacity of MSCs subjected to passage. Recent studies have suggested that primary cilia, primordial organelles that transduce multiple signals, particularly hedgehog signals, play a role in senescence. Therefore, we explored the relationships among senescence, primary cilia, and hedgehog signaling in MSCs. Ageing of MSCs by expansion in vitro was accompanied by increased cell doubling time. The osteogenic capacity of aged MSCs at passage 4 was compromised compared to that of primary cells. P4 MSCs exhibited reductions in the frequency and length of primary cilia associated with decreased intensity of Arl13b staining on cilia. Senescence also resulted in downregulation of the expression of hedgehog components and CDKN2A. Suppression of ciliogenesis reduced the gene expression of both Gli1, a key molecule in the hedgehog signaling pathway and ALP, a marker of osteoblastic differentiation. This study demonstrated that the senescence of MSCs induced the loss of osteoblastic differentiation potency and inactivated hedgehog signaling associated with attenuated ciliogenesis, indicating that primary cilia play a mediating role in and are biomarkers of MSC senescence; thus, future antisenescence strategies involving manipulation of primary cilia could be developed.
Collapse
|
19
|
Xie D, Xu Y, Yang Y, Hua Z, Li J, Fu G, Wu Q. Sensory denervation increases potential of bisphosphonates to induce osteonecrosis via disproportionate expression of calcitonin gene-related peptide and substance P. Ann N Y Acad Sci 2020; 1487:56-73. [PMID: 33301204 DOI: 10.1111/nyas.14540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a serious side effect of systematic administration of bisphosphonates (BPs). Sensory innervation is crucial for bone healing. We established inferior alveolar nerve injury (IANI) and inferior alveolar nerve transection (IANT) models characterized by disorganized periosteum, increased osteoclasts, and unbalanced neuropeptide expression. Zoledronate injection disrupted neuropeptide expression in the IANI and IANT models by decreasing calcitonin gene-related peptide (CGRP) and increasing substance P (SP); associated with this, BRONJ prevalence was significantly higher in the IANT model, followed by the IANI model and the sham control. CGRP treatment significantly reduced BRONJ occurrence, whereas SP administration had the opposite effect. In vitro, RAW 264.7 cells were treated with BPs and then CGRP and/or SP to study changes in zoledronate toxicity; combined application of CGRP and SP decreased zoledronate toxicity, whereas CGRP or SP applied alone showed no effects. These results demonstrate that sensory denervation facilitates the occurrence of BRONJ and that CGRP used therapeutically may prevent BRONJ progression, provided that SP is also present. Further studies are necessary to determine the optimal ratio of CGRP to SP for promoting bone healing and to uncover the mechanism by which CGRP and SP cooperate.
Collapse
Affiliation(s)
- Dongni Xie
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yamei Xu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yao Yang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ziyi Hua
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jiao Li
- Department of Oral Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Fu
- Department of Oral Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qingqing Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Wang X, Xu J, Kang Q. Neuromodulation of bone: Role of different peptides and their interactions (Review). Mol Med Rep 2020; 23:32. [PMID: 33179112 PMCID: PMC7684869 DOI: 10.3892/mmr.2020.11670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Our understanding of the skeletal system has been expanded upon the recognition of several neural pathways that serve important roles in bone metabolism and skeletal homeostasis, as bone tissue is richly innervated. Considerable evidence provided by in vitro, animal and human studies have further elucidated the importance of a host of hormones and local factors, including neurotransmitters, in modulating bone metabolism and osteo-chondrogenic differentiation, both peripherally and centrally. Various cells of the musculoskeletal system not only express receptors for these neurotransmitters, but also influence their endogenous levels in the skeleton. As with a number of physiological systems in nature, a neuronal pathway regulating bone turnover will be neutralized by another pathway exerting an opposite effect. These neuropeptides are also critically involved in articular cartilage homeostasis and pathogenesis of degenerative joint disorders, such as osteoarthritis. In the present Review, data on the role of several neuronal populations in nerve-dependent skeletal metabolism is examined, and the molecular events involved are explored, which may reveal broader relationships between two apparently unrelated organs.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qinglin Kang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
21
|
Biological Factors, Metals, and Biomaterials Regulating Osteogenesis through Autophagy. Int J Mol Sci 2020; 21:ijms21082789. [PMID: 32316424 PMCID: PMC7215394 DOI: 10.3390/ijms21082789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 01/18/2023] Open
Abstract
Bone loss raises great concern in numerous situations, such as ageing and many diseases and in both orthopedic and dentistry fields of application, with an extensive impact on health care. Therefore, it is crucial to understand the mechanisms and the determinants that can regulate osteogenesis and ensure bone balance. Autophagy is a well conserved lysosomal degradation pathway, which is known to be highly active during differentiation and development. This review provides a revision of the literature on all the exogen factors that can modulate osteogenesis through autophagy regulation. Metal ion exposition, mechanical stimuli, and biological factors, including hormones, nutrients, and metabolic conditions, were taken into consideration for their ability to tune osteogenic differentiation through autophagy. In addition, an exhaustive overview of biomaterials, both for orthopedic and dentistry applications, enhancing osteogenesis by modulation of the autophagic process is provided as well. Already investigated conditions regulating bone regeneration via autophagy need to be better understood for finely tailoring innovative therapeutic treatments and designing novel biomaterials.
Collapse
|
22
|
Ragipoglu D, Dudeck A, Haffner-Luntzer M, Voss M, Kroner J, Ignatius A, Fischer V. The Role of Mast Cells in Bone Metabolism and Bone Disorders. Front Immunol 2020; 11:163. [PMID: 32117297 PMCID: PMC7025484 DOI: 10.3389/fimmu.2020.00163] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
Mast cells (MCs) are important sensor and effector cells of the immune system that are involved in many physiological and pathological conditions. Increasing evidence suggests that they also play an important role in bone metabolism and bone disorders. MCs are located in the bone marrow and secrete a wide spectrum of mediators, which can be rapidly released upon activation of mature MCs following their differentiation in mucosal or connective tissues. Many of these mediators can exert osteocatabolic effects by promoting osteoclast formation [e.g., histamine, tumor necrosis factor (TNF), interleukin-6 (IL-6)] and/or by inhibiting osteoblast activity (e.g., IL-1, TNF). By contrast, MCs could potentially act in an osteoprotective manner by stimulating osteoblasts (e.g., transforming growth factor-β) or reducing osteoclastogenesis (e.g., IL-12, interferon-γ). Experimental studies investigating MC functions in physiological bone turnover using MC-deficient mouse lines give contradictory results, reporting delayed or increased bone turnover or no influence depending on the mouse model used. By contrast, the involvement of MCs in various pathological conditions affecting bone is evident. MCs may contribute to the pathogenesis of primary and secondary osteoporosis as well as inflammatory disorders, including rheumatoid arthritis and osteoarthritis, because increased numbers of MCs were found in patients suffering from these diseases. The clinical observations could be largely confirmed in experimental studies using MC-deficient mouse models, which also provide mechanistic insights. MCs also regulate bone healing after fracture by influencing the inflammatory response toward the fracture, vascularization, bone formation, and callus remodeling by osteoclasts. This review summarizes the current view and understanding of the role of MCs on bone in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Deniz Ragipoglu
- Trauma Research Center Ulm, Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Anne Dudeck
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Melanie Haffner-Luntzer
- Trauma Research Center Ulm, Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Martin Voss
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jochen Kroner
- Trauma Research Center Ulm, Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Trauma Research Center Ulm, Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Verena Fischer
- Trauma Research Center Ulm, Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
23
|
Sun S, Diggins NH, Gunderson ZJ, Fehrenbacher JC, White FA, Kacena MA. No pain, no gain? The effects of pain-promoting neuropeptides and neurotrophins on fracture healing. Bone 2020; 131:115109. [PMID: 31715336 PMCID: PMC6934100 DOI: 10.1016/j.bone.2019.115109] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022]
Abstract
Neuropeptides and neurotrophins are key regulators of peripheral nociceptive nerves and contribute to the induction, sensitization, and maintenance of pain. It is now known that these peptides also regulate non-neuronal tissues, including bone. Here, we review the effects of numerous neuropeptides and neurotrophins on fracture healing. The neuropeptides calcitonin-gene related peptide (CGRP), substance P (SP), vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating peptide (PACAP) have varying effects on osteoclastic and osteoblastic activity. Ultimately, CGRP and SP both accelerate fracture healing, while VIP and PACAP seem to negatively impact healing. Unlike the aforementioned neuropeptides, the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have more uniform effects. Both factors upregulate osteoblastic activity, osteoclastic activity, and, in vivo, stimulate osteogenesis to promote fracture healing. Future research will need to clarify the exact mechanism by which the neuropeptides and neurotrophins influence fracture healing. Specifically, understanding the optimal expression patterns for these proteins in the fracture healing process may lead to therapies that can maximize their bone-healing capabilities and minimize their pain-promoting effects. Finally, further examination of protein-sequestering antibodies and/or small molecule agonists and antagonists may lead to new therapies that can decrease the rate of delayed union/nonunion outcomes and fracture-associated pain.
Collapse
Affiliation(s)
- Seungyup Sun
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Nicklaus H Diggins
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Zachary J Gunderson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, IN, USA
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA.
| |
Collapse
|
24
|
Brazill JM, Beeve AT, Craft CS, Ivanusic JJ, Scheller EL. Nerves in Bone: Evolving Concepts in Pain and Anabolism. J Bone Miner Res 2019; 34:1393-1406. [PMID: 31247122 PMCID: PMC6697229 DOI: 10.1002/jbmr.3822] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 12/21/2022]
Abstract
The innervation of bone has been described for centuries, and our understanding of its function has rapidly evolved over the past several decades to encompass roles of subtype-specific neurons in skeletal homeostasis. Current research has been largely focused on the distribution and function of specific neuronal populations within bone, as well as their cellular and molecular relationships with target cells in the bone microenvironment. This review provides a historical perspective of the field of skeletal neurobiology that highlights the diverse yet interconnected nature of nerves and skeletal health, particularly in the context of bone anabolism and pain. We explore what is known regarding the neuronal subtypes found in the skeleton, their distribution within bone compartments, and their central projection pathways. This neuroskeletal map then serves as a foundation for a comprehensive discussion of the neural control of skeletal development, homeostasis, repair, and bone pain. Active synthesis of this research recently led to the first biotherapeutic success story in the field. Specifically, the ongoing clinical trials of anti-nerve growth factor therapeutics have been optimized to titrated doses that effectively alleviate pain while maintaining bone and joint health. Continued collaborations between neuroscientists and bone biologists are needed to build on this progress, leading to a more complete understanding of neural regulation of the skeleton and development of novel therapeutics. © 2019 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer M Brazill
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA
| | - Alec T Beeve
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Clarissa S Craft
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA.,Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| | - Jason J Ivanusic
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Erica L Scheller
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA.,Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| |
Collapse
|
25
|
Geng W, Shi H, Zhang X, Tan W, Cao Y, Mei R. Substance P enhances BMSC osteogenic differentiation via autophagic activation. Mol Med Rep 2019; 20:664-670. [PMID: 31115537 PMCID: PMC6580032 DOI: 10.3892/mmr.2019.10257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/12/2019] [Indexed: 01/09/2023] Open
Abstract
Bone mesenchymal stem cells (BMSCs) are the most commonly investigated progenitor cells in bone tissue engineering for treating severe bone defects. Strategies for regulating BMSC differentiation fate have received wide attention, in which redox homeostasis plays an important role due to the change in energy metabolism during stem cell differentiation. In the present study, it was observed that autophagic activity was induced along with BMSC osteogenic differentiation and subsequently regulated reactive oxygen species (ROS) generation and the level of osteogenesis. Furthermore, it was also observed that neuropeptide substance P (SP) administration could enhance the autophagic activity in rat BMSCs via the AMPK and mTOR pathways, as well as decreasing ROS generation and promoting osteogenic differentiation. Inhibition of autophagic activity by 3‑MA reversed the effects of SP on ROS and osteogenic levels. The present results indicated that autophagic activity participated in the regulation of differentiation fate of BMSCs and SP could promote osteogenic differentiation by activating autophagy, providing a more precise biological mechanism for its application in bone tissue engineering.
Collapse
Affiliation(s)
- Wen Geng
- Department of Orthopaedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Huimin Shi
- Department of Ophthalmology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Ximin Zhang
- Department of Orthopaedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Wei Tan
- Department of Orthopaedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Yuan Cao
- Department of Orthopaedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Rongcheng Mei
- Department of Orthopaedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
26
|
Tuzmen C, Campbell PG. Crosstalk between neuropeptides SP and CGRP in regulation of BMP2-induced bone differentiation. Connect Tissue Res 2018; 59:81-90. [PMID: 29745819 PMCID: PMC6448777 DOI: 10.1080/03008207.2017.1408604] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM OF THE STUDY The peripheral nervous system is involved in regulation of bone metabolism via sensory and sympathetic innervation. Substance P (SP) and calcitonin gene-related peptide (CGRP) are two sensory neuropeptides that have been associated with regulation of osteogenic differentiation. However, the interaction between SP and CGRP both with each other and the bone morphogenetic protein 2 (BMP2) in regulation of osteogenic differentiation has not been studied. Therefore, the aim of this study was to investigate the interaction between SP and CGRP on BMP2-induced bone differentiation using model progenitor cells. MATERIALS AND METHODS C2C12 myoblasts and MC3T3 pre-osteoblasts were treated with SP and CGRP, both individually and in combination, in the presence of BMP2. The effects of the neuropeptides on BMP2-induced osteogenic differentiation were assessed by measuring alkaline phosphatase (ALP) activity, mineralization, and expression of osteogenic markers. RESULTS Both SP and CGRP enhanced BMP2 signaling, Runx2 mRNA expression, as well as mineralization in vitro. Co-stimulation with SP and CGRP resulted in down-regulation of BMP2-induced bone differentiation, suggesting potential crosstalk between the two neuropeptides in regulation of BMP2 signaling. CONCLUSIONS Based on the results shown here, CGRP can mitigate augmenting effects of SP on BMP2 signaling and the three pathways potentially converge on Runx2 to regulate BMP2-induced bone differentiation.
Collapse
Affiliation(s)
- Ceren Tuzmen
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Phil G. Campbell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA,Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, PA 15213, USA,Corresponding Author: Phil Campbell, Ph.D., Engineering Research Accelerator, Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall, Pittsburgh, PA 15213, USA,
| |
Collapse
|
27
|
Dorsal Root Ganglion Maintains Stemness of Bone Marrow Mesenchymal Stem Cells by Enhancing Autophagy through the AMPK/mTOR Pathway in a Coculture System. Stem Cells Int 2018; 2018:8478953. [PMID: 30363977 PMCID: PMC6186314 DOI: 10.1155/2018/8478953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/10/2018] [Accepted: 08/14/2018] [Indexed: 12/28/2022] Open
Abstract
Our previous studies found that sensory nerve tracts implanted in tissue-engineered bone (TEB) could result in better osteogenesis. To explore the mechanism of the sensory nerve promoting osteogenesis in TEB in vitro, a transwell coculture experiment was designed between dorsal root ganglion (DRG) cells and bone marrow mesenchymal stem cells (BMSCs). BMSC proliferation was determined by CCK8 assay, and osteo-, chondro-, and adipogenic differentiation were assessed by alizarin red, alcian blue, and oil red staining. We found that the proliferation and multipotent differentiation of BMSCs were all enhanced in the coculture group compared to the BMSCs group. Crystal violet staining showed that the clone-forming ability of BMSCs in the coculture group was also enhanced and mRNA levels of Sox2, Nanog, and Oct4 were significantly upregulated in the coculture group. Moreover, the autophagy level of BMSCs, regulating their stemness, was promoted in the coculture group, mediated by the AMPK/mTOR pathway. In addition, AMPK inhibitor compound C could significantly downregulate the protein expression of LC3 and the mRNA level of stemness genes in the coculture group. Finally, we found that the NK1 receptor antagonist, aprepitant, could partly block this effect, which indicated that substance P played an important role in the effect. Together, we conclude that DRG could maintain the stemness of BMSCs by enhancing autophagy through the AMPK/mTOR pathway in a transwell coculture system, which may help explain the better osteogenesis after implantation of the sensory nerve into TEB.
Collapse
|
28
|
Lee J, Lee SH, Kim BS, Cho YS, Park Y. Development and Evaluation of Hyaluronic Acid-Based Hybrid Bio-Ink for Tissue Regeneration. Tissue Eng Regen Med 2018; 15:761-769. [PMID: 30603594 DOI: 10.1007/s13770-018-0144-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/17/2018] [Accepted: 07/10/2018] [Indexed: 01/21/2023] Open
Abstract
Background Bioprinting has recently appeared as a powerful tool for building complex tissue and organ structures. However, the application of bioprinting to regenerative medicine has limitations, due to the restricted choices of bio-ink for cytocompatible cell encapsulation and the integrity of the fabricated structures. Methods In this study, we developed hybrid bio-inks based on acrylated hyaluronic acid (HA) for immobilizing bio-active peptides and tyramine-conjugated hyaluronic acids for fast gelation. Results Conventional acrylated HA-based hydrogels have a gelation time of more than 30 min, whereas hybrid bio-ink has been rapidly gelated within 200 s. Fibroblast cells cultured in this hybrid bio-ink up to 7 days showed > 90% viability. As a guidance cue for stem cell differentiation, we immobilized four different bio-active peptides: BMP-7-derived peptides (BMP-7D) and osteopontin for osteogenesis, and substance-P (SP) and Ac-SDKP (SDKP) for angiogenesis. Mesenchymal stem cells cultured in these hybrid bio-inks showed the highest angiogenic and osteogenic activity cultured in bio-ink immobilized with a SP or BMP-7D peptide. This bio-ink was loaded in a three-dimensional (3D) bioprinting device showing reproducible printing features. Conclusion We have developed bio-inks that combine biochemical and mechanical cues. Biochemical cues were able to regulate differentiation of cells, and mechanical cues enabled printing structuring. This multi-functional bio-ink can be used for complex tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jaeyeon Lee
- 1Department of Biomedical Engineering, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Se-Hwan Lee
- 2Department of Mechanical Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538 Republic of Korea
| | - Byung Soo Kim
- 3Department of Internal Medicine, Korea University Medical Center, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Young-Sam Cho
- 2Department of Mechanical Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538 Republic of Korea
| | - Yongdoo Park
- 1Department of Biomedical Engineering, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| |
Collapse
|
29
|
Tuzmen C, Verdelis K, Weiss L, Campbell P. Crosstalk between substance P and calcitonin gene-related peptide during heterotopic ossification in murine Achilles tendon. J Orthop Res 2018; 36:1444-1455. [PMID: 29227562 PMCID: PMC6449576 DOI: 10.1002/jor.23833] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/04/2017] [Indexed: 02/04/2023]
Abstract
Heterotopic ossification (HO) is abnormal bone formation within soft tissue, usually predisposed by neurogenic or musculoskeletal trauma. Inflammation resulting from trauma is considered to be the main trigger for HO by eliciting changes within the injury site, including elevation of bone morphogenetic proteins (BMPs). Recent research, however, has also associated changes in sensory neuropeptide expression with HO. Substance P (SP) and calcitonin gene-related peptide (CGRP) are two of those neuropeptides that have been implicated with various aspects of HO, including regulation of inflammation and BMP signaling. Despite discoveries associating SP and CGRP with soft tissue HO, it remains unclear whether SP and CGRP have a direct role in the induction of HO. Here, we investigated the effect of SP and CGRP in vivo with the aid of inkjet-based biopatterning technology to controllably deliver these neuropeptides onto a murine Achilles tendon. While we did not observe any significant effect with CGRP, SP alone promoted HO in vivo with increased expression of BMP2. Remarkably, when SP and CGRP were delivered together, CGRP counteracted the effect of SP and essentially blocked SP-induced HO. This report contributes to the understanding of the complex problem of HO pathophysiology and warrants more study to better elucidate the interplay between SP and CGRP in the induction of HO. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1444-1455, 2018.
Collapse
Affiliation(s)
- Ceren Tuzmen
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Kostas Verdelis
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lee Weiss
- Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Phil Campbell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Kim SH, Kim JE, Kim SH, Jung Y. Substance P/dexamethasone-encapsulated PLGA scaffold fabricated using supercritical fluid process for calvarial bone regeneration. J Tissue Eng Regen Med 2017; 11:3469-3480. [PMID: 28568973 DOI: 10.1002/term.2260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 04/20/2016] [Accepted: 07/03/2016] [Indexed: 12/31/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) scaffolds encapsulated with substance P (SP) and dexamethasone (Dex) by the supercritical CO2 foaming method were fabricated to treat calvarial bone. We compared the release profiles of SP and Dex according to the incorporation methods using encapsulation or dipping. Ninety percent of the SP or Dex molecules in the scaffolds prepared by the encapsulating method were released by day 14 or day 6, respectively. In vivo real-time assays for human mesenchymal stem cell (hMSC) tracking were performed to confirm the MSC recruitment abilities of the scaffolds. The results showed that the optical intensity of the SP-encapsulated group was 2.59 times higher than that of the phosphate-buffered saline group and 1.3 times higher than that of the SP-dipping group. Furthermore, we compared the angiogenesis activity of the scaffolds. In the SP-encapsulated group, 72.9 ± 2.6% of the vessels showed matured features by 1 week, and it increased to 82.0 ± 4.6% after 4 weeks. We implanted the scaffolds into rat calvarial defects. After 24 weeks, SP- and Dex-encapsulated scaffolds showed 67.1% and 26.2% higher bone formation than those of the Dex-encapsulated group and SP-encapsulated group, respectively, and they formed 36.1% more bone volume compared with the SP- and Dex-dipped scaffolds. Consequently, the results of this study suggest that SP- and Dex-encapsulated scaffolds made by the supercritical CO2 foaming method could be a good treatment modality to treat critical bone defects without cell transplantation by recruiting autologous stem cells and forming new bone tissues. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Su Hee Kim
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 136-701, Korea.,Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
| | - Ji Eun Kim
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 136-701, Korea.,Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
| | - Soo Hyun Kim
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 136-701, Korea.,Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea.,Department of Biomedical Engineering, University of Science and Technology (UST), Seoul, 136-791, Korea
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, 130-650, Korea.,Department of Biomedical Engineering, University of Science and Technology (UST), Seoul, 136-791, Korea
| |
Collapse
|
31
|
Wu J, Liu S, Meng H, Qu T, Fu S, Wang Z, Yang J, Jin D, Yu B. Neuropeptide Y enhances proliferation and prevents apoptosis in rat bone marrow stromal cells in association with activation of the Wnt/β-catenin pathway in vitro. Stem Cell Res 2017; 21:74-84. [PMID: 28411439 DOI: 10.1016/j.scr.2017.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 03/31/2017] [Accepted: 04/02/2017] [Indexed: 01/03/2023] Open
Abstract
Neuropeptide Y (NPY) exhibits a critical but poorly understood regulatory signaling function and has been shown to promote proliferation, vascularization and migration in several types of cells and tissues. However, little is known about the specific role of NPY in the proliferation and apoptosis of bone marrow stromal cells (also known as bone marrow-derived mesenchymal stem cells, BMSCs), which contain a subpopulation of multipotent skeletal stem cells. Based on BrdU incorporation tests, Cell Counting Kit-8, flow cytometry, quantitative polymerase chain reaction and western blotting, we showed that NPY significantly promoted the proliferation of BMSCs in a concentration-dependent manner, with a maximal effect observed at a concentration of 10-10M for pro-proliferative and 10-12M for anti-apoptotic activities. Furthermore, NPY significantly increased the percentage of cells in S and G2/M phases. In addition, NPY exhibited a protective effect after 24h of serum starvation as illustrated by a reduction in the apoptosis rate, degree of nuclear condensation, and expression of apoptosis markers, including caspase-3, caspase-9 and Bax mRNA expression. NPY also increased the mRNA and protein expression levels of canonical Wnt signaling pathway proteins, including β-catenin and c-myc, during the induced proliferative and anti-apoptotic processes. However, the proliferative and anti-apoptotic activities of NPY were partially blocked by both PD160170 (1μM) and DKK1 (0.2μg/mL). These compounds also blocked the mRNA and protein expression of β-catenin, p-GSK-3β and c-myc. Therefore, the results of the present study demonstrated that NPY exerts a proliferative and protective effect on BMSCs in a dose- and time-dependent manner in vitro, and importantly, these effects may be mediated via its Y1 receptor and involved in activation of the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Jianqun Wu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Song Liu
- Department of Orthopedics, The Third Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province 510515, China; Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Huan Meng
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Tianyu Qu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Su Fu
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Zhao Wang
- Department of Orthopedics, The Third Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province 510515, China; Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Jianguo Yang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China; Department of Orthopaedics, The First Hospital Huhhot, Huhhot, Inner Mongolia 010020, China
| | - Dan Jin
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Bin Yu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
32
|
Icariin promotes osteogenic differentiation of rat bone marrow stromal cells by activating the ERα-Wnt/β-catenin signaling pathway. Biomed Pharmacother 2016; 84:931-939. [DOI: 10.1016/j.biopha.2016.09.107] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 12/27/2022] Open
|
33
|
Wang T, Wu D, Li Y, Li W, Zhang S, Hu K, Zhou H. Substance P incorporation in calcium phosphate cement for dental alveolar bone defect restoration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:546-53. [DOI: 10.1016/j.msec.2016.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023]
|
34
|
Visser R, Rico-Llanos GA, Pulkkinen H, Becerra J. Peptides for bone tissue engineering. J Control Release 2016; 244:122-135. [PMID: 27794492 DOI: 10.1016/j.jconrel.2016.10.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 01/07/2023]
Abstract
Molecular signals in the form of growth factors are the main modulators of cell behavior. However, the use of growth factors in tissue engineering has several drawbacks, including their costs, difficult production, immunogenicity and short half-life. Furthermore, many of them are pleiotropic and, since a single growth factor can have different active domains, their effect is not always fully controllable. A very interesting alternative that has recently emerged is the use of biomimetic peptides. Sequences derived from the active domains of soluble or extracellular matrix proteins can be used to functionalize the biomaterials used as scaffolds for new tissue growth to either direct the attachment of cells or to be released as soluble ligands. Since these short peptides can be easily designed and cost-effectively synthesized in vitro, their use has opened up a world of new opportunities to obtain cheaper and more effective implants for regenerative medicine strategies. In this extensive review we will go through many of the most important peptides with potential interest for bone tissue engineering, not limiting to those that only mediate cell adhesion or induce the osteogenic differentiation of progenitor cells, but also focusing on those that direct angiogenesis because of its close relation with bone formation.
Collapse
Affiliation(s)
- Rick Visser
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain; Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Spain; BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain.
| | - Gustavo A Rico-Llanos
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain; Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Spain; BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain
| | - Hertta Pulkkinen
- BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain; Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jose Becerra
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain; Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Spain; BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain
| |
Collapse
|
35
|
Liu S, Jin D, Wu JQ, Xu ZY, Fu S, Mei G, Zou ZL, Ma SH. Neuropeptide Y stimulates osteoblastic differentiation and VEGF expression of bone marrow mesenchymal stem cells related to canonical Wnt signaling activating in vitro. Neuropeptides 2016; 56:105-13. [PMID: 26707636 DOI: 10.1016/j.npep.2015.12.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/26/2022]
Abstract
Neuropeptide Y (NPY) is a neuropeptide secreted by sensory nerve fibers distributed in the marrow and vascular canals of bone tissue. However, the effect of NPY on the osteogenic ability of bone marrow mesenchymal stem cells (BMSCs) remains controversial and has not been thoroughly investigated. To explore the osteogenic activity and the migration and VEGF expression capabilities of BMSCs affected by NPY, as well as the underlying mechanisms, we investigated the potential relationships among NPY, osteoblastic differentiation, angiogenesis and canonical Wnt signaling in BMSCs. NPY was observed to regulate osteoblastic differentiation at concentrations ranging from 10(-8) to 10(-12)mol/L, and the effects of NPY on the levels of Wnt signaling proteins were detected using Western blotting. To unravel the underlying mechanism, BMSCs were treated with NPY after pretreatment with the NPY-1R antagonist PD160170 or the Wnt pathway antagonist DKK1, and gene expression levels of Wnt signaling molecules and osteoblastic markers were determined by qPCR. Our results indicated that NPY significantly promoted osteoblastic differentiation of BMSCs in a concentration-dependent manner and up-regulated the expression levels of proteins including β-catenin and p-GSK-3β and the mRNA level of β-catenin. Moreover, NPY promoted the translocation of β-catenin into nucleus. The effects of NPY were inhibited by PD160170 or DKK1. Additionally, NPY enhanced the ability of BMSCs to migrate and promoted the expression of vascular endothelial growth factor (VEGF) as measured by immunocytochemical staining, qPCR and Western blot. These results suggested that NPY may stimulate osteoblastic differentiation via activating canonical Wnt signaling and enhance the angiogenic capacity of BMSCs.
Collapse
Affiliation(s)
- Song Liu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou City, Guangdong Province 510515, People's Republic of China
| | - Dan Jin
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou City, Guangdong Province 510515, People's Republic of China.
| | - Jian-qun Wu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou City, Guangdong Province 510515, People's Republic of China
| | - Zi-yi Xu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou City, Guangdong Province 510515, People's Republic of China
| | - Su Fu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou City, Guangdong Province 510515, People's Republic of China
| | - Gang Mei
- Department of Orthopaedics, Xiangyang Central Hospital, Xiangyang City, Hubei Province 441021, People's Republic of China
| | - Zhen-Lv Zou
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou City, Guangdong Province 510515, People's Republic of China
| | - Sheng-hui Ma
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou City, Guangdong Province 510515, People's Republic of China
| |
Collapse
|
36
|
Amso Z, Cornish J, Brimble MA. Short Anabolic Peptides for Bone Growth. Med Res Rev 2016; 36:579-640. [DOI: 10.1002/med.21388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/24/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Zaid Amso
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
| | - Jillian Cornish
- Department of Medicine; The University of Auckland; Auckland 1010 New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| |
Collapse
|
37
|
Protective Effect of Neuropeptide Substance P on Bone Marrow Mesenchymal Stem Cells against Apoptosis Induced by Serum Deprivation. Stem Cells Int 2015; 2015:270328. [PMID: 26106423 PMCID: PMC4464676 DOI: 10.1155/2015/270328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/26/2014] [Indexed: 11/17/2022] Open
Abstract
Substance P (SP) contributes to bone formation by stimulating the proliferation and differentiation of bone marrow stromal cells (BMSCs); however, the possible involved effect of SP on apoptosis induced by serum deprivation (SD) in BMSCs is unclear. To explore the potential protective effect of SP and its mechanism, we investigated the relationships among SP, apoptosis induced by SD, and Wnt signaling in BMSCs. SP exhibited a protective effect, as indicated by a reduction in the apoptotic rate, nuclear condensation, caspase-3 and caspase-9 activation, and the ratio of Bax/Bcl-2 that was observed after 24 h of SD. This protective effect was blocked by the inhibition of Wnt signaling or antagonism of the NK-1 receptor. Moreover, SP promoted the mRNA and protein expression of Wnt signaling molecules such as β-catenin, p-GSK-3β, c-myc, and cyclin D1 in addition to the nuclear translocation of β-catenin, indicating that active Wnt signaling is involved in SP inhibition of apoptosis. Our results revealed that mediated by the NK-1 receptor, SP exerts an inhibitory effect on serum deprivation induced apoptosis in BMSCs that is related to the activation of canonical Wnt signaling.
Collapse
|