1
|
Hossain R, Quispe C, Khan RA, Saikat ASM, Ray P, Ongalbek D, Yeskaliyeva B, Jain D, Smeriglio A, Trombetta D, Kiani R, Kobarfard F, Mojgani N, Saffarian P, Ayatollahi SA, Sarkar C, Islam MT, Keriman D, Uçar A, Martorell M, Sureda A, Pintus G, Butnariu M, Sharifi-Rad J, Cho WC. Propolis: An update on its chemistry and pharmacological applications. Chin Med 2022; 17:100. [PMID: 36028892 PMCID: PMC9412804 DOI: 10.1186/s13020-022-00651-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
Propolis, a resinous substance produced by honeybees from various plant sources, has been used for thousands of years in traditional medicine for several purposes all over the world. The precise composition of propolis varies according to plant source, seasons harvesting, geography, type of bee flora, climate changes, and honeybee species at the site of collection. This apiary product has broad clinical applications such as antioxidant, anti-inflammatory, antimicrobial, anticancer, analgesic, antidepressant, and anxiolytic as well asimmunomodulatory effects. It is also well known from traditional uses in treating purulent disorders, improving the wound healing, and alleviating many of the related discomforts. Even if its use was already widespread since ancient times, after the First and Second World War, it has grown even more as well as the studies to identify its chemical and pharmacological features, allowing to discriminate the qualities of propolis in terms of the chemical profile and relative biological activity based on the geographic place of origin. Recently, several in vitro and in vivo studies have been carried out and new insights into the pharmaceutical prospects of this bee product in the management of different disorders, have been highlighted. Specifically, the available literature confirms the efficacy of propolis and its bioactive compounds in the reduction of cancer progression, inhibition of bacterial and viral infections as well as mitigation of parasitic-related symptoms, paving the way to the use of propolis as an alternative approach to improve the human health. However, a more conscious use of propolis in terms of standardized extracts as well as new clinical studies are needed to substantiate these health claims.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939 Iquique, Chile
| | - Rasel Ahmed Khan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9280 Bangladesh
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Pranta Ray
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Damira Ongalbek
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022 India
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Roghayeh Kiani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naheed Mojgani
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Parvaneh Saffarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Mohammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Dılhun Keriman
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Arserim Uçar
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386 Concepción, Chile
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, and CIBEROBN - Physiopathology of Obesity and Nutrition, CB12/03/30038, University of Balearic Islands, Palma, Spain
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, 22272 Sharjah, United Arab Emirates
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences King Mihai I from Timisoara, Calea Aradului 119, 300645 Timis, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
2
|
Varzaghani V, Sharifi M, Hajiaghaee R, Bagheri S, Momtaz S, Tarassoli Z, Razmi A. Propolis add‐on therapy alleviates depressive symptoms; A randomized placebo‐controlled clinical trial. Phytother Res 2022; 36:1258-1267. [DOI: 10.1002/ptr.7380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 11/14/2021] [Accepted: 12/28/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Vahdad Varzaghani
- Medicinal Plants Research Center Institute of Medicinal Plants, ACECR Karaj Iran
| | - Masoomeh Sharifi
- Physiology Research Center Iran University of Medical Sciences Tehran Iran
| | - Reza Hajiaghaee
- Medicinal Plants Research Center Institute of Medicinal Plants, ACECR Karaj Iran
| | - Sara Bagheri
- Medicinal Plants Research Center Institute of Medicinal Plants, ACECR Karaj Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center Institute of Medicinal Plants, ACECR Karaj Iran
| | - Zahra Tarassoli
- Medicinal Plants Research Center Institute of Medicinal Plants, ACECR Karaj Iran
| | - Ali Razmi
- Medicinal Plants Research Center Institute of Medicinal Plants, ACECR Karaj Iran
| |
Collapse
|
3
|
Zulhendri F, Perera CO, Tandean S. Can Propolis Be a Useful Adjuvant in Brain and Neurological Disorders and Injuries? A Systematic Scoping Review of the Latest Experimental Evidence. Biomedicines 2021; 9:1227. [PMID: 34572413 PMCID: PMC8470086 DOI: 10.3390/biomedicines9091227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Propolis has been used therapeutically for centuries. In recent years, research has demonstrated its efficacy as a potential raw material for pharmaceuticals and nutraceuticals. The aim of the present scoping review is to examine the latest experimental evidence regarding the potential use of propolis in protecting the brain and treating neurological disorders and injuries. A systematic scoping review methodology was implemented. Identification of the research themes and knowledge gap was performed. After applying the exclusion criteria, a total of 66 research publications were identified and retrieved from Scopus, Web of Science, Pubmed, and Google Scholar. Several key themes where propolis is potentially useful were subsequently identified, namely detoxification, neuroinflammation, ischemia/ischemia-reperfusion injury/traumatic brain injury, Alzheimer's disease, Parkinson's disease, and epilepsy models, depression, cytotoxicity, cognitive improvement, regenerative medicine, brain infection, and adverse effects. In conclusion, propolis is shown to have protective and therapeutic benefits in alleviating symptoms of brain and neurological disorders and injuries, demonstrated by various in vitro studies, animal models, and human clinical trials. Further clinical research into this area is needed.
Collapse
Affiliation(s)
| | - Conrad O Perera
- Food Science Program, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland CBD, Auckland 1010, New Zealand
| | - Steven Tandean
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20222, Sumatera Utara, Indonesia
| |
Collapse
|
4
|
Kulkarni NP, Vaidya B, Narula AS, Sharma SS. Neuroprotective Potential of Caffeic Acid Phenethyl Ester (CAPE) in CNS Disorders: Mechanistic and Therapeutic Insights. Curr Neuropharmacol 2021; 19:1401-1415. [PMID: 34102977 PMCID: PMC8762179 DOI: 10.2174/1570159x19666210608165509] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
Neurological disorders like Alzheimer's disease (AD), Parkinson's disease (PD), stroke, amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), epilepsy, traumatic brain injury (TBI), depression, and anxiety are responsible for thousands of deaths worldwide every year. With the increase in life expectancy, there has been a rise in the prevalence of these disorders. Age is one of the major risk factors for these neurological disorders, and with the aged population set to rise to 1.25 billion by 2050, there is a growing concern to look for new therapeutic molecules to treat age-related diseases. Caffeic acid phenethyl ester (CAPE) is a molecule obtained from a number of botanical sources, such as the bark of conifer trees as well as propolis which is extracted from beehives. Though CAPE remains relatively unexplored in human trials, it possesses antioxidant, anti-inflammatory, antimitogenic, and anti-cancer activities, as shown by preclinical studies. Apart from this, it also exhibits tremendous potential for the treatment of neurological disorders through the modulation of multiple molecular pathways and attenuation of behavioural deficits. In the present article, we have reviewed the therapeutic potential of CAPE and its mechanisms in the treatment of neurological disorders.
Collapse
Affiliation(s)
| | | | | | - Shyam Sunder Sharma
- Address correspondence to this author at the Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, India; E-mail:
| |
Collapse
|
5
|
Menezes da Silveira CCS, Luz DA, da Silva CCS, Prediger RDS, Martins MD, Martins MAT, Fontes-Júnior EA, Maia CSF. Propolis: A useful agent on psychiatric and neurological disorders? A focus on CAPE and pinocembrin components. Med Res Rev 2020; 41:1195-1215. [PMID: 33174618 DOI: 10.1002/med.21757] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022]
Abstract
Propolis consists of a honeybee product, with a complex mix of substances that have been widely used in traditional medicine. Among several compounds present in propolis, caffeic acid phenethyl ester (CAPE), and pinocembrin emerge as two principal bioactive compounds, with benefits in a variety of body systems. In addition to its well-explored pharmacological properties, neuropharmacological activities have been poorly discussed. In an unprecedented way, the present review addresses the current finding on the promising therapeutic purposes of propolis, focusing on CAPE and pinocembrin, highlighting its use on neurological disturbance, as cerebral ischemia, neuroinflammation, convulsion, and cognitive impairment, as well as psychiatric disorders, such as anxiety and depression. In addition, we provide a critical analysis, discussion, and systematization of the molecular mechanisms which underlie these central nervous system effects. We hypothesize that the pleiotropic action of CAPE and pinocembrin, per se or associated with other substances present in propolis may result in the therapeutic activities reported. Inhibition of the pro-inflammatory cascade, antioxidant activity, and positive neurotrophic modulatory effects consist of the main molecular targets attributed to CAPE and pinocembrin in health benefits.
Collapse
Affiliation(s)
- Cinthia C S Menezes da Silveira
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Diandra A Luz
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Carla C S da Silva
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Rui D S Prediger
- Department of Pharmacology, Biological Science Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Manoela D Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marco A T Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Enéas A Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Cristiane S F Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
6
|
Gong Q, Yan XJ, Lei F, Wang ML, He LL, Luo YY, Gao HW, Feng YL, Yang SL, Li J, Du LJ. Proteomic profiling of the neurons in mice with depressive-like behavior induced by corticosterone and the regulation of berberine: pivotal sites of oxidative phosphorylation. Mol Brain 2019; 12:118. [PMID: 31888678 PMCID: PMC6937859 DOI: 10.1186/s13041-019-0518-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic corticosterone (CORT) stress is an anxiety and depression inducing factor that involves the dysfunction of glucocorticoid receptor (GR), brain-derived neurotrophic factor (BDNF), and neuronal plasticity. However, the regulation of proteomic profiles in neurons suffering CORT stress is remaining elusive. Thus, the proteomic profiles of mouse neuronal C17.2 stem cells were comprehensively investigated by TMT (tandem mass tag)-labeling quantitative proteomics. The quantitative proteomics conjugated gene ontology analysis revealed the inhibitory effect of CORT on the expression of mitochondrial oxidative phosphorylation-related proteins, which can be antagonized by berberine (BBR) treatment. In addition, animal studies showed that changes in mitochondria by CORT can affect neuropsychiatric activities and disturb the physiological functions of neurons via disordering mitochondrial oxidative phosphorylation. Thus, the mitochondrial energy metabolism can be considered as one of the major mechanism underlying CORT-mediated depression. Since CORT is important for depression after traumatic stress disorder, our study will shed light on the prevention and treatment of depression as well as posttraumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Qin Gong
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Xiao-Jin Yan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fan Lei
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mu-Lan Wang
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Lu-Ling He
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Ying-Ying Luo
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Hong-Wei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Yu-Lin Feng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Shi-Lin Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Jun Li
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China. .,State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.
| | - Li-Jun Du
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China.,College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| |
Collapse
|
7
|
Jahani R, Khaledyan D, Jahani A, Jamshidi E, Kamalinejad M, Khoramjouy M, Faizi M. Evaluation and comparison of the antidepressant-like activity of Artemisia dracunculus and Stachys lavandulifolia ethanolic extracts: an in vivo study. Res Pharm Sci 2019; 14:544-553. [PMID: 32038734 PMCID: PMC6937744 DOI: 10.4103/1735-5362.272563] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Several studies have supported the preventive and therapeutic values of phenolic compounds including chlorogenic acid, syringic acid, vanillic acid, ferulic acid, caffeic acid, luteolin, rutin, catechin, kaempferol, and quercetin in mental disorders. Since these secondary metabolites are reported as the phenolic compounds of Artemisia dracunculus (A. dracunculus) and Stachys lavandulifolia (S. lavandulifolia), the main aim of this study was the evaluation and comparison of the phenolic contents, flavonoids, and antidepressant-like activity of Artemisia dracunculus with Stachys lavandulifolia. Antidepressant-like activity of the extracts was evaluated in the forced swimming test (FST) and the tail suspension test (TST). Moreover, the open field test was conducted to evaluate the general locomotor activity of mice following treatment with the extracts. Since phenolic compounds and flavonoids play main roles in pharmacological effects, the phenolic and flavonoid contents of the extracts were measured. Though significant difference between the phenolic contents of the extracts was not observed, but S. lavandulifolia exhibited higher flavonoid contents. Animal treatment with extracts decreased the immobility times in both FST and TST compared to the vehicle group without any significant effect on the locomotor activity of animals. Also, S. lavandulifolia at 400 mg/kg showed higher potency in both tests compared to A. dracunculus. Our results provided promising evidence on the antidepressant-like activity of both extracts which could be related to flavonoids as the main components of the extracts, but more studies need to be conducted to specify the main compounds and the mechanisms involved in the observed effects.
Collapse
Affiliation(s)
- Reza Jahani
- Student Research Committee, Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Dariush Khaledyan
- Student Research Committee, Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Ali Jahani
- Faculty of Natural Environment and Biodiversity, College of Environment, Karaj, I.R. Iran
| | - Elham Jamshidi
- Student Research Committee, Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Mohammad Kamalinejad
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Mona Khoramjouy
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
8
|
Romana-Souza B, Dos Santos JS, Monte-Alto-Costa A. Caffeic acid phenethyl ester promotes wound healing of mice pressure ulcers affecting NF-κB, NOS2 and NRF2 expression. Life Sci 2018; 207:158-165. [PMID: 29864436 DOI: 10.1016/j.lfs.2018.05.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/12/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023]
Abstract
AIMS In pressure ulcers, the synthesis of reactive oxygen species induced by ischemia and reperfusion leads to chronic inflammation and tissue damage, which impair the closure of these lesions. Caffeic acid phenethyl ester (CAPE), found in propolis, promotes cutaneous wound healing of acute lesions and severe burns. However, the effects of CAPE on wound healing of pressure ulcers have not been investigated. This study investigated the effects of CAPE administration in a murine model of pressure ulcers. MAIN METHODS To induce pressure ulcers, two cycles of ischemia and reperfusion by external application of two magnetic plates were performed in the skin dorsum of mice. After the last cycle, animals were treated daily with CAPE or vehicle until they were euthanized. KEY FINDINGS The nitric oxide synthesis, lipid peroxidation, macrophage migration, protein nuclear factor kappa B and nitric-oxide synthase-2 expression were increased 3 days after ulceration but decreased 7 days later, in pressure ulcers of the CAPE group compared to that of the control group. CAPE reduced the protein expression of nuclear factor-erythroid2-related factor 2 in pressure ulcers 3 days after ulceration, but increased 7 days later. Myofibroblast density was increased in the CAPE group 7 days after ulceration, but reduced 12 days later when compared to control group. In addition, CAPE promoted collagen deposition, re-epithelialization and wound closure of mice pressure ulcers 12 days after ulceration. SIGNIFICANCE CAPE brings forward inflammatory response and oxidative damage involved in injury by ischemia and reperfusion, promoting dermal reconstruction and closure of pressure ulcers.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Laboratory of Tissue Repair, Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Jeanine Salles Dos Santos
- Laboratory of Tissue Repair, Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andréa Monte-Alto-Costa
- Laboratory of Tissue Repair, Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Wang Y, Wang Y, Li J, Hua L, Han B, Zhang Y, Yang X, Zeng Z, Bai H, Yin H, Lou J. Effects of caffeic acid on learning deficits in a model of Alzheimer's disease. Int J Mol Med 2016; 38:869-75. [DOI: 10.3892/ijmm.2016.2683] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 05/24/2016] [Indexed: 11/05/2022] Open
|
10
|
RANJBAR H, RADAHMADI M, ALAEI H, REISI P, KARIMI S. The effect of basolateral amygdala nucleus lesion on memory under acute,mid and chronic stress in male rats. Turk J Med Sci 2016; 46:1915-1925. [DOI: 10.3906/sag-1507-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/21/2016] [Indexed: 11/03/2022] Open
|
11
|
Buahorm S, Puthong S, Palaga T, Lirdprapamongkol K, Phuwapraisirisan P, Svasti J, Chanchao C. Cardanol isolated from Thai Apis mellifera propolis induces cell cycle arrest and apoptosis of BT-474 breast cancer cells via p21 upregulation. ACTA ACUST UNITED AC 2015; 23:55. [PMID: 26694491 PMCID: PMC4687141 DOI: 10.1186/s40199-015-0138-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/14/2015] [Indexed: 12/17/2022]
Abstract
Background Cardanol was previously reported to be an antiproliferative compound purified from Thai Apis mellifera propolis. By morphology, it could induce the cell death to many cancer cell lines but not the control (non-transformed human foreskin fibroblast cell line, Hs27). Here, it was aimed to evaluate the molecular effects of cardanol on breast cancer derived cell line (BT-474). Methods Morphological changes in BT-474 cells induced by cardanol compared to doxorubicin were evaluated by light microscopy, cytotoxicity by using the 3- (4, 5-dimethyl-thiazol-2-yl) 2, 5-diphenyl-tetrazolium bromide (MTT) assay, induction of cell cycle arrest and cell death by flow cytometric analysis of propidium iodide and annexin-V stained cells, and changes in the expression level of genes involved in the control of apoptosis and the cell cycle by quantitative reverse transcriptase-PCR (qRT-PCR) and western blot analyses. Results It revealed that cardanol induced a time- and dose-dependent cytotoxicity along with cell shrinkage and detachment from substratum. Cardanol caused cell cycle arrest at the G1 subphase (as opposed to at the G2/M subphase seen with doxorubicin) and cell death by late apoptosis, with both late apoptosis (27.2 ± 1.1 %) and necrosis (25.4 ± 1.4 %) being found in cardanol treated cells after 72 h, compared to a lower proportion of apoptosis (4.3 ± 0.4 %) and higher proportion of necrosis (35.8 ± 13.0 %) induced by doxorubicin. Moreover, cardanol changed the transcript expression levels of genes involved in the control of apoptosis (increased DR5 and Bcl-2 expression and decreased Mcl-1, MADD and c-FLIPP) and cell division (increased p21 and E2FI and decreased cyclin D1, cyclin E, CDK4 and CDK2 expression), as well as increasing the level of p21 p-ERK, p-JNK and p-p38 and decreasing cyclin D. This accounts for the failure to progress from the G1 to the S subphase. Conclusion Cardanol is a potential chemotherapeutic agent for breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s40199-015-0138-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sureerat Buahorm
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Songchan Puthong
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Kriengsak Lirdprapamongkol
- Laboratory of Biochemistry, Chulabhorn Research Institute, Vipawadee Rangsit Highway, Bangkok, 10210, Thailand
| | - Preecha Phuwapraisirisan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Vipawadee Rangsit Highway, Bangkok, 10210, Thailand
| | - Chanpen Chanchao
- Department of Biology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| |
Collapse
|