1
|
Su W, Ahmad I, Wu Y, Tang L, Khan I, Ye B, Liang J, Li S, Zheng YH. Furin Egress from the TGN is Regulated by Membrane-Associated RING-CH Finger (MARCHF) Proteins and Ubiquitin-Specific Protease 32 (USP32) via Nondegradable K33-Polyubiquitination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403732. [PMID: 39031635 PMCID: PMC11425283 DOI: 10.1002/advs.202403732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/05/2024] [Indexed: 07/22/2024]
Abstract
Furin primarily localizes to the trans-Golgi network (TGN), where it cleaves and activates a broad range of immature proproteins that play critical roles in cellular homeostasis, disease progression, and infection. Furin is retrieved from endosomes to the TGN after being phosphorylated, but it is still unclear how furin exits the TGN to initiate the post-Golgi trafficking and how its activity is regulated in the TGN. Here three membrane-associated RING-CH finger (MARCHF) proteins (2, 8, 9) are identified as furin E3 ubiquitin ligases, which catalyze furin K33-polyubiquitination. Polyubiquitination prevents furin from maturation by blocking its ectodomain cleavage inside cells but promotes its egress from the TGN and shedding. Further ubiquitin-specific protease 32 (USP32) is identified as the furin deubiquitinase in the TGN that counteracts the MARCHF inhibitory activity on furin. Thus, the furin post-Golgi trafficking is regulated by an interplay between polyubiquitination and phosphorylation. Polyubiquitination is required for furin anterograde transport but inhibits its proprotein convertase activity, and phosphorylation is required for furin retrograde transport to produce fully active furin inside cells.
Collapse
Affiliation(s)
- Wenqiang Su
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Iqbal Ahmad
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - You Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lijie Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ilyas Khan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bowei Ye
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Jie Liang
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Sunan Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yong-Hui Zheng
- Department of Microbiology and Immunology, The University of Illinois Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
2
|
Behera A, Sachan D, Barik GK, Reddy ABM. Role of MARCH E3 ubiquitin ligases in cancer development. Cancer Metastasis Rev 2024:10.1007/s10555-024-10201-x. [PMID: 39037545 DOI: 10.1007/s10555-024-10201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Membrane-associated RING-CH (MARCH) E3 ubiquitin ligases, a family of RING-type E3 ubiquitin ligases, have garnered increased attention for their indispensable roles in immune regulation, inflammation, mitochondrial dynamics, and lipid metabolism. The MARCH E3 ligase family consists of eleven distinct members, and the dysregulation of many of these members has been documented in several human malignancies. Over the past two decades, extensive research has revealed that MARCH E3 ligases play pivotal roles in cancer progression by ubiquitinating key oncogenes and tumor suppressors and orchestrating various signaling pathways. Some MARCH E3s act as oncogenes, while others act as tumor suppressors, and the majority of MARCH E3s play both oncogenic and tumor suppressive roles in a context-dependent manner. Notably, there is special emphasis on the sole mitochondrial MARCH E3 ligase MARCH5, which regulates mitochondrial homeostasis within cancer cells. In this review, we delve into the diverse functions of MARCH E3 ligases across different cancer types, shedding light on the underlying molecular mechanisms mediating their effects, their regulatory effects on cancer and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Deepanshi Sachan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | | |
Collapse
|
3
|
Queffeulou M, Leprohon P, Fernandez-Prada C, Ouellette M, Mejía-Jaramillo AM. CRISPR-Cas9 high-throughput screening to study drug resistance in Leishmania infantum. mBio 2024; 15:e0047724. [PMID: 38864609 PMCID: PMC11253630 DOI: 10.1128/mbio.00477-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024] Open
Abstract
Parasites of the genus Leishmania pose a global health threat with limited treatment options. New drugs are urgently needed, and genomic screens have the potential to accelerate target discovery, mode of action, and resistance mechanisms against these new drugs. We describe here our effort in developing a genome-wide CRISPR-Cas9 screen in Leishmania, an organism lacking a functional nonhomologous end joining system that must rely on microhomology-mediated end joining, single-strand annealing, or homologous recombination for repairing Cas9-induced double-stranded DNA breaks. A new vector for cloning and expressing single guide RNAs (sgRNAs) was designed and proven to be effective in a small pilot project while enriching specific sgRNAs during drug selection. We then developed a whole-genome library of 49,754 sgRNAs, targeting all the genes of Leishmania infantum. This library was transfected in L. infantum expressing Cas9, and these cells were selected for resistance to two antileishmanials, miltefosine and amphotericin B. The sgRNAs the most enriched in the miltefosine screen targeted the miltefosine transporter gene, but sgRNAs targeting genes coding for a RING-variant protein and a transmembrane protein were also enriched. The sgRNAs the most enriched by amphotericin B targeted the sterol 24 C methyltransferase genes and a hypothetical gene. Through gene disruption experiments, we proved that loss of function of these genes was associated with resistance. This study describes the feasibility of carrying out whole-genome CRISPR-Cas9 screens in Leishmania provided that a strong selective pressure is applied. Such a screen can be used for accelerating the development of urgently needed antileishmanial drugs.IMPORTANCELeishmaniasis, a global health threat, lacks adequate treatment options and drug resistance exacerbates the challenge. This study introduces a CRISPR-Cas9 screening approach in Leishmania infantum, unraveling mechanisms of drug resistance at a genome-wide scale. Our screen was applied against two main antileishmanial drugs, and guides were enriched upon drug selection. These guides targeted known and new targets, hence validating the use of this screen against Leishmania. This strategy provides a powerful tool to expedite drug discovery as well as potential therapeutic targets against this neglected tropical disease.
Collapse
Affiliation(s)
- Marine Queffeulou
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Christopher Fernandez-Prada
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Ana María Mejía-Jaramillo
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
4
|
Velez-Brochero M, Behera P, Afreen KS, Odle A, Rajsbaum R. Ubiquitination in viral entry and replication: Mechanisms and implications. Adv Virus Res 2024; 119:1-38. [PMID: 38897707 DOI: 10.1016/bs.aivir.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The ubiquitination process is a reversible posttranslational modification involved in many essential cellular functions, such as innate immunity, cell signaling, trafficking, protein stability, and protein degradation. Viruses can use the ubiquitin system to efficiently enter host cells, replicate and evade host immunity, ultimately enhancing viral pathogenesis. Emerging evidence indicates that enveloped viruses can carry free (unanchored) ubiquitin or covalently ubiquitinated viral structural proteins that can increase the efficiency of viral entry into host cells. Furthermore, viruses continuously evolve and adapt to take advantage of the host ubiquitin machinery, highlighting its importance during virus infection. This review discusses the battle between viruses and hosts, focusing on how viruses hijack the ubiquitination process at different steps of the replication cycle, with a specific emphasis on viral entry. We discuss how ubiquitination of viral proteins may affect tropism and explore emerging therapeutics strategies targeting the ubiquitin system for antiviral drug discovery.
Collapse
Affiliation(s)
- Maria Velez-Brochero
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Padmanava Behera
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Kazi Sabrina Afreen
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Abby Odle
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Ricardo Rajsbaum
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States.
| |
Collapse
|
5
|
Ito K, Harada I, Martinez C, Sato K, Lee E, Port E, Byerly JH, Nayak A, Tripathi E, Zhu J, Irie HY. MARCH2, a Novel Oncogene-regulated SNAIL E3 Ligase, Suppresses Triple-negative Breast Cancer Metastases. CANCER RESEARCH COMMUNICATIONS 2024; 4:946-957. [PMID: 38457262 PMCID: PMC10977041 DOI: 10.1158/2767-9764.crc-23-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Epithelial-mesenchymal transition (EMT) in cancer promotes metastasis and chemotherapy resistance. A subset of triple-negative breast cancer (TNBC) exhibits a mesenchymal gene signature that is associated with poor patient outcomes. We previously identified PTK6 tyrosine kinase as an oncogenic driver of EMT in a subset of TNBC. PTK6 induces EMT by stabilizing SNAIL, a key EMT-initiating transcriptional factor. Inhibition of PTK6 activity reverses mesenchymal features of TNBC cells and suppresses their metastases by promoting SNAIL degradation via a novel mechanism. In the current study, we identify membrane-associated RING-CH2 (MARCH2) as a novel PTK6-regulated E3 ligase that promotes the ubiquitination and degradation of SNAIL protein. The MARCH2 RING domain is critical for SNAIL ubiquitination and subsequent degradation. PTK6 inhibition promotes the interaction of MARCH2 with SNAIL. Overexpression of MARCH2 exhibits tumor suppressive properties and phenocopies the effects of SNAIL downregulation and PTK6 inhibition in TNBC cells, such as inhibition of migration, anoikis resistance, and metastasis. Consistent with this, higher levels of MARCH2 expression in breast and other cancers are associated with better prognosis. We have identified MARCH2 as a novel SNAIL E3 ligase that regulates EMT and metastases of mesenchymal TNBC. SIGNIFICANCE EMT is a process directly linked to drug resistance and metastasis of cancer cells. We identified MARCH2 as a novel regulator of SNAIL, a key EMT driver, that promotes SNAIL ubiquitination and degradation in TNBC cells. MARCH2 is oncogene regulated and inhibits growth and metastasis of TNBC. These insights could contribute to novel strategies to therapeutically target TNBC.
Collapse
Affiliation(s)
- Koichi Ito
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ibuki Harada
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Criseyda Martinez
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katsutoshi Sato
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Elisa Port
- Department of Surgery, Mount Sinai Hospital, New York, New York
| | - Jessica H Byerly
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ekta Tripathi
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jun Zhu
- Sema4, Stamford, Connecticut
| | - Hanna Y Irie
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
6
|
Kawasaki I, Sugiura K, Sasaki T, Matsuda N, Sato M, Sato K. MARC-3, a membrane-associated ubiquitin ligase, is required for fast polyspermy block in Caenorhabditis elegans. Nat Commun 2024; 15:792. [PMID: 38278786 PMCID: PMC10817901 DOI: 10.1038/s41467-024-44928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
In many sexually reproducing organisms, oocytes are fundamentally fertilized with one sperm. In Caenorhabditis elegans, chitin layer formation after fertilization by the EGG complex is one of the mechanisms of polyspermy block, but other mechanisms remain unknown. Here, we demonstrate that MARC-3, a membrane-associated RING-CH-type ubiquitin ligase that localizes to the plasma membrane and cortical puncta in oocytes, is involved in fast polyspermy block. During polyspermy, the second sperm entry occurs within approximately 10 s after fertilization in MARC-3-deficient zygotes, whereas it occurs approximately 200 s after fertilization in egg-3 mutant zygotes defective in the chitin layer formation. MARC-3 also functions in the selective degradation of maternal plasma membrane proteins and the transient accumulation of endosomal lysine 63-linked polyubiquitin after fertilization. The RING-finger domain of MARC-3 is required for its in vitro ubiquitination activity and polyspermy block, suggesting that a ubiquitination-mediated mechanism sequentially regulates fast polyspermy block and maternal membrane protein degradation during the oocyte-to-embryo transition.
Collapse
Affiliation(s)
- Ichiro Kawasaki
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Kenta Sugiura
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Taeko Sasaki
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Noriyuki Matsuda
- Department of Biomolecular Pathogenesis, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Miyuki Sato
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan.
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan.
| |
Collapse
|
7
|
Umthong S, Timilsina U, D’Angelo M, Stavrou S. Determining the antiviral mechanism of MARCH2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558306. [PMID: 37786722 PMCID: PMC10541590 DOI: 10.1101/2023.09.18.558306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Membrane-associated RING-CH (MARCH) 2 protein is a member of the MARCH protein family of RING-CH finger E3 ubiquitin ligases that have important functions in regulating the levels of proteins found on the cell surface. MARCH1, 2 and 8 inhibit HIV-1 infection by preventing the incorporation of the envelope glycoproteins in nascent virions. However, a better understanding on the mechanism utilized by MARCH proteins to restrict HIV-1 is needed. In this report, we identify an amino acid in human MARCH2, that is absent in mouse MARCH2, critical for its antiretroviral function. Moreover, we map the domains of human MARCH2 critical for restricting as well as binding to the HIV-1 envelope glycoproteins. Our findings reveal important new aspects of the antiviral mechanism utilized by human MARCH2 to restrict HIV-1 that have potential implications to all MARCH proteins with antiviral functions.
Collapse
Affiliation(s)
- Supawadee Umthong
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Uddhav Timilsina
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Mary D’Angelo
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Spyridon Stavrou
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
8
|
Cai D, Liu L, Tian B, Fu X, Yang Q, Chen J, Zhang Y, Fang J, Shen L, Wang Y, Gou L, Zuo Z. Dual-Role Ubiquitination Regulation Shuttling the Entire Life Cycle of the Flaviviridae. Front Microbiol 2022; 13:835344. [PMID: 35602051 PMCID: PMC9120866 DOI: 10.3389/fmicb.2022.835344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitination is a reversible protein post-translational modification that regulates various pivotal physiological and pathological processes in all eukaryotes. Recently, the antiviral immune response is enhanced by the regulation of ubiquitination. Intriguingly, Flaviviridae viruses can ingeniously hijack the ubiquitination system to help them survive, which has become a hot topic among worldwide researchers. The Flaviviridae family members, such as HCV and CSFV, can cause serious diseases of humans and animals around the world. The multiple roles of ubiquitination involved in the life cycle of Flaviviridae family would open new sight for future development of antiviral tactic. Here, we discuss recent advances with regard to functional roles of ubiquitination and some ubiquitin-like modifications in the life cycle of Flaviviridae infection, shedding new light on the antiviral mechanism research and therapeutic drug development.
Collapse
Affiliation(s)
- Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lingli Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingxin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiyuan Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jie Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yilin Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Animal Disease Prevention and Control Center, Agriculture and Rural Affairs Bureau of Luoping County, Luoping, China
| | - Jing Fang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Zhicai Zuo,
| |
Collapse
|
9
|
Iatsiuk V, Malinka F, Pickova M, Tureckova J, Klema J, Spoutil F, Novosadova V, Prochazka J, Sedlacek R. Semantic clustering analysis of E3-ubiquitin ligases in gastrointestinal tract defines genes ontology clusters with tissue expression patterns. BMC Gastroenterol 2022; 22:186. [PMID: 35413796 PMCID: PMC9006408 DOI: 10.1186/s12876-022-02265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background Ubiquitin ligases (Ub-ligases) are essential intracellular enzymes responsible for the regulation of proteome homeostasis, signaling pathway crosstalk, cell differentiation and stress responses. Individual Ub-ligases exhibit their unique functions based on the nature of their substrates. They create a complex regulatory network with alternative and feedback pathways to maintain cell homeostasis, being thus important players in many physiological and pathological conditions. However, the functional classification of Ub-ligases needs to be revised and extended. Methods In the current study, we used a novel semantic biclustering technique for expression profiling of Ub-ligases and ubiquitination-related genes in the murine gastrointestinal tract (GIT). We accommodated a general framework of the algorithm for finding tissue-specific gene expression clusters in GIT. In order to test identified clusters in a biological system, we used a model of epithelial regeneration. For this purpose, a dextran sulfate sodium (DSS) mouse model, following with in situ hybridization, was used to expose genes with possible compensatory features. To determine cell-type specific distribution of Ub-ligases and ubiquitination-related genes, principal component analysis (PCA) and Uniform Manifold Approximation and Projection technique (UMAP) were used to analyze the Tabula Muris scRNA-seq data of murine colon followed by comparison with our clustering results. Results Our established clustering protocol, that incorporates the semantic biclustering algorithm, demonstrated the potential to reveal interesting expression patterns. In this manner, we statistically defined gene clusters consisting of the same genes involved in distinct regulatory pathways vs distinct genes playing roles in functionally similar signaling pathways. This allowed us to uncover the potentially redundant features of GIT-specific Ub-ligases and ubiquitination-related genes. Testing the statistically obtained results on the mouse model showed that genes clustered to the same ontology group simultaneously alter their expression pattern after induced epithelial damage, illustrating their complementary role during tissue regeneration. Conclusions An optimized semantic clustering protocol demonstrates the potential to reveal a readable and unique pattern in the expression profiling of GIT-specific Ub-ligases, exposing ontologically relevant gene clusters with potentially redundant features. This extends our knowledge of ontological relationships among Ub-ligases and ubiquitination-related genes, providing an alternative and more functional gene classification. In a similar way, semantic cluster analysis could be used for studding of other enzyme families, tissues and systems. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02265-2.
Collapse
Affiliation(s)
- Veronika Iatsiuk
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Malinka
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Computer Science, Czech Technical University in Prague, Prague, Czech Republic
| | - Marketa Pickova
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jolana Tureckova
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Klema
- Department of Computer Science, Czech Technical University in Prague, Prague, Czech Republic
| | - Frantisek Spoutil
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vendula Novosadova
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Prochazka
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
10
|
Pappalardo XG, Ruggieri M, Falsaperla R, Savasta S, Raucci U, Pavone P. A Novel 4q32.3 Deletion in a Child: Additional Signs and the Role of MARCH1. J Pediatr Genet 2021; 10:259-265. [PMID: 34853711 DOI: 10.1055/s-0041-1736458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/09/2021] [Indexed: 10/19/2022]
Abstract
The 4q deletion syndrome is an uncommon condition manifesting with broad clinical expression and phenotypic variability. We report a 5-year-old boy affected by 4q deletion syndrome who showed minor craniofacial features, growth failure, mild developmental delay, severe speech delay, and marked irascibility and aggressivity. Moreover, he showed precocious and crowded primary dentition, digital hyperlaxity, and congenital bilateral adducted thumbs, signs which were previously unreported in the syndrome. The array comparative genomic hybridization analysis revealed a 4q partial terminal deletion of ∼329.6 kb extending from 164.703.186 to 165.032.803 nt, which includes part of MARCH1 (membrane associated ring-CH-type finger 1) gene (OMIM#613331). Same rearrangement was found in his healthy mother. Clinical phenotype of the child and its relationship to the deleted region is presented with a revision of the cases having the same copy number losses from the literature and genomic variant databases.
Collapse
Affiliation(s)
- Xena Giada Pappalardo
- Unit of Catania, Institute for Biomedical Research and Innovation, National Council of Research, Catania, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Martino Ruggieri
- Section of Pediatrics and Child Neuropsychiatry, Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, AOU "Policlinico," PO "G. Rodolico," University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics, Neonatology and Neonatal Intensive Care, and Pediatric Emergency, AOU "Policlinico," PO "San Marco," University of Catania, Catania, Italy
| | - Salvatore Savasta
- Pediatric Clinic, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Umberto Raucci
- Pediatric Intensive Care Unit, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Piero Pavone
- Unit of Pediatrics, Neonatology and Neonatal Intensive Care, and Pediatric Emergency, AOU "Policlinico," PO "San Marco," University of Catania, Catania, Italy
| |
Collapse
|
11
|
Potjewyd FM, Axtman AD. Exploration of Aberrant E3 Ligases Implicated in Alzheimer's Disease and Development of Chemical Tools to Modulate Their Function. Front Cell Neurosci 2021; 15:768655. [PMID: 34867205 PMCID: PMC8637409 DOI: 10.3389/fncel.2021.768655] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
The Ubiquitin Proteasome System (UPS) is responsible for the degradation of misfolded or aggregated proteins via a multistep ATP-dependent proteolytic mechanism. This process involves a cascade of ubiquitin (Ub) transfer steps from E1 to E2 to E3 ligase. The E3 ligase transfers Ub to a targeted protein that is brought to the proteasome for degradation. The inability of the UPS to remove misfolded or aggregated proteins due to UPS dysfunction is commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD). UPS dysfunction in AD drives disease pathology and is associated with the common hallmarks such as amyloid-β (Aβ) accumulation and tau hyperphosphorylation, among others. E3 ligases are key members of the UPS machinery and dysfunction or changes in their expression can propagate other aberrant processes that accelerate AD pathology. The upregulation or downregulation of expression or activity of E3 ligases responsible for these processes results in changes in protein levels of E3 ligase substrates, many of which represent key proteins that propagate AD. A powerful way to better characterize UPS dysfunction in AD and the role of individual E3 ligases is via the use of high-quality chemical tools that bind and modulate specific E3 ligases. Furthermore, through combining gene editing with recent advances in 3D cell culture, in vitro modeling of AD in a dish has become more relevant and possible. These cell-based models of AD allow for study of specific pathways and mechanisms as well as characterization of the role E3 ligases play in driving AD. In this review, we outline the key mechanisms of UPS dysregulation linked to E3 ligases in AD and highlight the currently available chemical modulators. We present several key approaches for E3 ligase ligand discovery being employed with respect to distinct classes of E3 ligases. Where possible, specific examples of the use of cultured neurons to delineate E3 ligase biology have been captured. Finally, utilizing the available ligands for E3 ligases in the design of proteolysis targeting chimeras (PROTACs) to degrade aberrant proteins is a novel strategy for AD, and we explore the prospects of PROTACs as AD therapeutics.
Collapse
|
12
|
Chen W, Patel D, Jia Y, Yu Z, Liu X, Shi H, Liu H. MARCH8 Suppresses Tumor Metastasis and Mediates Degradation of STAT3 and CD44 in Breast Cancer Cells. Cancers (Basel) 2021; 13:2550. [PMID: 34067416 PMCID: PMC8196951 DOI: 10.3390/cancers13112550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/03/2022] Open
Abstract
Protein stability is largely regulated by post-translational modifications, such as ubiquitination, which is mediated by ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, and ubiquitin ligase E3 with substrate specificity. Membrane-associated RING-CH (MARCH) proteins represent one novel family of transmembrane E3 ligases which target glycoproteins for lysosomal destruction. While most of the MARCH family members are known to degrade membrane proteins in immune cells, their tumor-intrinsic role is largely unknown. In this study, we found that the expression of one MARCH family member, MARCH8, is specifically downregulated in breast cancer tissues and positively correlated with breast cancer survival rate according to bioinformatic analysis of The Cancer Genomic Atlas (TCGA) dataset. MARCH8 protein expression was also lower in a variety of human breast cancer cell lines in comparison to immortalized human mammary epithelial MCF-12A cells. Restoration of MARCH8 expression induced apoptosis in human breast cancer cell lines MDA-MB-231 and BT549. Stable expression of MARCH8 inhibited tumorigenesis and lung metastases of MDA-MB-231 cells in mice. Moreover, we discovered that the breast cancer stem-cell marker and metastasis driver CD44, a membrane protein, interacts with MARCH8 and is one of the glycoprotein targets subject to MARCH8-dependent lysosomal degradation. Unexpectedly, we identified a nonmembrane protein, signal transducer and transcription activator 3 (STAT3), as another essential ubiquitination target of MARCH8, whose degradation through the proteasome pathway is responsible for the proapoptotic changes mediated by MARCH8. These findings highlight a novel tumor-suppressing function of MARCH8 in targeting both membrane and nonmembrane protein targets required for the survival and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (W.C.); (D.P.); (Y.J.); (Z.Y.); (X.L.)
| | - Dhwani Patel
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (W.C.); (D.P.); (Y.J.); (Z.Y.); (X.L.)
| | - Yuzhi Jia
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (W.C.); (D.P.); (Y.J.); (Z.Y.); (X.L.)
| | - Zihao Yu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (W.C.); (D.P.); (Y.J.); (Z.Y.); (X.L.)
| | - Xia Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (W.C.); (D.P.); (Y.J.); (Z.Y.); (X.L.)
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Hengliang Shi
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (W.C.); (D.P.); (Y.J.); (Z.Y.); (X.L.)
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou 221006, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Huiping Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (W.C.); (D.P.); (Y.J.); (Z.Y.); (X.L.)
- Department of Medicine, the Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
13
|
Sandow JJ, Webb AI, Stockwell D, Kershaw NJ, Tan C, Ishido S, Alexander WS, Hilton DJ, Babon JJ, Nicola NA. Proteomic analyses reveal that immune integrins are major targets for regulation by Membrane-Associated Ring-CH (MARCH) proteins MARCH2, 3, 4 and 9. Proteomics 2021; 21:e2000244. [PMID: 33945654 DOI: 10.1002/pmic.202000244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/30/2021] [Accepted: 04/23/2021] [Indexed: 11/06/2022]
Abstract
MARCH proteins are membrane-associated Ring-CH E3 ubiquitin ligases that dampen immune responses by downregulating cell surface expression of major histocompatibility complexes I and II as well as immune co-stimulatory receptors. We recently showed that MARCH2,3,4 and 9 also downregulate cell surface expression of the inflammatory cytokine receptor for interleukin-6 (IL6Rα). Here we use over-expression of these MARCH proteins in the M1 myeloid leukaemia cell line and cell surface proteomic analyses to globally analyse other potential targets of these proteins. A large range of cell surface proteins regulated by more than one MARCH protein in addition to several MARCH protein-specific cell surface targets were identified most of which were downregulated by MARCH expression. Prominent among these were several integrin complexes associated with immune cell homing, adhesion and migration. Integrin α4β1 (VLA4 or VCAM-1 receptor) was downregulated only by MARCH2 and we showed that in MARCH2 knockout mice, Integrin α4 was upregulated specifically in mature B-lymphocytes and this was accompanied by decreased numbers of B-cells in the spleen.
Collapse
Affiliation(s)
- Jarrod J Sandow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,The University of Melbourne, Parkville, Victoria, Australia
| | - Dina Stockwell
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Nadia J Kershaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,The University of Melbourne, Parkville, Victoria, Australia
| | - Cyrus Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,The University of Melbourne, Parkville, Victoria, Australia
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,The University of Melbourne, Parkville, Victoria, Australia
| | - Douglas J Hilton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,The University of Melbourne, Parkville, Victoria, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,The University of Melbourne, Parkville, Victoria, Australia
| | - Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Abstract
Viral envelope glycoproteins are an important structural component on the surfaces of enveloped viruses that direct virus binding and entry and also serve as targets for the host adaptive immune response. In this study, we investigate the mechanism of action of the MARCH family of cellular proteins that disrupt the trafficking and virion incorporation of viral glycoproteins across several virus families. An emerging class of cellular inhibitory proteins has been identified that targets viral glycoproteins. These include the membrane-associated RING-CH (MARCH) family of E3 ubiquitin ligases that, among other functions, downregulate cell surface proteins involved in adaptive immunity. The RING-CH domain of MARCH proteins is thought to function by catalyzing the ubiquitination of the cytoplasmic tails (CTs) of target proteins, leading to their degradation. MARCH proteins have recently been reported to target retroviral envelope glycoproteins (Env) and vesicular stomatitis virus G glycoprotein (VSV-G). However, the mechanism of antiviral activity remains poorly defined. Here we show that MARCH8 antagonizes the full-length forms of HIV-1 Env, VSV-G, Ebola virus glycoprotein (EboV-GP), and the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), thereby impairing the infectivity of virions pseudotyped with these viral glycoproteins. This MARCH8-mediated targeting of viral glycoproteins requires the E3 ubiquitin ligase activity of the RING-CH domain. We observe that MARCH8 protein antagonism of VSV-G is CT dependent. In contrast, MARCH8-mediated targeting of HIV-1 Env, EboV-GP, and SARS-CoV-2 S protein by MARCH8 does not require the CT, suggesting a novel mechanism of MARCH-mediated antagonism of these viral glycoproteins. Confocal microscopy data demonstrate that MARCH8 traps the viral glycoproteins in an intracellular compartment. We observe that the endogenous expression of MARCH8 in several relevant human cell types is rapidly inducible by type I interferon. These results help to inform the mechanism by which MARCH proteins exert their antiviral activity and provide insights into the role of cellular inhibitory factors in antagonizing the biogenesis, trafficking, and virion incorporation of viral glycoproteins.
Collapse
|
15
|
Umthong S, Lynch B, Timilsina U, Waxman B, Ivey EB, Stavrou S. Elucidating the Antiviral Mechanism of Different MARCH Factors. mBio 2021; 12:e03264-20. [PMID: 33653895 PMCID: PMC8092282 DOI: 10.1128/mbio.03264-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
The membrane-associated RING-CH (MARCH) proteins belong to a family of E3 ubiquitin ligases, whose main function is to remove transmembrane proteins from the plasma membrane. Recent work has shown that the human MARCH1, 2, and 8 are antiretroviral factors that target the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins by reducing their incorporation in the budding virions. Nevertheless, the dearth of information regarding the antiviral mechanism of this family of proteins necessitates further examination. In this study, using both the human MARCH proteins and their mouse homologues, we provide a comprehensive analysis of the antiretroviral mechanism of this family of proteins. Moreover, we show that human MARCH proteins restrict to various degrees the envelope glycoproteins of a diverse number of viruses. This report sheds light on the important antiviral function of MARCH proteins and their significance in cell intrinsic immunity.IMPORTANCE This study examines the mechanism utilized by different MARCH proteins to restrict retrovirus infection. MARCH proteins block the incorporation of envelope glycoproteins to the budding virions. In this report, by comparing the human and mouse MARCH genes and using murine leukemia virus (MLV) and HIV-1, we identify differences in the mechanism of restriction among MARCH proteins. Furthermore, we perform a comprehensive analysis on a number of envelope glycoproteins and show that MARCH proteins have broad antiviral functions.
Collapse
Affiliation(s)
- Supawadee Umthong
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Brian Lynch
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Uddhav Timilsina
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Brandon Waxman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Emily B Ivey
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Spyridon Stavrou
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
16
|
Lun CM, Waheed AA, Majadly A, Powell N, Freed EO. Mechanism of Viral Glycoprotein Targeting by Membrane-associated-RING-CH Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.25.428025. [PMID: 33532773 PMCID: PMC7852266 DOI: 10.1101/2021.01.25.428025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
An emerging class of cellular inhibitory proteins has been identified that targets viral glycoproteins. These include the membrane-associated RING-CH (MARCH) family of E3 ubiquitin ligases that, among other functions, downregulate cell-surface proteins involved in adaptive immunity. The RING-CH domain of MARCH proteins is thought to function by catalyzing the ubiquitination of the cytoplasmic tails (CTs) of target proteins, leading to their degradation. MARCH proteins have recently been reported to target retroviral envelope glycoproteins (Env) and vesicular stomatitis virus G glycoprotein (VSV-G). However, the mechanism of antiviral activity remains poorly defined. Here we show that MARCH8 antagonizes the full-length forms of HIV-1 Env, VSV-G, Ebola virus glycoprotein (EboV-GP), and the spike (S) protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) thereby impairing the infectivity of virions pseudotyped with these viral glycoproteins. This MARCH8-mediated targeting of viral glycoproteins requires the E3 ubiquitin ligase activity of the RING-CH domain. We observe that MARCH8 protein antagonism of VSV-G is CT dependent. In contrast, MARCH8-mediated targeting of HIV-1 Env, EboV-GP and SARS-CoV-2 S protein by MARCH8 does not require the CT, suggesting a novel mechanism of MARCH-mediated antagonism of these viral glycoproteins. Confocal microscopy data demonstrate that MARCH8 traps the viral glycoproteins in an intracellular compartment. We observe that the endogenous expression of MARCH8 in several relevant human cell types is rapidly inducible by type I interferon. These results help to inform the mechanism by which MARCH proteins exert their antiviral activity and provide insights into the role of cellular inhibitory factors in antagonizing the biogenesis, trafficking, and virion incorporation of viral glycoproteins.
Collapse
Affiliation(s)
- Cheng Man Lun
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute
| | - Abdul A. Waheed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute
| | - Alhlam Majadly
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute
| | - Nicole Powell
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute
| |
Collapse
|
17
|
Cai C, Hu Z, Yu X. Accelerator or Brake: Immune Regulators in Malaria. Front Cell Infect Microbiol 2020; 10:610121. [PMID: 33363057 PMCID: PMC7758250 DOI: 10.3389/fcimb.2020.610121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Malaria is a life-threatening infectious disease, affecting over 250 million individuals worldwide each year, eradicating malaria has been one of the greatest challenges to public health for a century. Growing resistance to anti-parasitic therapies and lack of effective vaccines are major contributing factors in controlling this disease. However, the incomplete understanding of parasite interactions with host anti-malaria immunity hinders vaccine development efforts to date. Recent studies have been unveiling the complexity of immune responses and regulators against Plasmodium infection. Here, we summarize our current understanding of host immune responses against Plasmodium-derived components infection and mainly focus on the various regulatory mechanisms mediated by recent identified immune regulators orchestrating anti-malaria immunity.
Collapse
Affiliation(s)
- Chunmei Cai
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai University, Xining, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Wang X, Cabrera FG, Sharp KL, Spencer DM, Foster AE, Bayle JH. Engineering Tolerance toward Allogeneic CAR-T Cells by Regulation of MHC Surface Expression with Human Herpes Virus-8 Proteins. Mol Ther 2020; 29:718-733. [PMID: 33554868 DOI: 10.1016/j.ymthe.2020.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/09/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Allogeneic, off-the-shelf (OTS) chimeric antigen receptor (CAR) cell therapies have the potential to reduce manufacturing costs and variability while providing broader accessibility to cancer patients and those with other diseases. However, host-versus-graft reactivity can limit the durability and efficacy of OTS cell therapies requiring new strategies to evade adaptive and innate-immune responses. Human herpes virus-8 (HHV8) maintains infection, in part, by evading host T and natural killer (NK) cell attack. The viral K3 gene encodes a membrane-tethered E3 ubiquitin ligase that discretely targets major histocompatibility complex (MHC) class I components, whereas K5 encodes a similar E3 ligase with broader specificity, including MHC-II and the MHC-like MHC class I polypeptide-related sequence A (MIC-A)- and sequence B (MIC-B)-activating ligands of NK cells. We created γ-retroviruses encoding K3 and/or K5 transgenes that efficiently transduce primary human T cells. Expression of K3 or K5 resulted in dramatic downregulation of MHC-IA (human leukocyte antigen [HLA]-A, -B, and -C) and MHC class II (HLA-DR) cell-surface expression. K3 expression was sufficient for T cells to resist exogenously loaded peptide-MHC-specific cytotoxicity, as well as recognition in one-way allogeneic mixed lymphocyte reactions. Further, in immunodeficient mice engrafted with allogeneic T cells, K3-transduced T cells selectively expanded in vivo. Ectopic K5 expression in MHC class I-, MIC-A+/B+ K562 cells also reduced targeting by primary NK cells. Coexpression of K3 in prostate stem cell antigen (PSCA)-directed, inducible MyD88/CD40 (iMC)-enhanced CAR-T cells did not impact cytotoxicity, T cell growth, or cytokine production against HPAC pancreatic tumor target cells, whereas K5-expressing cells showed a modest reduction in interleukin (IL)-2 production without effect on cytotoxicity. Together, these results support application of these E3 ligases to advance development of OTS CAR-T cell products.
Collapse
Affiliation(s)
- Xiaomei Wang
- Research and Development, Bellicum Pharmaceuticals, 2710 Reed Road, Suite 160, Houston, TX 77030, USA
| | - Fabricio G Cabrera
- Research and Development, Bellicum Pharmaceuticals, 2710 Reed Road, Suite 160, Houston, TX 77030, USA
| | - Kelly L Sharp
- Research and Development, Bellicum Pharmaceuticals, 2710 Reed Road, Suite 160, Houston, TX 77030, USA
| | - David M Spencer
- Research and Development, Bellicum Pharmaceuticals, 2710 Reed Road, Suite 160, Houston, TX 77030, USA
| | - Aaron E Foster
- Research and Development, Bellicum Pharmaceuticals, 2710 Reed Road, Suite 160, Houston, TX 77030, USA.
| | - J Henri Bayle
- Research and Development, Bellicum Pharmaceuticals, 2710 Reed Road, Suite 160, Houston, TX 77030, USA.
| |
Collapse
|
19
|
MARCH8 Inhibits Ebola Virus Glycoprotein, Human Immunodeficiency Virus Type 1 Envelope Glycoprotein, and Avian Influenza Virus H5N1 Hemagglutinin Maturation. mBio 2020; 11:mBio.01882-20. [PMID: 32934085 PMCID: PMC7492737 DOI: 10.1128/mbio.01882-20] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Enveloped viruses express three classes of fusion proteins that are required for their entry into host cells via mediating virus and cell membrane fusion. Class I fusion proteins are produced from influenza viruses, retroviruses, Ebola viruses, and coronaviruses. They are first synthesized as a type I transmembrane polypeptide precursor that is subsequently glycosylated and oligomerized. Most of these precursors are cleaved en route to the plasma membrane by a cellular protease furin in the late secretory pathway, generating the trimeric N-terminal receptor-binding and C-terminal fusion subunits. Here, we show that a cellular protein, MARCH8, specifically inhibits the furin-mediated cleavage of EBOV GP, HIV-1 Env, and H5N1 HA. Further analyses uncovered that MARCH8 blocked the EBOV GP glycosylation in the Golgi and inhibited its transport from the Golgi to the plasma membrane. Thus, MARCH8 has a very broad antiviral activity by specifically inactivating different viral fusion proteins. Membrane-associated RING-CH-type 8 (MARCH8) strongly blocks human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) incorporation into virions by downregulating its cell surface expression, but the mechanism is still unclear. We now report that MARCH8 also blocks the Ebola virus (EBOV) glycoprotein (GP) incorporation via surface downregulation. To understand how these viral fusion proteins are downregulated, we investigated the effects of MARCH8 on EBOV GP maturation and externalization via the conventional secretion pathway. MARCH8 interacted with EBOV GP and furin when detected by immunoprecipitation and retained the GP/furin complex in the Golgi when their location was tracked by a bimolecular fluorescence complementation (BiFC) assay. MARCH8 did not reduce the GP expression or affect the GP modification by high-mannose N-glycans in the endoplasmic reticulum (ER), but it inhibited the formation of complex N-glycans on the GP in the Golgi. Additionally, the GP O-glycosylation and furin-mediated proteolytic cleavage were also inhibited. Moreover, we identified a novel furin cleavage site on EBOV GP and found that only those fully glycosylated GPs were processed by furin and incorporated into virions. Furthermore, the GP shedding and secretion were all blocked by MARCH8. MARCH8 also blocked the furin-mediated cleavage of HIV-1 Env (gp160) and the highly pathogenic avian influenza virus H5N1 hemagglutinin (HA). We conclude that MARCH8 has a very broad antiviral activity by prohibiting different viral fusion proteins from glycosylation and proteolytic cleavage in the Golgi, which inhibits their transport from the Golgi to the plasma membrane and incorporation into virions.
Collapse
|
20
|
The E3 ubiquitin ligase MARCH1 regulates antimalaria immunity through interferon signaling and T cell activation. Proc Natl Acad Sci U S A 2020; 117:16567-16578. [PMID: 32606244 DOI: 10.1073/pnas.2004332117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Malaria infection induces complex and diverse immune responses. To elucidate the mechanisms underlying host-parasite interaction, we performed a genetic screen during early (24 h) Plasmodium yoelii infection in mice and identified a large number of interacting host and parasite genes/loci after transspecies expression quantitative trait locus (Ts-eQTL) analysis. We next investigated a host E3 ubiquitin ligase gene (March1) that was clustered with interferon (IFN)-stimulated genes (ISGs) based on the similarity of the genome-wide pattern of logarithm of the odds (LOD) scores (GPLS). March1 inhibits MAVS/STING/TRIF-induced type I IFN (IFN-I) signaling in vitro and in vivo. However, in malaria-infected hosts, deficiency of March1 reduces IFN-I production by activating inhibitors such as SOCS1, USP18, and TRIM24 and by altering immune cell populations. March1 deficiency increases CD86+DC (dendritic cell) populations and levels of IFN-γ and interleukin 10 (IL-10) at day 4 post infection, leading to improved host survival. T cell depletion reduces IFN-γ level and reverse the protective effects of March1 deficiency, which can also be achieved by antibody neutralization of IFN-γ. This study reveals functions of MARCH1 (membrane-associated ring-CH-type finger 1) in innate immune responses and provides potential avenues for activating antimalaria immunity and enhancing vaccine efficacy.
Collapse
|
21
|
McHugh A, Fernandes K, Chinner N, Ibrahim AFM, Garg AK, Boag G, Hepburn LA, Proby CM, Leigh IM, Saville MK. The Identification of Potential Therapeutic Targets for Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2019; 140:1154-1165.e5. [PMID: 31705877 PMCID: PMC7254059 DOI: 10.1016/j.jid.2019.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 08/27/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
We performed a small interfering RNA screen to identify targets for cutaneous squamous cell carcinoma (cSCC) therapy in the ubiquitin/ubiquitin-like system. We provide evidence for selective anti-cSCC activity of knockdown of the E3 ubiquitin ligase MARCH4, the ATPase p97/VCP, the deubiquitinating enzyme USP8, the cullin-RING ligase (CRL) 4 substrate receptor CDT2/DTL, and components of the anaphase-promoting complex/cyclosome (APC/C). Specifically attenuating CRL4CDT2 by CDT2 knockdown can be more potent in killing cSCC cells than targeting CRLs or CRL4s in general by RBX1 or DDB1 depletion. Suppression of the APC/C or forced APC/C activation by targeting its repressor EMI1 are both potential therapeutic approaches. We observed that cSCC cells can be selectively killed by small-molecule inhibitors of USP8 (DUBs-IN-3/compound 22c) and the NEDD8 E1 activating enzyme/CRLs (MLN4924/pevonedistat). A substantial proportion of cSCC cell lines are very highly MLN4924-sensitive. Pathways that respond to defects in proteostasis are involved in the anti-cSCC activity of p97 suppression. Targeting USP8 can reduce the expression of growth factor receptors that participate in cSCC development. EMI1 and CDT2 depletion can selectively cause DNA re-replication and DNA damage in cSCC cells.
Collapse
Affiliation(s)
- Angela McHugh
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Kenneth Fernandes
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Nerime Chinner
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Adel F M Ibrahim
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Amit K Garg
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Garry Boag
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Lydia A Hepburn
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Charlotte M Proby
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom; Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Irene M Leigh
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom; Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mark K Saville
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
22
|
Membrane-associated RING-CH (MARCH) proteins down-regulate cell surface expression of the interleukin-6 receptor alpha chain (IL6Rα). Biochem J 2019; 476:2869-2882. [DOI: 10.1042/bcj20190577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 01/13/2023]
Abstract
Abstract
Interleukin 6 (IL6) is a cytokine that regulates a number of important immune and inflammatory pathways. We used the ability of IL6 to inhibit the clonal proliferation of the mouse M1 myeloid leukemia cell line in agar to positively screen a cDNA expression library for proteins that inhibited IL6 activity. We found three clones completely resistant to IL6 that contained the cDNA for the Membrane-Associated RING-CH E3 ubiquitin ligase MARCH2. MARCH2 is a member of a family of membrane-bound E3 ubiquitin ligases that target cell surface receptors for degradation. MARCH2 overexpressing M1 clones retained responsiveness to the related cytokines leukemia inhibitory factor and oncostatin M and we showed that its inhibitory effect was a result of selective down-regulation of the IL6 receptor alpha chain and not the shared receptor subunit, gp130 or other signalling molecules. This activity of MARCH2 was also shared with related proteins MARCH4, MARCH9 and an isoform of MARCH3. The transmembrane domains and C-terminal domains, as well as a functional RING domain, of MARCH proteins were all required for substrate recognition and down-regulation. Genetic deletion of individual MARCH proteins in mice had no or little effect on IL6Rα levels but combined deletions of MARCH2,3 and 4 displayed elevated steady-state levels of IL6Rα in selected haemopoietic cell subsets including CD8+ and CD4+ T cells. These studies extend the potential immunosuppressive roles of MARCH proteins to include down-regulation of IL6 inflammatory responses.
Collapse
|
23
|
Lin H, Li S, Shu HB. The Membrane-Associated MARCH E3 Ligase Family: Emerging Roles in Immune Regulation. Front Immunol 2019; 10:1751. [PMID: 31404274 PMCID: PMC6669941 DOI: 10.3389/fimmu.2019.01751] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/10/2019] [Indexed: 01/13/2023] Open
Abstract
The membrane-associated RING-CH-type finger (MARCH) proteins of E3 ubiquitin ligases have emerged as critical regulators of immune responses. MARCH proteins target immune receptors, viral proteins as well as components in innate immune response for polyubiquitination and degradations via distinct routes. This review summarizes the current progress about MARCH proteins and their regulation on immune responses.
Collapse
Affiliation(s)
- Heng Lin
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Shu Li
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Dietz JV, Bohovych I, Viana MP, Khalimonchuk O. Proteolytic regulation of mitochondrial dynamics. Mitochondrion 2019; 49:289-304. [PMID: 31029640 DOI: 10.1016/j.mito.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Abstract
Spatiotemporal changes in the abundance, shape, and cellular localization of the mitochondrial network, also known as mitochondrial dynamics, are now widely recognized to play a key role in mitochondrial and cellular physiology as well as disease states. This process involves coordinated remodeling of the outer and inner mitochondrial membranes by conserved dynamin-like guanosine triphosphatases and their partner molecules in response to various physiological and stress stimuli. Although the core machineries that mediate fusion and partitioning of the mitochondrial network have been extensively characterized, many aspects of their function and regulation are incompletely understood and only beginning to emerge. In the present review we briefly summarize current knowledge about how the key mitochondrial dynamics-mediating factors are regulated via selective proteolysis by mitochondrial and cellular proteolytic machineries.
Collapse
Affiliation(s)
- Jonathan V Dietz
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Iryna Bohovych
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Martonio Ponte Viana
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America; Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, United States of America; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States of America.
| |
Collapse
|
25
|
Bond ST, Moody SC, Liu Y, Civelek M, Villanueva CJ, Gregorevic P, Kingwell BA, Hevener AL, Lusis AJ, Henstridge DC, Calkin AC, Drew BG. The E3 ligase MARCH5 is a PPARγ target gene that regulates mitochondria and metabolism in adipocytes. Am J Physiol Endocrinol Metab 2019; 316:E293-E304. [PMID: 30512991 PMCID: PMC6397360 DOI: 10.1152/ajpendo.00394.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial dynamics refers to the constant remodeling of mitochondrial populations by multiple cellular pathways that help maintain mitochondrial health and function. Disruptions in mitochondrial dynamics often lead to mitochondrial dysfunction, which is frequently associated with disease in rodents and humans. Consistent with this, obesity is associated with reduced mitochondrial function in white adipose tissue, partly via alterations in mitochondrial dynamics. Several proteins, including the E3 ubiquitin ligase membrane-associated RING-CH-type finger 5 (MARCH5), are known to regulate mitochondrial dynamics; however, the role of these proteins in adipocytes has been poorly studied. Here, we show that MARCH5 is regulated by peroxisome proliferator-activated receptor-γ (PPARγ) during adipogenesis and is correlated with fat mass across a panel of genetically diverse mouse strains, in ob/ob mice, and in humans. Furthermore, manipulation of MARCH5 expression in vitro and in vivo alters mitochondrial function, affects cellular metabolism, and leads to differential regulation of several metabolic genes. Thus our data demonstrate an association between mitochondrial dynamics and metabolism that defines MARCH5 as a critical link between these interconnected pathways.
Collapse
Affiliation(s)
- Simon T Bond
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Sarah C Moody
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Yingying Liu
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Mete Civelek
- University of California , Los Angeles, California
| | | | - Paul Gregorevic
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | | | | | | | | | - Anna C Calkin
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
- Central Clinical School, Monash University , Melbourne, Victoria , Australia
| | - Brian G Drew
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
- Central Clinical School, Monash University , Melbourne, Victoria , Australia
| |
Collapse
|
26
|
Xia L, Wu J, Pattaradilokrat S, Tumas K, He X, Peng YC, Huang R, Myers TG, Long CA, Wang R, Su XZ. Detection of host pathways universally inhibited after Plasmodium yoelii infection for immune intervention. Sci Rep 2018; 8:15280. [PMID: 30327482 PMCID: PMC6191451 DOI: 10.1038/s41598-018-33599-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022] Open
Abstract
Malaria is a disease with diverse symptoms depending on host immune status and pathogenicity of Plasmodium parasites. The continuous parasite growth within a host suggests mechanisms of immune evasion by the parasite and/or immune inhibition in response to infection. To identify pathways commonly inhibited after malaria infection, we infected C57BL/6 mice with four Plasmodium yoelii strains causing different disease phenotypes and 24 progeny of a genetic cross. mRNAs from mouse spleens day 1 and/or day 4 post infection (p.i.) were hybridized to a mouse microarray to identify activated or inhibited pathways, upstream regulators, and host genes playing an important role in malaria infection. Strong interferon responses were observed after infection with the N67 strain, whereas initial inhibition and later activation of hematopoietic pathways were found after infection with 17XNL parasite, showing unique responses to individual parasite strains. Inhibitions of pathways such as Th1 activation, dendritic cell (DC) maturation, and NFAT immune regulation were observed in mice infected with all the parasite strains day 4 p.i., suggesting universally inhibited immune pathways. As a proof of principle, treatment of N67-infected mice with antibodies against T cell receptors OX40 or CD28 to activate the inhibited pathways enhanced host survival. Controlled activation of these pathways may provide important strategies for better disease management and for developing an effective vaccine.
Collapse
Affiliation(s)
- Lu Xia
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892-8132, USA.,State Key Laboratory of Medical Genetics, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, The People's Republic of China
| | - Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892-8132, USA
| | - Sittiporn Pattaradilokrat
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892-8132, USA.,Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Keyla Tumas
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892-8132, USA
| | - Xiao He
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892-8132, USA
| | - Yu-Chih Peng
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892-8132, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892-8132, USA
| | - Timothy G Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-8132, USA
| | - Carole A Long
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892-8132, USA
| | - Rongfu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Xin-Zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892-8132, USA.
| |
Collapse
|
27
|
Zhang Y, Li LF, Munir M, Qiu HJ. RING-Domain E3 Ligase-Mediated Host-Virus Interactions: Orchestrating Immune Responses by the Host and Antagonizing Immune Defense by Viruses. Front Immunol 2018; 9:1083. [PMID: 29872431 PMCID: PMC5972323 DOI: 10.3389/fimmu.2018.01083] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/01/2018] [Indexed: 01/07/2023] Open
Abstract
The RING-domain E3 ligases (RING E3s), a group of E3 ligases containing one or two RING finger domains, are involved in various cellular processes such as cell proliferation, immune regulation, apoptosis, among others. In the host, a substantial number of the RING E3s have been implicated to inhibit viral replication through regulating immune responses, including activation and inhibition of retinoic acid-inducible gene I-like receptors, toll-like receptors, and DNA receptor signaling pathways, modulation of cell-surface expression of major histocompatibility complex, and co-stimulatory molecules. During the course of evolution and adaptation, viruses encode RING E3s to antagonize host immune defense, such as the infected cell protein 0 of herpes simplex virus type 1, the non-structural protein 1 of rotavirus, and the K3 and K5 of Kaposi’s sarcoma-associated herpesvirus. In addition, recent studies suggest that viruses can hijack the host RING E3s to facilitate viral replication. Based on emerging and interesting discoveries, the RING E3s present novel links among the host and viruses. Herein, we focus on the latest research progresses in the RING E3s-mediated host–virus interactions and discuss the outlooks of the RING E3s for future research.
Collapse
Affiliation(s)
- Yuexiu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lian-Feng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, City of Lancaster, United Kingdom
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
28
|
|
29
|
Singh S, Saraya A, Das P, Sharma R. Increased expression of MARCH8, an E3 ubiquitin ligase, is associated with growth of esophageal tumor. Cancer Cell Int 2017; 17:116. [PMID: 29213217 PMCID: PMC5715508 DOI: 10.1186/s12935-017-0490-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/29/2017] [Indexed: 11/24/2022] Open
Abstract
Background Herein, for the first time, we report aberrant expression of membrane-associated RING-CH8 (MARCH8) in human esophageal squamous cell carcinoma. MARCH8 is a member of the recently discovered MARCH family of really interesting new genes (RING) E3 ligases. Though initial studies primarily focused on its immunomodulatory role, the newly discovered targets of this E3 ligase point towards its possible role in other biological processes such as embryogenesis and inhibition of apoptosis. However, its relevance in cancers is yet to be elucidated. Methods We carried out quantitative real time PCR and immunohistochemistry to examine the levels of MARCH8 mRNA and protein in esophageal squamous cell carcinoma tissues. The role of MARCH8 in esophageal cancer cells was evaluated by cell proliferation, clonogenic and migration/invasion assays and flow cytometry with MARCH8 gene knockdown. Results Significantly increased expression of MARCH8 mRNA was found in esophageal squamous cell carcinoma as compared to distant matched non-malignant tissues (p = 0.024, AUC = 0.654). Immunohistochemical analysis revealed overexpression of MARCH8 protein in 86% of esophageal squamous cell carcinoma tissues (p < 0.001, AUC = 0.908). Interestingly, intense nuclear staining of MARCH8 protein was detected in cancer cells in addition to its cytoplasmic expression. Knockdown of MARCH8 resulted in decreased proliferation, migration, invasion and clonogenic potential of esophageal cancer cells. In addition to this, silencing of MARCH8 induced apoptosis in esophageal cancer cells which was measured by cell cycle distribution assay which showed increase in sub G0 and G2/M populations (cell death) and decrease in S-phase population. To further check the type of apoptosis induced by MARCH8 silencing, annexin assay was performed which showed significant increase in the number of cells in early apoptotic phase. Conclusions Overall, increased expression of MARCH8 gene in preneoplastic and neoplastic esophageal tissues and its knockdown effect on cancer cell properties demonstrated herein points towards the potential role of this protein in esophageal tumorigenesis.
Collapse
Affiliation(s)
- Shivam Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16(C), Dwarka, Delhi, 110078 India
| | - Anoop Saraya
- Department of Gastroenterology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Rinu Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16(C), Dwarka, Delhi, 110078 India
| |
Collapse
|
30
|
MARCH8 is associated with poor prognosis in non-small cell lung cancers patients. Oncotarget 2017; 8:108238-108248. [PMID: 29296237 PMCID: PMC5746139 DOI: 10.18632/oncotarget.22602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/03/2017] [Indexed: 12/25/2022] Open
Abstract
MARCH8 belongs to a family of membrane-associated RING-CH (MARCH) ubiquitin ligases. The functions of MARCH8 have been thoroughly investigated but its mechanism of action remains unknown. In this study, we detected the expression of MARCH8 protein in NSCLC samples and identified MARCH8 mRNA expression through a TCGA database. In addition, we analyzed the correlation between MARCH8 and the clinical characteristics of NSCLC patients and their prognosis.(www.kmplot.com). The roles of MARCH8 in proliferation, migration, and metastasis were further explored through ectopic expression analysis and western blot analysis; its mechanism of expressionwas also explored. We discovered that MARCH8 was downregulated in NSCLC tissues compared to adjacent normal lung tissues. Overexpression of MARCH8 inhibited NSCLC cell proliferation and metastasis via the PI3K and mTOR signaling pathways; this also increased apoptosis of A549 and H1299 cells. Our results indicated that MARCH8 plays crucial roles in NSCLC against carcinogenesis and progression; therefore, MARCH8 might be a predictive factor and an attractive therapeutic target for NSCLC patients.
Collapse
|
31
|
The MARCH family joins the antigen cross-presentation party. Immunol Cell Biol 2017; 95:737-738. [PMID: 28829049 DOI: 10.1038/icb.2017.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|