1
|
Liu Y, Cai X, Fang R, Peng S, Luo W, Du X. Future directions in ventilator-induced lung injury associated cognitive impairment: a new sight. Front Physiol 2023; 14:1308252. [PMID: 38164198 PMCID: PMC10757930 DOI: 10.3389/fphys.2023.1308252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
Mechanical ventilation is a widely used short-term life support technique, but an accompanying adverse consequence can be pulmonary damage which is called ventilator-induced lung injury (VILI). Mechanical ventilation can potentially affect the central nervous system and lead to long-term cognitive impairment. In recent years, many studies revealed that VILI, as a common lung injury, may be involved in the central pathogenesis of cognitive impairment by inducing hypoxia, inflammation, and changes in neural pathways. In addition, VILI has received attention in affecting the treatment of cognitive impairment and provides new insights into individualized therapy. The combination of lung protective ventilation and drug therapy can overcome the inevitable problems of poor prognosis from a new perspective. In this review, we summarized VILI and non-VILI factors as risk factors for cognitive impairment and concluded the latest mechanisms. Moreover, we retrospectively explored the role of improving VILI in cognitive impairment treatment. This work contributes to a better understanding of the pathogenesis of VILI-induced cognitive impairment and may provide future direction for the treatment and prognosis of cognitive impairment.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Clinical Medical College of Nanchang University, Nanchang, China
| | - Xintong Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Clinical Medical College of Nanchang University, Nanchang, China
| | - Ruiying Fang
- The Clinical Medical College of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Vinton J, Aninweze A, Birgbauer E. Ibuprofen does not inhibit RhoA-mediated growth cone collapse of embryonic chicken retinal axons by LPA. Exp Brain Res 2021; 239:2969-2977. [PMID: 34322723 DOI: 10.1007/s00221-021-06172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/15/2021] [Indexed: 11/28/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that causes neuronal growth cones to collapse and neurites to retract through a RhoA-ROCK mediated pathway. It has been reported that the NSAID ibuprofen improves regeneration after spinal cord injury through a mechanism of inhibiting RhoA. This leads to the hypothesis that ibuprofen should block LPA-mediated growth cone collapse. We tested this hypothesis by treating embryonic chick retinal neurons with ibuprofen followed by LPA. Retinal growth cones collapsed with LPA in the presence of ibuprofen similar to control; however, growth cone collapse was effectively blocked by a ROCK inhibitor. Thus, our results do not support the designation of ibuprofen as a direct RhoA inhibitor.
Collapse
Affiliation(s)
- James Vinton
- Department of Biology, Winthrop University, Rock Hill, SC, 29733, USA
| | - Adaeze Aninweze
- Department of Biology, Winthrop University, Rock Hill, SC, 29733, USA
| | - Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC, 29733, USA.
| |
Collapse
|
3
|
Yan J, Tang Y, Zhong X, Huang H, Wei H, Jin Y, He Y, Cao J, Jin L, Hu B. ROCK inhibitor attenuates carbon blacks-induced pulmonary fibrosis in mice via Rho/ROCK/NF-kappa B pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:1476-1484. [PMID: 33792148 DOI: 10.1002/tox.23135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Exposure to carbon blacks (CBs) has been associated with the progression of pulmonary fibrosis, whereas the mechanism is still not clear. We therefore aimed to investigate the effect of RhoA/ROCK pathway on pulmonary fibrosis caused by CBs exposure. Western blot analysis indicated that CBs could promote the activation of RhoA/ROCK pathway and phosphorylation of p65 and IκBα in mice lung. However, ROCK inhibitor Y-27632 could attenuate phosphorylation levels of p65 and IκBα and restore histopathological changes of the lung tissue. Then, we evaluated the effect of RhoA/ROCK pathway on pulmonary fibrosis by detecting the expression levels of α-SMA, vimentin, and Collagen type-I (Col-I), which could be partly inhibited by Y-27632. It was assumed that inhibition of ROCK could be a promising therapeutic candidate for CBs-induced pulmonary fibrosis, which possibly through the blockage of RhoA/ROCK/NF-κB pathway.
Collapse
Affiliation(s)
- Junyan Yan
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Yaxin Tang
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Xin Zhong
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Huarong Huang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Haonan Wei
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Yulei Jin
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Yanjiang He
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Jinqiao Cao
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Lifang Jin
- School of Life Science, Shaoxing University, Shaoxing, China
- Shaoxing Academy of Biomedicine of Zhejiang Sci-Tech University, Zhejiang, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing, China
| |
Collapse
|
4
|
Abedi F, Hayes AW, Reiter R, Karimi G. Acute lung injury: The therapeutic role of Rho kinase inhibitors. Pharmacol Res 2020; 155:104736. [PMID: 32135249 DOI: 10.1016/j.phrs.2020.104736] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/18/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a pulmonary illness with high rates of mortality and morbidity. Rho GTPase and its downstream effector, Rho kinase (ROCK), have been demonstrated to be involved in cell adhesion, motility, and contraction which can play a role in ALI. The electronic databases of Google Scholar, Scopus, PubMed, and Web of Science were searched to obtain relevant studies regarding the role of the Rho/ROCK signaling pathway in the pathophysiology of ALI and the effects of specific Rho kinase inhibitors in prevention and treatment of ALI. Upregulation of the RhoA/ROCK signaling pathway causes an increase of inflammation, immune cell migration, apoptosis, coagulation, contraction, and cell adhesion in pulmonary endothelial cells. These effects are involved in endothelium barrier dysfunction and edema, hallmarks of ALI. These effects were significantly reversed by Rho kinase inhibitors. Rho kinase inhibition offers a promising approach in ALI [ARDS] treatment.
Collapse
Affiliation(s)
- Farshad Abedi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida, Tampa, FL, USA; Michigan State University, East Lansing, MI, USA
| | - Russel Reiter
- University of Texas, Health Science Center at San Antonio, Department of Cellular and Structural Biology, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Li R, Song X, Li G, Hu Z, Sun L, Chen C, Yang L. Ibuprofen attenuates interleukin-1β-induced inflammation and actin reorganization via modulation of RhoA signaling in rabbit chondrocytes. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1026-1033. [PMID: 31553428 DOI: 10.1093/abbs/gmz101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Indexed: 01/11/2023] Open
Abstract
Ibuprofen, a medication in the nonsteroidal anti-inflammatory drug class, is widely used for treating inflammatory diseases such as osteoarthritis. It has been shown in recent years that ibuprofen has a strong effect on Ras homolog gene family, member A (RhoA) inhibition in multiple cell types. Our previous finding also demonstrated that interleukin-1β (IL-1β) increases filamentous actin (F-actin) of chondrocytes via RhoA pathway. Therefore, we hypothesized that ibuprofen may suppress the IL-1β-induced F-actin upregulation in chondrocytes by inhibiting RhoA pathway. To this end, in this study, articular chondrocytes from New Zealand White rabbits were pretreated with 500 μM ibuprofen for 2 h, then with 10 ng/ml IL-1β for 24 h. Results showed that pretreatment with ibuprofen inhibited the IL-1β-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production, protected the chondrocyte phenotype from IL-1β stimulation, and inhibited the IL-1β-induced actin remodeling via RhoA signaling modulation. In conclusion, ibuprofen showed not only anti-inflammatory function, but also RhoA inhibition in articular chondrocytes.
Collapse
Affiliation(s)
- Rui Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Gaoming Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhen Hu
- Gastroenterology Department, Zigong First People’s Hospital, Zigong 643000, China
| | - Li Sun
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
6
|
Tian W, Rockson SG, Jiang X, Kim J, Begaye A, Shuffle EM, Tu AB, Cribb M, Nepiyushchikh Z, Feroze AH, Zamanian RT, Dhillon GS, Voelkel NF, Peters-Golden M, Kitajewski J, Dixon JB, Nicolls MR. Leukotriene B 4 antagonism ameliorates experimental lymphedema. Sci Transl Med 2018; 9:9/389/eaal3920. [PMID: 28490670 DOI: 10.1126/scitranslmed.aal3920] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 11/22/2016] [Accepted: 04/04/2017] [Indexed: 12/14/2022]
Abstract
Acquired lymphedema is a cancer sequela and a global health problem currently lacking pharmacologic therapy. We have previously demonstrated that ketoprofen, an anti-inflammatory agent with dual 5-lipoxygenase and cyclooxygenase inhibitory properties, effectively reverses histopathology in experimental lymphedema. We show that the therapeutic benefit of ketoprofen is specifically attributable to its inhibition of the 5-lipoxygenase metabolite leukotriene B4 (LTB4). LTB4 antagonism reversed edema, improved lymphatic function, and restored lymphatic architecture in the murine tail model of lymphedema. In vitro, LTB4 was functionally bimodal: Lower LTB4 concentrations promoted human lymphatic endothelial cell sprouting and growth, but higher concentrations inhibited lymphangiogenesis and induced apoptosis. During lymphedema progression, lymphatic fluid LTB4 concentrations rose from initial prolymphangiogenic concentrations into an antilymphangiogenic range. LTB4 biosynthesis was similarly elevated in lymphedema patients. Low concentrations of LTB4 stimulated, whereas high concentrations of LTB4 inhibited, vascular endothelial growth factor receptor 3 and Notch pathways in cultured human lymphatic endothelial cells. Lymphatic-specific Notch1-/- mice were refractory to the beneficial effects of LTB4 antagonism, suggesting that LTB4 suppression of Notch signaling is an important mechanism in disease maintenance. In summary, we found that LTB4 was harmful to lymphatic repair at the concentrations observed in established disease. Our findings suggest that LTB4 is a promising drug target for the treatment of acquired lymphedema.
Collapse
Affiliation(s)
- Wen Tian
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.,Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.,Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeanna Kim
- Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adrian Begaye
- Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eric M Shuffle
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.,Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Allen B Tu
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.,Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Cribb
- Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | | - Jan Kitajewski
- University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Mark R Nicolls
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA. .,Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Güzel A, Doğan E, Türkçü G, Kuyumcu M, Kaplan İ, Çelik F, Yıldırım ZB. Dexmedetomidine and Magnesium Sulfate: A Good Combination Treatment for Acute Lung Injury? J INVEST SURG 2018; 32:331-342. [PMID: 29359990 DOI: 10.1080/08941939.2017.1422575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objectives: In this study, we aimed to investigate the therapeutic effects of magnesium sulfate (MgSO4) and dexmedetomidine (dex) in a model of acute lung injury (ALI). We determined whether concomitant administration decreased the inflammatory effects of hydrochloric acid (HCl)-induced ALI in a synergistic manner. Materials and Methods: In this study, 42 Sprague-Dawley rats were randomized into six groups: Group S (saline), Group SV (saline + mechanical ventilation), Group HCl (HCl), Group Dex (Dex), Group Mag (MgSO4), and Group DM (Dex + MgSO4). All groups except Group S were mechanically ventilated prior to HCl-induced ALI. Saline or HCl was administered via tracheostomy. Prior to treatment, HCl was administered to Group HCl, Group Dex, Group Mag, and Group DM to induce ALI. Dex and MgSO4 were administered intraperitoneally. The rats were monitored for 4 h after treatment to measure oxidative stress parameters in blood, and prolidase enzyme activity. Lung tissue damage were determined via histopathology. Results: A significant increase in heart rate and rapid desaturation was observed in HCl-administered groups. Treatment administration decreased the pulse values. Increased saturation values and decreased oxidative stress indices were observed in groups that were subsequently administered Dex and MgSO4. Serum prolidase activity increased significantly in Group HCl. Severe pathological findings were detected following HCl-induced ALI. Group Mag showed greater improvement in the pathology of HCl-induced ALI than did Group Dex. Administration of both Dex and MgSO4 did not improve the pathological scores. Conclusions: The antioxidant and anti-inflammatory effects of Dex and MgSO4 ameliorated the detrimental effects of HCI-induced ALI. However, adverse effects on hemodynamics and lung damage were observed when the two drugs were administered together.
Collapse
Affiliation(s)
- Abdulmenap Güzel
- a Department of Anesthesiology , Dicle University , Diyarbakır , Turkey
| | - Erdal Doğan
- a Department of Anesthesiology , Dicle University , Diyarbakır , Turkey
| | - Gül Türkçü
- b Department of Pathology , Dicle University , Diyarbakır , Turkey
| | - Mahir Kuyumcu
- a Department of Anesthesiology , Dicle University , Diyarbakır , Turkey
| | - İbrahim Kaplan
- c Department of Biochemistry , Dicle University , Diyarbakır , Turkey
| | - Feyzi Çelik
- a Department of Anesthesiology , Dicle University , Diyarbakır , Turkey
| | | |
Collapse
|
8
|
Increased Circulating Endothelial Microparticles Associated with PAK4 Play a Key Role in Ventilation-Induced Lung Injury Process. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4902084. [PMID: 28261612 PMCID: PMC5316431 DOI: 10.1155/2017/4902084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/30/2016] [Accepted: 12/14/2016] [Indexed: 12/16/2022]
Abstract
Inappropriate mechanical ventilation (MV) can result in ventilator-induced lung injury (VILI). Probing mechanisms of VILI and searching for effective methods are current areas of research focus on VILI. The present study aimed to probe into mechanisms of endothelial microparticles (EMPs) in VILI and the protective effects of Tetramethylpyrazine (TMP) against VILI. In this study, C57BL/6 and TLR4KO mouse MV models were used to explore the function of EMPs associated with p21 activated kinases-4 (PAK-4) in VILI. Both the C57BL/6 and TLR4 KO groups were subdivided into a mechanical ventilation (MV) group, a TMP + MV group, and a control group. After four hours of high tidal volume (20 ml/kg) MV, the degree of lung injury and the protective effects of TMP were assessed. VILI inhibited the cytoskeleton-regulating protein of PAK4 and was accompanied by an increased circulating EMP level. The intercellular junction protein of β-catenin was also decreased accompanied by a thickening alveolar wall, increased lung W/D values, and neutrophil infiltration. TMP alleviated VILI via decreasing circulating EMPs, stabilizing intercellular junctions, and alleviating neutrophil infiltration.
Collapse
|
9
|
Silva PL, Negrini D, Rocco PRM. Mechanisms of ventilator-induced lung injury in healthy lungs. Best Pract Res Clin Anaesthesiol 2015; 29:301-13. [PMID: 26643096 DOI: 10.1016/j.bpa.2015.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/20/2015] [Indexed: 11/17/2022]
Abstract
Mechanical ventilation is an essential method of patient support, but it may induce lung damage, leading to ventilator-induced lung injury (VILI). VILI is the result of a complex interplay among various mechanical forces that act on lung structures, such as type I and II epithelial cells, endothelial cells, macrophages, peripheral airways, and the extracellular matrix (ECM), during mechanical ventilation. This article discusses ongoing research focusing on mechanisms of VILI in previously healthy lungs, such as in the perioperative period, and the development of new ventilator strategies for surgical patients. Several experimental and clinical studies have been conducted to evaluate the mechanisms of mechanotransduction in each cell type and in the ECM, as well as the role of different ventilator parameters in inducing or preventing VILI. VILI may be attenuated by reducing the tidal volume; however, the use of higher or lower levels of positive end-expiratory pressure (PEEP) and recruitment maneuvers during the perioperative period is a matter of debate. Many questions concerning the mechanisms of VILI in surgical patients remain unanswered. The optimal threshold value of each ventilator parameter to reduce VILI is also unclear. Further experimental and clinical studies are necessary to better evaluate ventilator settings during the perioperative period in different types of surgery.
Collapse
Affiliation(s)
- Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha do Fundão, 21941-902, Rio de Janeiro, Brazil
| | - Daniela Negrini
- Department of Surgical and Morphological Sciences, University of Insubria, Via J.H. Dunant 5, Varese, Italy
| | - Patricia Rieken Macêdo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha do Fundão, 21941-902, Rio de Janeiro, Brazil.
| |
Collapse
|