1
|
Liu L, Le PT, DeMambro VE, Feng T, Liu H, Ying W, Baron R, Rosen CJ. Calorie restriction induces mandible bone loss by regulating mitochondrial function. Bone 2024; 190:117326. [PMID: 39528064 DOI: 10.1016/j.bone.2024.117326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Caloric restriction (CR), commonly used as both a lifestyle choice and medical strategy, has been shown to adversely impact appendicular bone mass. However, its influence on alveolar bone health and the underlying mechanisms remain poorly understood. In this study, 8-week-old C57BL/6 J mice were fed with 30 % CR for 8 weeks. Micro-architecture, histologic parameters, and in vitro trajectories of osteoblast and adipocyte differentiation were examined. To further explore the underlying mechanisms, metabolic cages and in vitro bioenergetics were performed. Our results showed that 8 weeks of CR led to trabecular and cortical bone loss in the mandibles of female mice. CR in female mice decreased bone formation and bone resorption activities but induced adiposity in the mandibles. After CR, the adipogenesis in mesenchymal cells from orofacial bones (OMSCs) was greatly accelerated, whereas osteogenic differentiation was reduced in females. Undifferentiated CR OMSCs showed marked suppression in ATP production rates from mitochondria in female mice. ATP production rates decreased after osteogenesis but were upregulated during adipogenesis in female mice. Conversely, the generation of reactive oxygen species (ROS) was heightened during both osteoblastic and adipogenic differentiation in female CR groups. Collectively, our study indicated that CR could cause significant bone loss in the mandibles of female mice, almost certainly related to a reduced ATP supply and the unregulated generation of ROS.
Collapse
Affiliation(s)
- Linyi Liu
- MaineHealth Institute for Research, Scarborough, ME 04074, USA.
| | - Phuong T Le
- MaineHealth Institute for Research, Scarborough, ME 04074, USA.
| | | | - Tiange Feng
- MaineHealth Institute for Research, Scarborough, ME 04074, USA.
| | - Hanghang Liu
- West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Wangyang Ying
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, USA.
| | - Roland Baron
- Division of Bone and Mineral Research, Dept of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| | | |
Collapse
|
2
|
Chen X, Wei Y, Li Z, Zhou C, Fan Y. Distinct role of Klotho in long bone and craniofacial bone: skeletal development, repair and regeneration. PeerJ 2024; 12:e18269. [PMID: 39465174 PMCID: PMC11505971 DOI: 10.7717/peerj.18269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/17/2024] [Indexed: 10/29/2024] Open
Abstract
Bone defects are highly prevalent diseases caused by trauma, tumors, inflammation, congenital malformations and endocrine abnormalities. Ideally effective and side effect free approach to dealing with bone defects remains a clinical conundrum. Klotho is an important protein, which plays an essential role in regulating aging and mineral ion homeostasis. More recently, research revealed the function of Klotho in regulating skeleton development and regeneration. Klotho has been identified in mesenchymal stem cells, osteoblasts, osteocytes and osteoclasts in different skeleton regions. The specific function and regulatory mechanisms of Klotho in long bone and craniofacial bone vary due to their different embryonic development, ossification and cell types, which remain unclear and without conclusion. Moreover, studies have confirmed that Klotho is a multifunctional protein that can inhibit inflammation, resist cancer and regulate the endocrine system, which may further accentuate the potential of Klotho to be the ideal molecule in inducing bone restoration clinically. Besides, as an endogenous protein, Klotho has a promising potential for clinical therapy without side effects. In the current review, we summarized the specific function of Klotho in long bone and craniofacial skeleton from phenotype to cellular alternation and signaling pathway. Moreover, we illustrated the possible future clinical application for Klotho. Further research on Klotho might help to solve the existing clinical difficulties in bone healing and increase the life quality of patients with bone injury and the elderly.
Collapse
Affiliation(s)
- Xinyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yali Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zucen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Kwon Y, Fang Y, Kim H, Park S, Lee C. Volumetric analysis of spontaneous bone formation after segmental mandibulectomy in patients with MRONJ. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:367-376. [PMID: 38942695 DOI: 10.1016/j.oooo.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVE The purpose of this study was to quantify the spontaneous new bone formation and bony bridge formation by 3-dimensional analysis of cone-beam computed tomography (CBCT) after segmental mandibulectomy reconstruction using an R-plate without any graft material in patients with medication-related osteonecrosis of the jaw (MRONJ). STUDY DESIGN 15 MRONJ patients (13 females and 2 males) were selected based on the inclusion criteria. Data on new bone formation, bony bridge formation, R-plate fracture, patient age, and type and duration of medication were collected. Panoramic and CBCT scans were obtained at 1 day, 6, 12, and 24 months postoperatively. CBCT images of each period were transferred to a personal computer using MIMICS 21.0 for volumetric analysis. After quantifying the volume of new bone formation, we calculated the percentage of the volume of new bone to the segmentally resected necrotic bone volume (%NB). RESULTS All patients showed spontaneous new bone formation with the average of 20.69% within a year and 28.52% within 2 years, and 80.0% showed bony bridge formation within a year. CONCLUSIONS The R-plate reconstruction in patients with MRONJ showed significant amount of spontaneous new bone formation within 2 years after segmental mandibulectomy.
Collapse
Affiliation(s)
- Youngmin Kwon
- Department of Conservative Dentistry, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Yiqin Fang
- Department of Oral and Maxillofacial Surgery, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Hyunjoong Kim
- Department of Oral and Maxillofacial Surgery, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Seoyeon Park
- Department of Oral and Maxillofacial Surgery, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Chunui Lee
- Department of Oral and Maxillofacial Surgery, Yonsei University Wonju College of Medicine, Wonju, South Korea.
| |
Collapse
|
4
|
Jelin-Uhlig S, Weigel M, Ott B, Imirzalioglu C, Howaldt HP, Böttger S, Hain T. Bisphosphonate-Related Osteonecrosis of the Jaw and Oral Microbiome: Clinical Risk Factors, Pathophysiology and Treatment Options. Int J Mol Sci 2024; 25:8053. [PMID: 39125621 PMCID: PMC11311822 DOI: 10.3390/ijms25158053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) represents a serious health condition, impacting the lives of many patients worldwide. The condition challenges clinical care due to its complex etiology and limited therapeutic options. A thorough understanding of the pathophysiological and patient-related factors that promote disease development is essential. Recently, the oral microbiome has been implicated as a potential driver and modulating factor of BRONJ by several studies. Modern genomic sequencing methods have provided a wealth of data on the microbial composition of BRONJ lesions; however, the role of individual species in the process of disease development remains elusive. A comprehensive PubMed search was conducted to identify relevant studies on the microbiome of BRONJ patients using the terms "microbiome", "osteonecrosis of the jaws", and "bisphosphonates". Studies focusing on symptoms, epidemiology, pathophysiology, risk factors, and treatment options were included. The principal risk factors for BRONJ are tooth extraction, surgical procedures, and the administration of high doses of bisphosphonates. Importantly, the oral microbiome plays a significant role in the progression of the disease. Several studies have identified alterations of microbial composition in BRONJ lesions. However, there is no consensus regarding bacterial species that are associated with BRONJ across studies. The bacterial genera typically found include Actinomyces, Fusobacterium, and Streptococcus. It is postulated that these microbes contribute to the pathogenesis of BRONJ by promoting inflammation and disrupting normal bone remodeling processes. Current therapeutic approaches are disease-stage-specific and the necessity for more effective treatment strategies remains. This review examines the potential causes of and therapeutic approaches to BRONJ, highlighting the link between microbial colonization and BRONJ development. Future research should seek to more thoroughly investigate the interactions between bisphosphonates, the oral microbiome, and the immune system in order to develop targeted therapies.
Collapse
Affiliation(s)
- Sapir Jelin-Uhlig
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, D-35392 Giessen, Germany; (S.J.-U.); (M.W.); (C.I.)
- Institute of Medical Microbiology, Medical Microbiome-Metagenome Unit (M3U), Justus Liebig University Giessen, D-35392 Giessen, Germany;
| | - Markus Weigel
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, D-35392 Giessen, Germany; (S.J.-U.); (M.W.); (C.I.)
- Institute of Medical Microbiology, Medical Microbiome-Metagenome Unit (M3U), Justus Liebig University Giessen, D-35392 Giessen, Germany;
| | - Benjamin Ott
- Institute of Medical Microbiology, Medical Microbiome-Metagenome Unit (M3U), Justus Liebig University Giessen, D-35392 Giessen, Germany;
| | - Can Imirzalioglu
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, D-35392 Giessen, Germany; (S.J.-U.); (M.W.); (C.I.)
- Institute of Medical Microbiology, Medical Microbiome-Metagenome Unit (M3U), Justus Liebig University Giessen, D-35392 Giessen, Germany;
| | - Hans-Peter Howaldt
- Department of Oral and Maxillofacial Surgery, Justus Liebig University Giessen, University Hospital Giessen and Marburg, D-35392 Giessen, Germany; (H.-P.H.); (S.B.)
| | - Sebastian Böttger
- Department of Oral and Maxillofacial Surgery, Justus Liebig University Giessen, University Hospital Giessen and Marburg, D-35392 Giessen, Germany; (H.-P.H.); (S.B.)
| | - Torsten Hain
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, D-35392 Giessen, Germany; (S.J.-U.); (M.W.); (C.I.)
- Institute of Medical Microbiology, Medical Microbiome-Metagenome Unit (M3U), Justus Liebig University Giessen, D-35392 Giessen, Germany;
| |
Collapse
|
5
|
Zhang X, Yang Z, Zhang D, Bai M. The role of Semaphorin 3A in oral diseases. Oral Dis 2024; 30:1887-1896. [PMID: 37771213 DOI: 10.1111/odi.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
Semaphorin 3A (SEMA3A), also referred to as H-Sema III, is a molecule with significant biological importance in regulating physiological and pathological processes. However, its role in oral diseases, particularly its association with inflammatory immunity and alveolar bone remodeling defects, remains poorly understood. This comprehensive review article aims to elucidate the recent advances in understanding SEMA3A in the oral system, encompassing nerve formation, periodontitis, pulpitis, apical periodontitis, and oral squamous cell carcinoma. Notably, we explore its novel function in inflammatory immunomodulation and alveolar bone formation during oral infectious diseases. By doing so, this review enhances our comprehension of SEMA3A's role in oral biology and opens up possibilities for modulatory approaches and potential treatments in oral diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhenqi Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Involvement of the Notch signaling system in alveolar bone resorption. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:38-47. [PMID: 36880060 PMCID: PMC9985033 DOI: 10.1016/j.jdsr.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
The Notch pathway is an evolutionarily preserved signaling pathway involved in a variety of vital cell functions. Additionally, it is one of the key regulators of inflammation, and controls the differentiation and function of different cells. Moreover, it was found to be involved in skeletal development and bone remodeling process. This review provides an overview of the involvement of the Notch signaling pathway in the pathogenesis of alveolar bone resorption in different forms of pathological conditions such as apical periodontitis, periodontal disease, and peri-implantitis. In vitro and in vivo evidence have confirmed the involvement of Notch signaling in alveolar bone homeostasis. Nonetheless, Notch signaling system, along with complex network of different biomolecules are involved in pathological process of bone resorption in apical periodontitis, periodontitis, and peri-implantitis. In this regard, there is a substantial interest to control the activity of this pathway in the treatment of disorders associated with its dysregulation. This review provides knowledge on Notch signaling and outlines its functions in alveolar bone homeostasis and alveolar bone resorption. Further investigations are needed to determine whether inhibition of the Notch signaling pathways might be beneficial and safe as a novel approach in the treatment of these pathological conditions.
Collapse
|
7
|
Steffen C, Soares AP, Heintzelmann T, Fischer H, Voss JO, Nahles S, Wüster J, Koerdt S, Heiland M, Rendenbach C. Impact of the adjacent bone on pseudarthrosis in mandibular reconstruction with fibula free flaps. Head Face Med 2023; 19:43. [PMID: 37784107 PMCID: PMC10546678 DOI: 10.1186/s13005-023-00389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Mechanical and morphological factors have both been described to influence the rate of pseudarthrosis in mandibular reconstruction. By minimizing mechanical confounders, the present study aims to evaluate the impact of bone origin at the intersegmental gap on osseous union. METHODS Patients were screened retrospectively for undergoing multi-segment fibula free flap reconstruction of the mandible including the anterior part of the mandible and osteosynthesis using patient-specific 3D-printed titanium reconstruction plates. Percentage changes in bone volume and width at the bone interface between the fibula/fibula and fibula/mandible at the anterior intersegmental gaps within the same patient were determined using cone-beam computed tomography (CBCT). Additionally, representative samples of the intersegmental zones were assessed histologically and using micro-computed tomography (µCT). RESULTS The bone interface (p = 0.223) did not significantly impact the change in bone volume at the intersegmental gap. Radiotherapy (p < 0.001), time between CBCT scans (p = 0.006) and wound healing disorders (p = 0.005) were independent risk factors for osseous non-union. Preliminary analysis of the microstructure of the intersegmental bone did not indicate morphological differences between fibula-fibula and fibula-mandible intersegmental bones. CONCLUSIONS The bone interface at the intersegmental gap in mandibular reconstruction did not influence long-term bone healing significantly. Mechanical and clinical properties seem to be more relevant for surgical success.
Collapse
Affiliation(s)
- Claudius Steffen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Ana Prates Soares
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Thelma Heintzelmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Heilwig Fischer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Center for Musculoskeletal Surgery, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Jan Oliver Voss
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Susanne Nahles
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jonas Wüster
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Steffen Koerdt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Max Heiland
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Carsten Rendenbach
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
8
|
Lai Y, Guo Y, Liao C, Mao C, Liu J, Ren C, Yang W, Luo L, Chen W. Osteoclast differentiation and dynamic mRNA expression during mice embryonic palatal bone development. Sci Rep 2023; 13:15170. [PMID: 37704707 PMCID: PMC10499879 DOI: 10.1038/s41598-023-42423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023] Open
Abstract
This study is the first to investigate the process of osteoclast (OCL) differentiation, its potential functions, and the associated mRNA and signalling pathways in embryonic palatal bone. Our findings suggest that OCLs are involved in bone remodelling, bone marrow cavity formation, and blood vessel formation in embryonic palatal bone. We observed TRAP-positive OCLs at embryonic day 16.5 (E16.5), E17.5, and E18.5 at the palatal process of the palate (PPP) and posterior and anterior parts of the palatal process of the maxilla (PPMXP and PPMXA, respectively), with OCL differentiation starting 2 days prior to TRAP positivity. By comparing the key periods of OCL differentiation between PPMX and PPP (E14.5, E15.5, and E16.5) using RNA-seq data of the palates, we found that the PI3K-AKT and MAPK signalling pathways were sequentially enriched, which may play critical roles in OCL survival and differentiation. Csf1r, Tnfrsff11a, Ctsk, Fos, Tyrobp, Fcgr3, and Spi1 were significantly upregulated, while Pik3r3, Tgfbr1, and Mapk3k7 were significantly downregulated, in both PPMX and PPP. Interestingly, Tnfrsff11b was upregulated in PPMX but downregulated in PPP, which may regulate the timing of OCL appearance. These results contribute to the limited knowledge regarding mRNA-specific steps in OCL differentiation in the embryonic palatal bone.
Collapse
Affiliation(s)
- Yongzhen Lai
- Department of Oral and Craniomaxillofacial Science, Fujian Medical University Union Hospital, No. 28, Xinquan Road, Fuzhou, 350001, Fujian, China
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Yan Guo
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Caiyu Liao
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Chuanqing Mao
- Department of Oral and Craniomaxillofacial Science, Fujian Medical University Union Hospital, No. 28, Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Jing Liu
- Department of Stomatology, Fujian Maternal and Child Health Hospital, No. 18 Dao Shan Road, Fuzhou, 350001, Fujian, China
| | - Chengyan Ren
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Wen Yang
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Lin Luo
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Weihui Chen
- Department of Oral and Craniomaxillofacial Science, Fujian Medical University Union Hospital, No. 28, Xinquan Road, Fuzhou, 350001, Fujian, China.
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China.
| |
Collapse
|
9
|
Lau CS, Chua J, Prasadh S, Lim J, Saigo L, Goh BT. Alveolar Ridge Augmentation with a Novel Combination of 3D-Printed Scaffolds and Adipose-Derived Mesenchymal Stem Cells-A Pilot Study in Pigs. Biomedicines 2023; 11:2274. [PMID: 37626770 PMCID: PMC10452669 DOI: 10.3390/biomedicines11082274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Alveolar ridge augmentation is an important dental procedure to increase the volume of bone tissue in the alveolar ridge before the installation of a dental implant. To meet the high demand for bone grafts for alveolar ridge augmentation and to overcome the limitations of autogenous bone, allografts, and xenografts, researchers are developing bone grafts from synthetic materials using novel fabrication techniques such as 3D printing. To improve the clinical performance of synthetic bone grafts, stem cells with osteogenic differentiation capability can be loaded into the grafts. In this pilot study, we propose a novel bone graft which combines a 3D-printed polycaprolactone-tricalcium phosphate (PCL-TCP) scaffold with adipose-derived mesenchymal stem cells (AD-MSCs) that can be harvested, processed and implanted within the alveolar ridge augmentation surgery. We evaluated the novel bone graft in a porcine lateral alveolar defect model. Radiographic analysis revealed that the addition of AD-MSCs to the PCL-TCP scaffold improved the bone volume in the defect from 18.6% to 28.7% after 3 months of healing. Histological analysis showed the presence of AD-MSCs in the PCL-TCP scaffold led to better formation of new bone and less likelihood of fibrous encapsulation of the scaffold. Our pilot study demonstrated that the loading of AD-MSCs improved the bone regeneration capability of PCL-TCP scaffolds, and our novel bone graft is suitable for alveolar ridge augmentation.
Collapse
Affiliation(s)
- Chau Sang Lau
- National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore 168938, Singapore; (C.S.L.); (L.S.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jasper Chua
- Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Jing Lim
- Osteopore International Pte Ltd., Singapore 618305, Singapore;
| | - Leonardo Saigo
- National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore 168938, Singapore; (C.S.L.); (L.S.)
| | - Bee Tin Goh
- National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore 168938, Singapore; (C.S.L.); (L.S.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
10
|
Dalfino S, Savadori P, Piazzoni M, Connelly ST, Giannì AB, Del Fabbro M, Tartaglia GM, Moroni L. Regeneration of Critical-Sized Mandibular Defects Using 3D-Printed Composite Scaffolds: A Quantitative Evaluation of New Bone Formation in In Vivo Studies. Adv Healthc Mater 2023; 12:e2300128. [PMID: 37186456 PMCID: PMC11469182 DOI: 10.1002/adhm.202300128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/12/2023] [Indexed: 05/17/2023]
Abstract
Mandibular tissue engineering aims to develop synthetic substitutes for the regeneration of critical size defects (CSD) caused by a variety of events, including tumor surgery and post-traumatic resections. Currently, the gold standard clinical treatment of mandibular resections (i.e., autologous fibular flap) has many drawbacks, driving research efforts toward scaffold design and fabrication by additive manufacturing (AM) techniques. Once implanted, the scaffold acts as a support for native tissue and facilitates processes that contribute to its regeneration, such as cells infiltration, matrix deposition and angiogenesis. However, to fulfil these functions, scaffolds must provide bioactivity by mimicking natural properties of the mandible in terms of structure, composition and mechanical behavior. This review aims to present the state of the art of scaffolds made with AM techniques that are specifically employed in mandibular tissue engineering applications. Biomaterials chemical composition and scaffold structural properties are deeply discussed, along with strategies to promote osteogenesis (i.e., delivery of biomolecules, incorporation of stem cells, and approaches to induce vascularization in the constructs). Finally, a comparison of in vivo studies is made by taking into consideration the amount of new bone formation (NB), the CSD dimensions, and the animal model.
Collapse
Affiliation(s)
- Sophia Dalfino
- Department of BiomedicalSurgical and Dental SciencesUniversità degli Studi di MilanoMilano20122Italy
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology Inspired Regenerative MedicineMaastricht6229 ERThe Netherlands
- Fondazione IRCCS Ca' GrandaOspedale Maggiore PoliclinicoMilano20122Italy
| | - Paolo Savadori
- Department of BiomedicalSurgical and Dental SciencesUniversità degli Studi di MilanoMilano20122Italy
- Fondazione IRCCS Ca' GrandaOspedale Maggiore PoliclinicoMilano20122Italy
| | - Marco Piazzoni
- Department of BiomedicalSurgical and Dental SciencesUniversità degli Studi di MilanoMilano20122Italy
- Department of PhysicsUniversità degli Studi di MilanoMilano20133Italy
| | - Stephen Thaddeus Connelly
- Department of Oral & Maxillofacial SurgeryUniversity of California San Francisco4150 Clement StSan FranciscoCA94121USA
| | - Aldo Bruno Giannì
- Department of BiomedicalSurgical and Dental SciencesUniversità degli Studi di MilanoMilano20122Italy
- Fondazione IRCCS Ca' GrandaOspedale Maggiore PoliclinicoMilano20122Italy
| | - Massimo Del Fabbro
- Department of BiomedicalSurgical and Dental SciencesUniversità degli Studi di MilanoMilano20122Italy
- Fondazione IRCCS Ca' GrandaOspedale Maggiore PoliclinicoMilano20122Italy
| | - Gianluca Martino Tartaglia
- Department of BiomedicalSurgical and Dental SciencesUniversità degli Studi di MilanoMilano20122Italy
- Fondazione IRCCS Ca' GrandaOspedale Maggiore PoliclinicoMilano20122Italy
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology Inspired Regenerative MedicineMaastricht6229 ERThe Netherlands
| |
Collapse
|
11
|
Guo J, Yao H, Li X, Chang L, Wang Z, Zhu W, Su Y, Qin L, Xu J. Advanced Hydrogel systems for mandibular reconstruction. Bioact Mater 2023; 21:175-193. [PMID: 36093328 PMCID: PMC9413641 DOI: 10.1016/j.bioactmat.2022.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/16/2022] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
Mandibular defect becomes a prevalent maxillofacial disease resulting in mandibular dysfunctions and huge psychological burdens to the patients. Considering the routine presence of oral contaminations and aesthetic restoration of facial structures, the current clinical treatments are however limited, incapable to reconstruct the structural integrity and regeneration, spurring the need for cost-effective mandibular tissue engineering. Hydrogel systems possess great merit for mandibular reconstruction with precise involvement of cells and bioactive factors. In this review, current clinical treatments and distinct mode(s) of mandible formation and pathological resorption are summarized, followed by a review of hydrogel-related mandibular tissue engineering, and an update on the advanced fabrication of hydrogels with improved mechanical property, antibacterial ability, injectable form, and 3D bioprinted hydrogel constructs. The exploration of advanced hydrogel systems will lay down a solid foundation for a bright future with more biocompatible, effective, and personalized treatment in mandibular reconstruction.
Collapse
Affiliation(s)
- Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zixuan Wang
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Wangyong Zhu
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yuxiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. Director of Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
12
|
Iizumi R, Honda M. Wnt/β-Catenin Signaling Inhibits Osteogenic Differentiation in Human Periodontal Ligament Fibroblasts. Biomimetics (Basel) 2022; 7:biomimetics7040224. [PMID: 36546925 PMCID: PMC9776043 DOI: 10.3390/biomimetics7040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
The periodontal ligament is a collagenous tissue that is important for maintaining the homeostasis of cementum and alveolar bone. In tendon cells, Wnt/β-catenin signaling has been reported to regulate the expression level of Scleraxis (Scx) and Mohawk Homeobox (Mkx) gene and maintain the tissue homeostasis, while its role in the periodontal ligament is unclear. The aim of this study was to investigate the effects of Wnt/β-catenin signaling induced by Wnt-3a stimulation on the inhibition of osteogenic differentiation of human periodontal ligament fibroblasts (HPLFs). During osteogenic differentiation of HPLFs, they formed bone nodules independently of alkaline phosphatase (ALP) activity. After stimulation of Wnt-3a, the expression of β-catenin increased, and nuclear translocation of β-catenin was observed. These data indicate that Wnt-3a activated Wnt/β-catenin signaling. Furthermore, the stimulation of Wnt-3a inhibited the bone nodule formation and suppressed the expression of osteogenic differentiation-related genes such as Runx2, Osteopontin and Osteocalcin, and upregulated the gene expression of Type-I collagen and Periostin (Postn). Scx may be involved in the suppression of osteogenic differentiation in HPLFs. In conclusion, Wnt/β-catenin signaling may be an important signaling pathway that inhibits the osteogenic differentiation in HPLFs by the upregulation of Scx gene expression and downregulation of osteogenic differentiation-related genes.
Collapse
|
13
|
Palander A, Fauch L, Turunen MJ, Dekker H, Schulten EAJM, Koistinen A, Bravenboer N, Kullaa A. Molecular Quantity Variations in Human-Mandibular-Bone Osteoid. Calcif Tissue Int 2022; 111:547-558. [PMID: 35978052 PMCID: PMC9613710 DOI: 10.1007/s00223-022-01017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
Osteoid is a layer of new-formed bone that is deposited on the bone border during the process of new bone formation. This deposition process is crucial for bone tissue, and flaws in it can lead to bone diseases. Certain bone diseases, i.e. medication related osteonecrosis, are overexpressed in mandibular bone. Because mandibular bone presents different properties than other bone types, the data concerning osteoid formation in other bones are inapplicable for human-mandibular bone. Previously, the molecular distribution of other bone types has been presented using Fourier-transform infrared (FTIR) spectroscopy. However, the spatial distribution of molecular components of healthy-human-mandibular-bone osteoid in relation to histologic landmarks has not been previously presented and needs to be studied in order to understand diseases that occur human-mandibular bone. This study presents for the first time the variation in molecular distribution inside healthy-human-mandibular-bone osteoid by juxtaposing FTIR data with its corresponding histologic image obtained by autofluorescence imaging of its same bone section. During new bone formation, bone-forming cells produce an osteoid constituted primarily of type I collagen. It was observed that in mandibular bone, the collagen type I increases from the osteoblast line with the distance from the osteoblasts, indicating progressive accumulation of collagen during osteoid formation. Only later inside the collagen matrix, the osteoid starts to mineralize. When the mineralization starts, the collagen accumulation diminishes whereas the collagen maturation still continues. This chemical-apposition process in healthy mandibular bone will be used in future as a reference to understand different pathologic conditions that occur in human-mandibular bone.
Collapse
Affiliation(s)
- Anni Palander
- Institute of Dentistry, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland.
| | - Laure Fauch
- SIB Labs, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland
| | - Mikael J Turunen
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland
| | - Hannah Dekker
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, 1117, The Netherlands
| | - Engelbert A J M Schulten
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, 1117, The Netherlands
| | - Arto Koistinen
- SIB Labs, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, 1117, The Netherlands
- Division of Endocrinology and Center for Bone Quality, Department of Internal Medicine, Leiden University Medical Center, PO Box 9500, Leiden, The Netherlands
| | - Arja Kullaa
- Institute of Dentistry, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland
- SIB Labs, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland
| |
Collapse
|
14
|
Romanowicz GE, Terhune AH, Bielajew BJ, Sexton B, Lynch M, Mandair GS, McNerny EM, Kohn DH. Collagen cross-link profiles and mineral are different between the mandible and femur with site specific response to perturbed collagen. Bone Rep 2022; 17:101629. [PMID: 36325166 PMCID: PMC9618783 DOI: 10.1016/j.bonr.2022.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Compromises to collagen and mineral lead to a decrease in whole bone quantity and quality in a variety of systemic diseases, yet, clinically, disease manifestations differ between craniofacial and long bones. Collagen alterations can occur through post-translational modification via lysyl oxidase (LOX), which catalyzes enzymatic collagen cross-link formation, as well as through non-enzymatic advanced glycation end products (AGEs) such as pentosidine and carboxymethyl-lysine (CML). Characterization of the cross-links and AGEs, and comparison of the mineral and collagen modifications in craniofacial and long bones represent a critical gap in knowledge. However, alterations to either the mineral or collagen in bone may contribute to disease progression and, subsequently, the anatomical site dependence of a variety of diseases. Therefore, we hypothesized that collagen cross-links and AGEs differ between craniofacial and long bones and that altered collagen cross-linking reduces mineral quality in an anatomic location dependent. To study the effects of cross-link inhibition on mineralization between anatomical sites, beta-aminoproprionitrile (BAPN) was administered to rapidly growing, 5-8 week-old male mice. BAPN is a dose-dependent inhibitor of LOX that pharmacologically alters enzymatic cross-link formation. Long bones (femora) and craniofacial bones (mandibles) were compared for mineral quantity and quality, collagen cross-link and AGE profiles, and tissue level mechanics, as well as the response to altered cross-links via BAPN. A highly sensitive liquid chromatography/mass spectrometry (LC-MS) method was developed which allowed for quantification of site-dependent accumulation of the advanced glycation end-product, carboxymethyl-lysine (CML). CML was ∼8.3× higher in the mandible than the femur. The mandible had significantly higher collagen maturation, mineral crystallinity, and Young's modulus, but lower carbonation, than the femur. BAPN also had anatomic specific effects, leading to significant decreases in mature cross-links in the mandible, and an increase in mineral carbonation in the femur. This differential response of both the mineral and collagen composition to BAPN between the mandible and femur highlights the need to further understand how inherent compositional differences in collagen and mineral contribute to anatomic-site specific manifestations of disease in both craniofacial and long bones.
Collapse
Key Words
- AGE, advanced glycation end product
- Advanced glycation end products
- BAPN, beta-aminoproprionitrile
- Biomechanical properties
- Bone quality
- CML, carboxymethyl-lysine
- Collagen cross-link
- DHLNL, dihydroxylysinonorleucine
- DPD, lysylpyridinoline
- Femur
- HLKNL, hydroxylysinoketonorleucine
- HLNL, hydroxylysinonorleucine
- HPLC-FLD, high-performance liquid chromatography with fluorescence detection
- LC-MS, liquid chromatography/mass spectrometry
- LH, lysyl hydroxylase
- LKNL, lysinoketonorleucine
- LOX, lysyl oxidase
- Mandible
- Mineralization
- PEN, pentosidine
- PMMA, poly-methyl-methacrylate
- PYD, hydroxylysylpyridinoline
- Pyr, pyrroles
Collapse
Affiliation(s)
- Genevieve E. Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Aidan H. Terhune
- Department of Mechanical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Benjamin J. Bielajew
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Benjamin Sexton
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Michelle Lynch
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Gurjit S. Mandair
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Erin M.B. McNerny
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - David H. Kohn
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| |
Collapse
|
15
|
Omi M, Mishina Y. Roles of osteoclasts in alveolar bone remodeling. Genesis 2022; 60:e23490. [PMID: 35757898 PMCID: PMC9786271 DOI: 10.1002/dvg.23490] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
Osteoclasts are large multinucleated cells from hematopoietic origin and are responsible for bone resorption. A balance between osteoclastic bone resorption and osteoblastic bone formation is critical to maintain bone homeostasis. The alveolar bone, also called the alveolar process, is the part of the jawbone that holds the teeth and supports oral functions. It differs from other skeletal bones in several aspects: its embryonic cellular origin, the form of ossification, and the presence of teeth and periodontal tissues; hence, understanding the unique characteristic of the alveolar bone remodeling is important to maintain oral homeostasis. Excessive osteoclastic bone resorption is one of the prominent features of bone diseases in the jaw such as periodontitis. Therefore, inhibiting osteoclast formation and bone resorptive process has been the target of therapeutic intervention. Understanding the mechanisms of osteoclastic bone resorption is critical for the effective treatment of bone diseases in the jaw. In this review, we discuss basic principles of alveolar bone remodeling with a specific focus on the osteoclastic bone resorptive process and its unique functions in the alveolar bone. Lastly, we provide perspectives on osteoclast-targeted therapies and regenerative approaches associated with bone diseases in the jaw.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences & ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| |
Collapse
|
16
|
Dekker H, Schulten EA, Lichters I, van Ruijven L, van Essen HW, Blom GJ, Bloemena E, ten Bruggenkate CM, Kullaa AM, Bravenboer N. Osteocyte Apoptosis, Bone Marrow Adiposity, and Fibrosis in the Irradiated Human Mandible. Adv Radiat Oncol 2022; 7:100951. [PMID: 35662809 PMCID: PMC9156996 DOI: 10.1016/j.adro.2022.100951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose To assess the effect of radiation therapy on osteocyte apoptosis, osteocyte death, and bone marrow adipocytes in the human mandible and its contribution to the pathophysiology of radiation damage to the mandibular bone. Methods and Materials Mandibular cancellous bone biopsies were taken from irradiated patients and nonirradiated controls. Immunohistochemical detection of cleaved caspase-3 was performed to visualize apoptotic osteocytes. The number of apoptotic osteocytes per bone area and per total amount of osteocytes, osteocytes per bone area, and empty lacunae per bone area were counted manually. The percentage fibrotic tissue and adipose tissue per bone marrow area, the percentage bone marrow of total area, and the mean adipocyte diameter (μm) was determined digitally from adjacent Goldner stained sections. Results Biopsies of 15 irradiated patients (12 men and 3 women) and 7 nonirradiated controls (5 men and 2 women) were assessed. In the study group a significant increase was seen in the number of empty lacunae, the percentage of adipose tissue of bone marrow area, and the adipocyte diameter. There was no significant difference in bone marrow fibrosis nor apoptotic osteocytes between the irradiated group and the controls. Conclusions Irradiation alone does not seem to induce excessive bone marrow fibrosis. The damage to bone mesenchymal stem cells leads to increased marrow adipogenesis and decreased osteoblastogenic potential. Early osteocyte death resulting in avital persisting bone matrix with severely impaired regenerative potential may contribute to the vulnerability of irradiated bone to infection and necrosis.
Collapse
Affiliation(s)
- Hannah Dekker
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Engelbert A.J.M. Schulten
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Inez Lichters
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Leo van Ruijven
- Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Huib W. van Essen
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gerrit-Jan Blom
- Department of Radiotherapy, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Elisabeth Bloemena
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Chris M. ten Bruggenkate
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Alrijne Hospital, Leiderdorp, The Netherlands
| | - Arja M. Kullaa
- Institute of Dentistry, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
- Educational Dental Clinic, Kuopio University Hospital, Kuopio, Finland
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Otaify GA, Abdel-Hamid MS, Hassib NF, Elhossini RM, Abdel-Ghafar SF, Aglan MS. Bruck syndrome in 13 new patients: Identification of five novel FKBP10 and PLOD2 variants and further expansion of the phenotypic spectrum. Am J Med Genet A 2022; 188:1815-1825. [PMID: 35278031 DOI: 10.1002/ajmg.a.62718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/20/2021] [Accepted: 02/19/2022] [Indexed: 11/08/2022]
Abstract
Bruck Syndrome (BS) is a very rare disorder characterized by osteogenesis imperfecta (OI) associated with congenital contractures and is caused by mutations in FKBP10 or PLOD2 genes. Herein, we describe 13 patients from 9 unrelated Egyptian families with BS. All patients had white sclerae, recurrent fractures, kyphoscoliosis and osteoporosis with variable degrees of severity. Large joint contractures were seen in 11 patients, one patient had contractures of small interphalangeal joints, and one patient had no contractures. Unusual findings noted in individual patients included microcephaly, dental malocclusion, enamel hypoplasia, unilateral congenital dislocation of knee joint, prominent tailbone, and myopathy. Nine different variants were identified in FKBP10 and PLOD2 including five novel ones. FKBP10 variants were found in six families (67%) while PLOD2 variants were identified in three families (33%). The four families, with two affected sibs each, showed inter- and intrafamilial phenotypic variability. In conclusion, we report five novel variants in FKBP10 and PLOD2 thus, expanding the mutational spectrum of BS. In addition, our results expand the phenotypic spectrum, describe newly associated orodental findings, and further illustrate the phenotypic overlap between OI and Bruck syndrome supporting the suggestion of considering BS as a variant of OI rather than a separate entity.
Collapse
Affiliation(s)
- Ghada A Otaify
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Nehal F Hassib
- Orodental Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Rasha M Elhossini
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Sherif F Abdel-Ghafar
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mona S Aglan
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
18
|
Liao C, Lu M, Hong Y, Mao C, Chen J, Ren C, Lin M, Chen W. Osteogenic and angiogenic profiles of the palatal process of the maxilla and the palatal process of the palatine bone. J Anat 2022; 240:385-397. [PMID: 34569061 PMCID: PMC8742962 DOI: 10.1111/joa.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022] Open
Abstract
Hard palate consists anteriorly of the palatal process of the maxilla (ppmx) and posteriorly of the palatal process of the palatine (ppp). Currently, palatal osteogenesis is receiving increasing attention. This is the first study to provide an overview of the osteogenesis process of the mouse hard palate. We found that the period in which avascular mesenchymal condensation becomes a vascularized bone structure corresponds to embryonic day (E) 14.5 to E16.5 in the hard palate. The ppmx and ppp differ remarkably in morphology and molecular respects during osteogenesis. Osteoclasts in the ppmx and ppp are heterogeneous. There was a multinucleated giant osteoclast on the bone surface at the lateral-nasal side of the ppmx, while osteoclasts in the ppp were more abundant and adjacent to blood vessels but were smaller and had fewer nuclei. In addition, bone remodeling in the hard palate was asymmetric and exclusively occurred on the nasal side of the hard palate at E18.5. During angiogenesis, CD31-positive endothelial cells were initially localized in the surrounding of palatal mesenchymal condensation and then invaded the condensation in a sprouting fashion. At the transcriptome level, we found 78 differentially expressed genes related to osteogenesis and angiogenesis between the ppmx and ppp. Fifty-five related genes were up/downregulated from E14.5 to E16.5. Here, we described the morphogenesis and the heterogeneity in the osteogenic and angiogenic genes profiles of the ppmx and ppp, which are significant for subsequent studies of normal and abnormal subjects.
Collapse
Affiliation(s)
- Caiyu Liao
- Department of Oral and Maxillofacial SurgeryFujian Medical University Union HospitalFuzhouFujianChina
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and UniversitySchool and Hospital of StomatologyFujian Medical UniversityFuzhouFujianChina
| | - Meng Lu
- Department of Oral and Maxillofacial SurgeryFujian Medical University Union HospitalFuzhouFujianChina
| | - Yuhang Hong
- Department of Oral and Maxillofacial SurgeryFujian Medical University Union HospitalFuzhouFujianChina
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and UniversitySchool and Hospital of StomatologyFujian Medical UniversityFuzhouFujianChina
| | - Chuanqing Mao
- Department of Oral and Maxillofacial SurgeryFujian Medical University Union HospitalFuzhouFujianChina
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and UniversitySchool and Hospital of StomatologyFujian Medical UniversityFuzhouFujianChina
| | - Jiangping Chen
- Department of Oral and Maxillofacial SurgeryFujian Medical University Union HospitalFuzhouFujianChina
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and UniversitySchool and Hospital of StomatologyFujian Medical UniversityFuzhouFujianChina
| | - Chengyan Ren
- Department of Oral and Maxillofacial SurgeryFujian Medical University Union HospitalFuzhouFujianChina
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and UniversitySchool and Hospital of StomatologyFujian Medical UniversityFuzhouFujianChina
| | - Minkui Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and UniversitySchool and Hospital of StomatologyFujian Medical UniversityFuzhouFujianChina
| | - Weihui Chen
- Department of Oral and Maxillofacial SurgeryFujian Medical University Union HospitalFuzhouFujianChina
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and UniversitySchool and Hospital of StomatologyFujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
19
|
Aljohani H, Senbanjo LT, Al Qranei M, Stains JP, Chellaiah MA. Methylsulfonylmethane Increases the Alveolar Bone Density of Mandibles in Aging Female Mice. Front Physiol 2021; 12:708905. [PMID: 34671266 PMCID: PMC8521043 DOI: 10.3389/fphys.2021.708905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Methylsulfonylmethane (MSM) is a naturally occurring anti-inflammatory compound that effectively treats multiple degenerative diseases such as osteoarthritis and acute pancreatitis. Our previous studies have demonstrated the ability of MSM to differentiate stem cells from human exfoliated deciduous (SHED) teeth into osteoblast-like cells. This study examined the systemic effect of MSM in 36-week-old aging C57BL/6 female mice in vivo by injecting MSM for 13 weeks. Serum analyses showed an increase in expression levels of bone formation markers [osteocalcin (OCN) and procollagen type 1 intact N-terminal propeptide (P1NP)] and a reduction in bone resorption markers [tartrate-resistant acid phosphatase (TRAP) and C-terminal telopeptide of type I collag (CTX-I)] in MSM-injected animals. Micro-computed tomographic images demonstrated an increase in trabecular bone density in mandibles. The trabecular bone density tended to be higher in the femur, although the increase was not significantly different between the MSM- and phosphate-buffered saline (PBS)-injected mice. In mandibles, an increase in bone density with a corresponding decrease in the marrow cavity was observed in the MSM-injected mice. Furthermore, immunohistochemical analyses of the mandibles for the osteoblast-specific marker - OCN, and the mesenchymal stem cell-specific marker - CD105 showed a significant increase and decrease in OCN and CD105 positive cells, respectively. Areas of bone loss were observed in the inter-radicular region of mandibles in control mice. However, this loss was considerably decreased due to stimulation of bone formation in response to MSM injection. In conclusion, our study has demonstrated the ability of MSM to induce osteoblast formation and function in vivo, resulting in increased bone formation in the mandible. Hence, the application of MSM and stem cells of interest may be the right combination in alveolar bone regeneration under periodontal or other related diseases that demonstrate bone loss.
Collapse
Affiliation(s)
- Hanan Aljohani
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States.,Department of Oral Medicine and Diagnostics Sciences, School of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Linda T Senbanjo
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Mohammed Al Qranei
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States.,Department of Preventive Dental Sciences, School of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Joseph P Stains
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
20
|
Hu Y, Hao X, Liu C, Ren C, Wang S, Yan G, Meng Y, Mishina Y, Shi C, Sun H. Acvr1 deletion in osteoblasts impaired mandibular bone mass through compromised osteoblast differentiation and enhanced sRANKL-induced osteoclastogenesis. J Cell Physiol 2021; 236:4580-4591. [PMID: 33251612 PMCID: PMC8048423 DOI: 10.1002/jcp.30183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Abstract
Bone morphogenetic protein (BMP) signaling is well known in bone homeostasis. However, the physiological effects of BMP signaling on mandibles are largely unknown, as the mandible has distinct functions and characteristics from other bones. In this study, we investigated the roles of BMP signaling in bone homeostasis of the mandibles by deleting BMP type I receptor Acvr1 in osteoblast lineage cells with Osterix-Cre. We found mandibular bone loss in conditional knockout mice at the ages of postnatal day 21 and 42 in an age-dependent manner. The decreased bone mass was related to compromised osteoblast differentiation together with enhanced osteoclastogenesis, which was secondary to the changes in osteoblasts in vivo. In vitro study revealed that deletion of Acvr1 in the mandibular bone marrow stromal cells (BMSCs) significantly compromised osteoblast differentiation. When wild type bone marrow macrophages were cocultured with BMSCs lacking Acvr1 both directly and indirectly, both proliferation and differentiation of osteoclasts were induced as evidenced by an increase of multinucleated cells, compared with cocultured with control BMSCs. Furthermore, we demonstrated that the increased osteoclastogenesis in vitro was at least partially due to the secretion of soluble receptor activator of nuclear factor-κB ligand (sRANKL), which is probably the reason for the mandibular bone loss in vivo. Overall, our results proposed that ACVR1 played essential roles in maintaining mandibular bone homeostasis through osteoblast differentiation and osteoblast-osteoclast communication via sRANKL.
Collapse
Affiliation(s)
- Yue Hu
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Xinqing Hao
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Cangwei Liu
- Department of Oral Pathology, School and Hospital of StomatologyChina Medical UniversityShenyangChina
| | - Chunxia Ren
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Shuangshuang Wang
- Department of Oral Pathology, School and Hospital of StomatologyChina Medical UniversityShenyangChina
| | - Guangxing Yan
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Yuan Meng
- Department of Oral Pathology, School and Hospital of StomatologyChina Medical UniversityShenyangChina
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of DentistryUniversity of MichiganAnn ArborMichiganUSA
| | - Ce Shi
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| | - Hongchen Sun
- Department of Oral Pathology, Hospital of StomatologyJilin UniversityChangchunChina
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin ProvinceChangchunChina
| |
Collapse
|
21
|
Garcés Villalá MA, Zorrilla Albert C. Limited cutaneous systemic sclerosis: Total rehabilitation with fixed prosthesis on dental implants. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2021; 6:299-305. [DOI: 10.1177/23971983211004362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 11/16/2022]
Abstract
Introduction: Limited cutaneous systemic sclerosis with special manifestations (calcinosis cutis, Raynaud’s phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia) is part of the group of connective tissue diseases, these rare autoimmune systemic pathologies cause thickening and hardening of tissues in different parts of the body and can lead to complex disorders. Oral manifestations of systemic sclerosis may include limited ability to open the mouth, xerostomia, periodontal disease, enlarged periodontal ligament, and bone resorption of the jaw. Case Description: A 54-year-old Caucasian patient presented with oral pain, swallowing, phonation and chewing difficulties associated with dental instability, hygiene/handling difficulties and her main problem with microstomia, which prevented her from removing the skeletal prosthesis for 4 years, depriving her of social life. Gradual treatment with dental implants was diagnosed and planned to support a fixed total denture adapted to the ridge with self-cleaning characteristics. After implant insertion, panoramic radiographs with standardized parameters were taken to compare crestal bone levels at the time of prosthesis placement and with 10 years of follow-up. Conclusion: The average crestal bone loss of the 12 implants after the 10 years of follow-up was 1.26 mm for the maxilla and 1.17 mm for the mandible. The survival of the 12 support implants of two total fixed prostheses in a clinical/radiographic follow-up of 10 years was 100%. After 10 years of follow-up, the 12 implants inserted had a bone loss similar to that of healthy patients and no pathologies were registered, recovering function, aesthetics, and self-esteem. This therapy must be implemented before the interincisal distance decreases to 30 mm to allow intraoral surgical/prosthetic access. Implant-supported total fixed rehabilitation is a viable, predictable, and recommended therapy in patients with limited cutaneous systemic sclerosis.
Collapse
|
22
|
Hathaway-Schrader JD, Novince CM. Maintaining homeostatic control of periodontal bone tissue. Periodontol 2000 2021; 86:157-187. [PMID: 33690918 DOI: 10.1111/prd.12368] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alveolar bone is a unique osseous tissue due to the proximity of dental plaque biofilms. Periodontal health and homeostasis are mediated by a balanced host immune response to these polymicrobial biofilms. Dysbiotic shifts within dental plaque biofilms can drive a proinflammatory immune response state in the periodontal epithelial and gingival connective tissues, which leads to paracrine signaling to subjacent bone cells. Sustained chronic periodontal inflammation disrupts "coupled" osteoclast-osteoblast actions, which ultimately result in alveolar bone destruction. This chapter will provide an overview of alveolar bone physiology and will highlight why the oral microbiota is a critical regulator of alveolar bone remodeling. The ecology of dental plaque biofilms will be discussed in the context that periodontitis is a polymicrobial disruption of host homeostasis. The pathogenesis of periodontal bone loss will be explained from both a historical and current perspective, providing the opportunity to revisit the role of fibrosis in alveolar bone destruction. Periodontal immune cell interactions with bone cells will be reviewed based on our current understanding of osteoimmunological mechanisms influencing alveolar bone remodeling. Lastly, probiotic and prebiotic interventions in the oral microbiota will be evaluated as potential noninvasive therapies to support alveolar bone homeostasis and prevent periodontal bone loss.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
23
|
Kanai R, Kuroshima S, Kamo M, Sasaki M, Uto Y, Inaba N, Uchida Y, Hayano H, Tamaki S, Inoue M, Sawase T. Effects of surface sub-micrometer topography following oxalic acid treatment on bone quantity and quality around dental implants in rabbit tibiae. Int J Implant Dent 2020; 6:75. [PMID: 33244653 PMCID: PMC7691415 DOI: 10.1186/s40729-020-00275-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/27/2020] [Indexed: 11/26/2022] Open
Abstract
Background To explore the effects of topographical modification of titanium substrates at submicron level by oxalic acid treatment on bone quality and quantity around dental implants in rabbit tibiae. Methods A total of 60 blasted CP-grade IV titanium dental implants were used. Twenty-eight control implant surfaces were treated with a mixture of HCl/H2SO4, whereas 28 other test implant surfaces were treated with oxalic acid following HCl/H2SO4 treatment. Two randomly selected sets of control or test implants were placed in randomly selected proximal tibiae of 14 female Japanese white rabbits. Euthanasia was performed 4 and 8 weeks post-implant placement. Bone to implant contact (BIC), bone area fraction (BAF), ratios of mature and immature bone to total bone, and the amount and types of collagen fibers were evaluated quantitatively. Two control and two test implants were used to analyze surface characteristics. Results Treatment by oxalic acid significantly decreased Sa and increased Ra of test implant surfaces. BIC in test implants was increased without alteration of BAF and collagen contents at 4 and 8 weeks after implant placement when compared with control implants. The ratios of immature and mature bone to total bone differed significantly between groups at 4 weeks post-implantation. Treatment by oxalic acid increased type I collagen and decreased type III collagen in bone matrices around test implants when compared with control implants at 8 weeks after implant placement. The effects of topographical changes of implant surfaces induced by oxalic acid on BAF, mature bone, collagen contents, and type I collagen were significantly promoted with decreased immature bone formation and type III collagen in the later 4 weeks post-implantation. Conclusions Treatment of implant surfaces with oxalic acid rapidly increases osseointegration from the early stages after implantation. Moreover, submicron topographical changes of dental implants induced by oxalic acid improve bone quality based on bone maturation and increased production of type I collagen surrounding dental implants in the late stage after implant placement. Supplementary Information The online version contains supplementary material available at 10.1186/s40729-020-00275-x.
Collapse
Affiliation(s)
- Riho Kanai
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Shinichiro Kuroshima
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan.
| | - Michimasa Kamo
- Research Section, Medical Division, KYOCERA Corporation, Yasu, 520-2362, Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Yusuke Uto
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Nao Inaba
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Yusuke Uchida
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Hiroki Hayano
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Saki Tamaki
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Maaya Inoue
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| |
Collapse
|
24
|
He L, Sun X, Liu Z, Qiu Y, Niu Y. Pathogenesis and multidisciplinary management of medication-related osteonecrosis of the jaw. Int J Oral Sci 2020; 12:30. [PMID: 33087699 PMCID: PMC7578793 DOI: 10.1038/s41368-020-00093-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a serious side effect of bone-modifying agents and inhibits angiogenesis agents. Although the pathogenesis of MRONJ is not entirely clear, multiple factors may be involved in specific microenvironments. The TGF-β1 signalling pathway may have a key role in the development of MRONJ. According to the clinical stage, multiple variables should be considered when selecting the most appropriate treatment. Therefore, the prevention and management of treatment of MRONJ should be conducted in patient-centred multidisciplinary team collaborative networks with oncologists, dentists and dental specialists. This would comprise a closed responsibility treatment loop with all benefits directed to the patient. Thus, in the present review, we aimed to summarise the pathogenesis, risk factors, imaging features, clinical staging, therapeutic methods, prevention and treatment strategies associated with MRONJ, which may provide a reference that can inform preventive strategies and improve the quality of life for patients in the future.
Collapse
Affiliation(s)
- Lina He
- The First Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Stomatology, Harbin Medical University, Harbin, China
| | - Xiangyu Sun
- The First Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Stomatology, Harbin Medical University, Harbin, China
| | - Zhijie Liu
- The First Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Stomatology, Harbin Medical University, Harbin, China
| | - Yanfen Qiu
- The First Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Stomatology, Harbin Medical University, Harbin, China
| | - Yumei Niu
- The First Affiliated Hospital of Harbin Medical University, Harbin, China. .,School of Stomatology, Harbin Medical University, Harbin, China.
| |
Collapse
|
25
|
Zhang H, Zhang Y, Terajima M, Romanowicz G, Liu Y, Omi M, Bigelow E, Joiner DM, Waldorff EI, Zhu P, Raghavan M, Lynch M, Kamiya N, Zhang R, Jepsen KJ, Goldstein S, Morris MD, Yamauchi M, Kohn DH, Mishina Y. Loss of BMP signaling mediated by BMPR1A in osteoblasts leads to differential bone phenotypes in mice depending on anatomical location of the bones. Bone 2020; 137:115402. [PMID: 32360900 PMCID: PMC7354232 DOI: 10.1016/j.bone.2020.115402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
Bone morphogenetic protein (BMP) signaling in osteoblasts plays critical roles in skeletal development and bone homeostasis. Our previous studies showed loss of function of BMPR1A, one of the type 1 receptors for BMPs, in osteoblasts results in increased trabecular bone mass in long bones due to an imbalance between bone formation and bone resorption. Decreased bone resorption was associated with an increased mature-to-immature collagen cross-link ratio and mineral-matrix ratios in the trabecular compartments, and increased tissue-level biomechanical properties. Here, we investigated the bone mass, bone composition and biomechanical properties of ribs and spines in the same genetically altered mouse line to compare outcomes by loss of BMPR1A functions in bones from different anatomic sites and developmental origins. Bone mass was significantly increased in both cortical and trabecular compartments of ribs with minimal to modest changes in compositions. While tissue-levels of biomechanical properties were not changed between control and mutant animals, whole bone levels of biomechanical properties were significantly increased in association with increased bone mass in the mutant ribs. For spines, mutant bones showed increased bone mass in both cortical and trabecular compartments with an increase of mineral content. These results emphasize the differential role of BMP signaling in osteoblasts in bones depending on their anatomical locations, functional loading requirements and developmental origin.
Collapse
Affiliation(s)
- Honghao Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Yanshuai Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Masahiko Terajima
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, NC, USA
| | - Genevieve Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Yangjia Liu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA; School of Life Sciences, Tsinghua University, Beijing, China
| | - Maiko Omi
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Erin Bigelow
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Danese M Joiner
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Erik I Waldorff
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Peizhi Zhu
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, MI, USA
| | - Mekhala Raghavan
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, MI, USA
| | - Michelle Lynch
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Nobuhiro Kamiya
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA; Tenri University, Nara, Japan
| | - Rongqing Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Karl J Jepsen
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Steve Goldstein
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Michael D Morris
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, MI, USA
| | - Mitsuo Yamauchi
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, NC, USA
| | - David H Kohn
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA.
| |
Collapse
|
26
|
Coutel X, Falgayrac G, Penel G, Olejnik C. Short-term high-dose zoledronic acid enhances crystallinity in mandibular alveolar bone in rats. Eur J Oral Sci 2020; 128:284-291. [PMID: 32430956 DOI: 10.1111/eos.12702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2020] [Indexed: 11/29/2022]
Abstract
Owing to its antiresorptive properties, zoledronic acid (ZOL) is commonly used in the management of benign as well as malignant bone diseases. This molecule targets sites where bone is actively remodeling, and high concentrations have been reported in the jaw. The purpose of this study was to investigate whether treatment of male rats with ZOL, at a dosage equivalent to that used for antitumor treatment, impacts the short-term qualitative properties of mandibular bone independent of bone remodeling. Thirty rats were randomly assigned to treatment either with ZOL or with serum-vehicle (control) (weekly injections: 100 μg kg-1 for 6 wk, n = 15 per group). Using the tetracycline double-labeling technique, remodeled bone areas, corresponding to the preferential site of bisphosphonate binding, were found in the alveolar bone along the alveolar bone proper. The composition of bone in these areas was characterized using Raman microspectroscopy and compared with adjacent, non-remodeled, older bone. The ZOL-treated group exhibited higher crystallinity in the remodeled bone areas (+2%), reflecting an early maturation of the apatite mineral after ZOL injection. Our findings highlight a direct and rapid effect of clinically relevant anti-tumoral ZOL doses on the qualitative properties of mandibular bone, especially on mineral crystallinity in the vicinity of the teeth, namely, the alveolar bone proper.
Collapse
Affiliation(s)
- Xavier Coutel
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, ULR 4490 - MABLab - Marrow Adiposity and Bone Lab,, F-59000 Lille, France
| | - Guillaume Falgayrac
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, ULR 4490 - MABLab - Marrow Adiposity and Bone Lab,, F-59000 Lille, France
| | - Guillaume Penel
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, ULR 4490 - MABLab - Marrow Adiposity and Bone Lab,, F-59000 Lille, France
| | - Cécile Olejnik
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, ULR 4490 - MABLab - Marrow Adiposity and Bone Lab,, F-59000 Lille, France
| |
Collapse
|
27
|
Omi M, Mishina Y. Role of osteoclasts in oral homeostasis and jawbone diseases. ACTA ACUST UNITED AC 2020; 18:14-27. [PMID: 34220275 DOI: 10.1002/osi2.1078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The jawbone is a unique structure as it serves multiple functions in mastication. Given the fact that the jawbone is remodeled faster than other skeletal bones, bone cells in the jawbone may respond differently to local and systemic cues to regulate bone remodeling and adaptation. Osteoclasts are bone cells responsible for removing old bone, playing an essential role in bone remodeling. Although bone resorption by osteoclasts is required for dental tissue development, homeostasis and repair, excessive osteoclast activity is associated with oral skeletal diseases such as periodontitis. In addition, antiresorptive medications used to prevent bone homeostasis of tumors can cause osteonecrosis of the jaws that is a major concern to the dentist. Therefore, understanding of the role of osteoclasts in oral homeostasis under physiological and pathological conditions leads to better targeted therapeutic options for skeletal diseases to maintain patients' oral health. Here, we highlight the unique features of the jawbone compared to the long bone and the involvement of osteoclasts in the jawbone-specific diseases.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Wehrhan F, Weber M, Neukam FW, Geppert CI, Kesting M, Preidl RH. Fluorescence-guided bone resection: A histological analysis in medication-related osteonecrosis of the jaw. J Craniomaxillofac Surg 2019; 47:1600-1607. [DOI: 10.1016/j.jcms.2019.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/31/2019] [Accepted: 07/14/2019] [Indexed: 10/26/2022] Open
|
29
|
Longitudinal evaluation of the association between Insulin-like growth factor-1, Bone specific alkaline phosphatase and changes in mandibular length. Sci Rep 2019; 9:11582. [PMID: 31399639 PMCID: PMC6689053 DOI: 10.1038/s41598-019-48067-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 05/29/2019] [Indexed: 11/19/2022] Open
Abstract
The aim of the current longitudinal study was to assess the levels of serum Bone-specific alkaline phosphatase (BALP) and serum Insulin like growth factor-1 (IGF-1) in different cervical vertebral maturation index (CVMI) stages and observe their association with the mandibular growth. Blood samples and lateral cephalograms of 63 subjects (age group of 11–17 years) were obtained at two time points, 12 months apart. On the basis of CVMI, all subjects were divided into six groups based on whether the subjects remained in same CVMI stage or transitioned to the next CVMI stage. Annual mandibular length was related with serum BALP and serum IGF-1 levels estimated using ELISA. Serum IGF-1 and BALP attained highest levels at CVMI stage 3 with peak BALP levels observed earlier than IGF-1. Although a positive correlation was determined between IGF-1 and BALP but BALP followed skeletal growth pattern more precisely. Overall IGF-1 and BALP were negatively correlated with mandibular length with notable growth in CVMI groups 3–3 (P < 0.01), 3-4 (P < 0.01), 4-4 (P < 0.001) and 5-5 (P < 0.001). In conclusion, BALP is a potential biomarker for skeletal growth assessment. However, the mandibular growth pattern was independent of changes in IGF-1 and BALP.
Collapse
|
30
|
Mandair GS, Steenhuis P, Ignelzi MA, Morris MD. Bone quality assessment of osteogenic cell cultures by Raman microscopy. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2019; 50:360-370. [PMID: 37035410 PMCID: PMC10081538 DOI: 10.1002/jrs.5521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The use of autologous stem/progenitor cells represents a promising approach to the repair of craniofacial bone defects. The calvarium is recognized as a viable source of stem/progenitor cells that can be transplanted in vitro to form bone. However, it is unclear if bone formed in cell culture is similar in quality to that found in native bone. In this study, the quality of bone mineral formed in osteogenic cell cultures were compared against calvarial bone from postnatal mice. Given the spectroscopic resemblance that exists between cell and collagen spectra, the feasibility of extracting information on cell activity and bone matrix quality were also examined. Stem/progenitor cells isolated from fetal mouse calvaria were cultured onto fused-quartz slides under osteogenic differentiation conditions for 28 days. At specific time intervals, slides were removed and analyzed by Raman microscopy and mineral staining techniques. We show that bone formed in culture at Day 28 resembled calvarial bone from 1-day-old postnatal mice with comparable mineralization, mineral crystallinity, and collagen crosslinks ratios. In contrast, bone formed at Day 28 contained a lower degree of ordered collagen fibrils compared with 1-day-old postnatal bone. Taken together, bone formed in osteogenic cell culture exhibited progressive matrix maturation and mineralization but could not fully replicate the high degree of collagen fibril order found in native bone.
Collapse
Affiliation(s)
- Gurjit S. Mandair
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Pieter Steenhuis
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Michael A. Ignelzi
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, The University of North Carolina, Chapel Hill, North Carolina
| | - Michael D. Morris
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
31
|
Veselá B, Švandová E, Bobek J, Lesot H, Matalová E. Osteogenic and Angiogenic Profiles of Mandibular Bone-Forming Cells. Front Physiol 2019; 10:124. [PMID: 30837894 PMCID: PMC6389724 DOI: 10.3389/fphys.2019.00124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/31/2019] [Indexed: 11/24/2022] Open
Abstract
The mandible is a tooth-bearing structure involving one of the most prominent bones of the facial region. Mesenchymal cell condensation is the first morphological sign of osteogenesis, and several studies have focused on this stage also in the mandible. Little information is available about the early post-condensation period, during which avascular soft condensation turns into vascularized bone, and all three major bone cell types, osteoblasts, osteocytes, and osteoclasts, differentiate. In the mouse first lower molar region, the post-condensation period corresponds to the prenatal days 13–15. If during this critical period, when osteogenesis reaches the point of major bone cell differentiation, vascularization already has to play a critical role, one should be able to show molecular changes which support both types of cellular events. The aim of the present report was to follow in organ context the expression of major osteogenic and angiogenic markers and identify those that are up- or downregulated during this period. To this end, PCR Array was applied covering molecules involved in osteoblastic cell proliferation, commitment or differentiation, extracellular matrix (ECM) deposition, mineralisation, osteocyte maturation, angiogenesis, osteoclastic differentiation, and initial bone remodeling. From 161 analyzed osteogenic and angiogenic factors, the expression of 37 was altered when comparing the condensation stage with the bone stage. The results presented here provide a molecular survey of the early post-condensation stage of mandibular/alveolar bone development which has not yet been investigated in vivo.
Collapse
Affiliation(s)
- Barbora Veselá
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Eva Švandová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Jan Bobek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Hervé Lesot
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Eva Matalová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| |
Collapse
|
32
|
Wang HH, Lee HM, Raja V, Hou W, Iacono VJ, Scaduto J, Johnson F, Golub LM, Gu Y. Enhanced efficacy of chemically modified curcumin in experimental periodontitis: systemic implications. J Exp Pharmacol 2019; 11:1-14. [PMID: 30774454 PMCID: PMC6350653 DOI: 10.2147/jep.s171119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Introduction Dental microbial biofilm initiates gingival inflammation, and its suppression is the current dominant strategy for treating periodontitis. However, the host response to the biofilm is largely responsible for the connective tissue breakdown including alveolar bone loss, which is mediated by proinflammatory cytokines and matrix metalloproteinases (MMPs). Methods The current study compared the efficacy of a novel host-modulation compound, a chemically modified curcumin (CMC 2.24), to that of its parent compound (natural curcumin), in both lipopolysaccharide (LPS) (a bacterial endotoxin)-induced cell culture and in vivo models of periodontitis. Results In cell culture, both CMC 2.24 and curcumin appeared similarly effective in suppressing LPS-induced cytokine (IL-1β and TNF-α) secretion by mononuclear inflammatory cells; however, CMC 2.24 significantly reduced MMP-9 secretion by 78% (P<0.05) whereas curcumin was ineffective. In vivo, CMC 2.24 administration was more effective than curcumin in suppressing (a) IL-1β in gingival tissue and (b) MMP-9 in both gingiva and plasma, the latter indicating a reduced severity of systemic inflammation. The difference in primary clinical outcome between the two treatments was that CMC 2.24 reduced the pathologically excessive alveolar bone loss, assessed morphometrically at multiple sites, by 80%-90% (P<0.01), whereas curcumin, surprisingly, either increased (P<0.05) or had no effect on alveolar bone loss at these sites. Conclusion These data, plus that from previous studies, support the therapeutic potential of CMC 2.24 in the management of inflammatory periodontal disease and its ability to reduce the risk of associated systemic diseases. The current study also indicates that the MMP-9 inhibitor efficacy is associated with the ability of CMC 2.24 (but not curcumin) to inhibit alveolar bone loss in this rat model of periodontitis.
Collapse
Affiliation(s)
- Howard H Wang
- Department of Periodontology and Endodontology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Veena Raja
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Wei Hou
- Department of Preventive Medicine, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Vincent J Iacono
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | | | - Francis Johnson
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.,Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Lorne M Golub
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Ying Gu
- Department of General Dentistry, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA,
| |
Collapse
|
33
|
Wein M, Huelter-Hassler D, Nelson K, Fretwurst T, Nahles S, Finkenzeller G, Altmann B, Steinberg T. Differential osteopontin expression in human osteoblasts derived from iliac crest and alveolar bone and its role in early stages of angiogenesis. J Bone Miner Metab 2019; 37:105-117. [PMID: 29327303 DOI: 10.1007/s00774-017-0900-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
In our previous study, we revealed significant differences of osteopontin (OPN) gene expression in primary human osteoblasts (HOBs) derived from iliac crest bone (iHOBs) and alveolar bone (aHOBs). The present study aims at assigning this discriminative expression to a possible biologic function. OPN is known to be involved in several pathologic and physiologic processes, among others angiogenesis. Therefore, we studied the reaction of human umbilical vein endothelial cells (HUVECs) to HOB-derived OPN regarding angiogenesis. To this end, human primary explant cultures of both bone entities from ten donors were established. Subsequent transcription analysis detected higher gene expression of OPN in iHOBs compared to aHOBs, thereby confirming the results of our previous study. This difference was particularly apparent when cultures were derived from female donors. Hence, OPN protein expression as well as the angiogenic potential of OPN was analyzed, originating from HOBs of one female donor. In accordance to the gene expression level, secreted OPN was more abundant in the supernatant of iHOBs than in aHOBs. Moreover, secreted OPN was found to stimulate migration of HUVECs, but not proliferation or tube formation. These results indicate an involvement in very early stages of angiogenesis and a functional distinction of OPN from HOBs derived from different bone entities.
Collapse
Affiliation(s)
- Martin Wein
- Department of Oral Biotechnology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Diana Huelter-Hassler
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Orthodontics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katja Nelson
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Fretwurst
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Nahles
- Department of Oral- and Maxillofacial Surgery, Charité Campus Virchow, Berlin, Germany
| | - Guenter Finkenzeller
- Department of Plastic and Hand Surgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Brigitte Altmann
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106, Freiburg, Germany.
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Osteonecrosis of the jaw (ONJ) is a rare and severe necrotic bone disease reflecting a compromise in the body's osseous healing mechanisms and unique to the craniofacial region. Antiresorptive and antiangiogenic medications have been suggested to be associated with the occurrence of ONJ; yet, the pathophysiology of this disease has not been fully elucidated. This article raises the current theories underlying the pathophysiology of ONJ. RECENT FINDINGS The proposed mechanisms highlight the unique localization of ONJ. The evidence-based mechanisms of ONJ pathogenesis include disturbed bone remodeling, inflammation or infection, altered immunity, soft tissue toxicity, and angiogenesis inhibition. The role of dental infections and the oral microbiome is central to ONJ, and systemic conditions such as rheumatoid arthritis and diabetes mellitus contribute through their impact on immune resiliency. Current experimental studies on mechanisms of ONJ are summarized. The definitive pathophysiology is as yet unclear. Recent studies are beginning to clarify the relative importance of the proposed mechanisms. A better understanding of osteoimmunology and the relationship of angiogenesis to the development of ONJ is needed along with detailed studies of the impact of drug holidays on the clinical condition of ONJ.
Collapse
Affiliation(s)
- J Chang
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
| | - A E Hakam
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
| | - L K McCauley
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 North University Ave, Ann Arbor, MI, 48109, USA.
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
Ida T, Kaku M, Kitami M, Terajima M, Rosales Rocabado JM, Akiba Y, Nagasawa M, Yamauchi M, Uoshima K. Extracellular matrix with defective collagen cross-linking affects the differentiation of bone cells. PLoS One 2018; 13:e0204306. [PMID: 30252876 PMCID: PMC6155528 DOI: 10.1371/journal.pone.0204306] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 09/06/2018] [Indexed: 01/05/2023] Open
Abstract
Fibrillar type I collagen, the predominant organic component in bone, is stabilized by lysyl oxidase (LOX)-initiated covalent intermolecular cross-linking, an important determinant of bone quality. However, the impact of collagen cross-linking on the activity of bone cells and subsequent tissue remodeling is not well understood. In this study, we investigated the effect of collagen cross-linking on bone cellular activities employing a loss-of-function approach, using a potent LOX inhibitor, β-aminopropionitrile (BAPN). Osteoblastic cells (MC3T3-E1) were cultured for 2 weeks in the presence of 0–2 mM BAPN to obtain low cross-linked collagen matrices. The addition of BAPN to the cultures diminished collagen cross-links in a dose-dependent manner and, at 1 mM level, none of the major cross-links were detected without affecting collagen production. After the removal of cellular components from these cultures, MC3T3-E1, osteoclasts (RAW264.7), or mouse primary bone marrow-derived stromal cells (BMSCs) were seeded. MC3T3-E1 cells grown on low cross-link matrices showed increased alkaline phosphatase (ALP) activity. The number of multinucleate tartrate-resistant acid phosphatase (TRAP)-positive cells increased in RAW264.7 cells. Initial adhesion, proliferation, and ALP activity of BMSCs also increased. In the animal experiments, 4-week-old C57BL/6 mice were fed with BAPN-containing diet for 8 weeks. At this point, biochemical analysis of bone demonstrated that collagen cross-links decreased without affecting collagen content. Then, the diet was changed to a control diet to minimize the direct effect of BAPN. At 2 and 4 weeks after the change, histological samples were prepared. Histological examination of femur samples at 4 weeks showed a significant increase in the number of bone surface osteoblasts, while the bone volume and surface osteoclast numbers were not significantly affected. These results clearly demonstrated that the extent of collagen cross-linking of bone matrix affected the differentiation of bone cells, underscoring the importance of collagen cross-linking in the regulation of cell behaviors and tissue remodeling in bone. Characterization of collagen cross-linking in bone may be beneficial to obtain insight into not only bone mechanical property, but also bone cellular activities.
Collapse
Affiliation(s)
- Takako Ida
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaru Kaku
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Megumi Kitami
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiko Terajima
- North Carolina Oral Health Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | | | - Yosuke Akiba
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masako Nagasawa
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mitsuo Yamauchi
- North Carolina Oral Health Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Katsumi Uoshima
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
36
|
Afifi MM, Kotry GS, El-Kimary GI, Youssef HA. Immunohistopathologic evaluation of Drynaria fortunei rhizome extract in the management of Class II furcation defects in a canine model. J Periodontol 2018; 89:1362-1371. [PMID: 29873087 DOI: 10.1002/jper.17-0655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND Management of furcation defects is still a challenging subject in periodontal therapy. Drynaria fortunei (Df) is a common type of traditional Chinese herb in the area of orthopedics and traumatology. In vitro and tissue engineering studies have shown that Df induces osteoblastic proliferation and promotes the differentiation of human periodontal ligament cells. This study investigated the management of Class II furcation defects in dogs using guided tissue regeneration (GTR) and Df granules mixed with β-tricalcium phosphate (β- TCP) alloplast. METHODS Sixteen Class II critical-sized furcation defects were surgically created in four mongrel dogs: Eight defects were treated with GTR and Df granules mixed with (β-TCP) alloplast served as the experimental group, while the other eight were managed with GTR and alloplast, served as control. Dogs were sacrificed at 4 and 8 weeks and the premolars were processed for the evaluation of treatment outcome including; osteoblastic count (OC), cementum layer thickness (CLT), percentage of collagen in bone matrix (CBM), and alkaline phosphatase (ALP) immunoreaction. RESULTS Experimental group treated with Df showed a significant increase (P < 0.001) in the values of OC, CLT, CBM, and ALP immunoreactivity when compared with control at 4 and 8 weeks after treatment. CONCLUSION Drynaria fortunei demonstrated increased regeneration and bone formation when used in the treatment of furcation defects in a canine model.
Collapse
Affiliation(s)
- Marwa M Afifi
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Egypt
| | - Gehan S Kotry
- Department of Oral Medicine, Periodontology, Oral Diagnosis and Oral Radiology, Faculty of Dentistry, Alexandria University, Egypt
| | - Gillan I El-Kimary
- Department of Oral Medicine, Periodontology, Oral Diagnosis and Oral Radiology, Faculty of Dentistry, Alexandria University, Egypt
| | - Hayat A Youssef
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Egypt
| |
Collapse
|
37
|
Develos Godoy DJ, Banlunara W, Jaroenporn S, Sangvanich P, Thunyakitpisal P. Collagen and mPCL-TCP scaffolds induced differential bone regeneration in ovary-intact and ovariectomized rats. Biomed Mater Eng 2018; 29:389-399. [PMID: 29578466 DOI: 10.3233/bme-181733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The data on biomaterial-mediated bone regeneration directly comparing commercially available scaffolds in aging and osteoporotic conditions remain sparse. OBJECTIVE To investigate the effects of an absorbable collagen sponge (ACS) and a medical grade polycaprolactone-tricalcium phosphate (mPCL-TCP) scaffold on calvarial defect healing in ovary-intact and ovariectomized rats. METHODS Forty-two, 5-month old female Sprague-Dawley rats were divided into sham (OVI) or ovariectomy (OVX) groups (n=21). When rats reached 6 months old, 7 mm diameter calvarial defects were created and treated, further dividing each group into blood clot control, mPCL-TCP, or ACS subgroups (n=7). After four weeks, the calvarial specimens were evaluated using micro-computed tomography for bone volume fraction (BVF), and histopathology. RESULTS The effects of ovariectomy were confirmed by changes in body, uterine, and vaginal weight, and osteopenia in the femur. A significant increase in BVF was observed in ACS-subgroups compared with their respective control groups (p<0.05). Histopathological analysis revealed no cellular inflammatory infiltrate in any group. Fibrous tissue encapsulated the mPCL-TCP, while the ACS was well-integrated with the bone matrix. The OVX groups presented more osteoid and enlarged marrow cavities compared with the OVI groups. CONCLUSION ACS scaffold enhanced calvarial bone regeneration in OVI and OVX rats after four weeks.
Collapse
Affiliation(s)
- Dyna Jeanne Develos Godoy
- Dental Biomaterials Science Program, Graduate School, Chulalongkorn University, Thailand.,Department of Materials Science, Faculty of Science, Chulalongkorn University, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Thailand
| | - Sukanya Jaroenporn
- Department of Biology, Faculty of Science, Chulalongkorn University, Thailand
| | - Polkit Sangvanich
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Thailand
| | - Pasutha Thunyakitpisal
- Research Unit of Herbal Medicine, Biomaterial and Material for Dental Treatment, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Thailand
| |
Collapse
|
38
|
Florencio-Silva R, Sasso GRS, Sasso-Cerri E, Simões MJ, Cerri PS. Effects of estrogen status in osteocyte autophagy and its relation to osteocyte viability in alveolar process of ovariectomized rats. Biomed Pharmacother 2017; 98:406-415. [PMID: 29276969 DOI: 10.1016/j.biopha.2017.12.089] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/05/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022] Open
Abstract
Estrogen maintains osteocyte viability, whereas its deficiency induces osteocyte apoptosis. As autophagy is important for osteocyte viability, we hypothesized whether the anti-apoptotic effect of estrogen is related to autophagy in osteocytes. Thirty adult female rats were sham-operated (SHAM) or ovariectomized (OVX). After three weeks, twelve rats of SHAM and OVX groups were killed before treatment (basal period), whereas the remaining rats received estrogen (OVXE) or vehicle (OVX) for 45 days. Fragments of maxilla containing alveolar process of the first molars were embedded in paraffin or Araldite. Paraffin-sections were stained with hematoxylin/eosin for histomorphometry, or subjected to the silver impregnation method for morphological analysis of osteocyte cytoplasmic processes. Autophagy was analyzed by immunohistochemical detections of beclin-1, MAP-LC3α and p62, whereas apoptosis was evaluated by immunohistochemical detections of cleaved caspase-3 and BAX, TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) method and by ultrastructural analysis. Araldite-semithin sections were subjected to the Sudan-black method for detection of lipids. OVX-basal group showed high frequency of caspase-3-, TUNEL- and p62-positive osteocytes accompanied with low frequency of beclin-1- and MAP-LC3α-positive osteocytes. At 45 days, OVXE group exhibited higher number of osteocytes, higher frequency of beclin-1- and MAP-LC3α-positive osteocytes, and lower frequency of caspase-3, BAX-, TUNEL- and p62-positive osteocytes than OVX group. Significant reduction in bone area was observed in the OVX compared to OVXE and SHAM groups. The highest frequency of Sudan-Black-positive osteocytes and osteocytes with scarce cytoplasmic processes, or showing apoptotic features were mainly observed in OVX groups. Our results indicate that estrogen deficiency decreases autophagy and increases apoptosis, whereas estrogen replacement enhances osteocyte viability by inhibiting apoptosis and maintaining autophagy in alveolar process osteocytes. These results suggest that the anti-apoptotic effect of estrogen may be, at least in part, related to autophagy regulation in osteocytes.
Collapse
Affiliation(s)
- Rinaldo Florencio-Silva
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Gisela R S Sasso
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departmento de Ginecologia, São Paulo, SP, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Laboratory of Histology and Embryology, Araraquara, SP, Brazil
| | - Manuel J Simões
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Paulo S Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Laboratory of Histology and Embryology, Araraquara, SP, Brazil.
| |
Collapse
|
39
|
Rodriguez R, Yoshimura K, Shibata Y, Miyamoto Y, Tanaka R, Uyama R, Sasa K, Suzuki D, Miyazaki T, Kamijo R. Nanoindentation time-dependent deformation/recovery suggestive of methylglyoxal induced glycation in calcified nodules. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2545-2553. [PMID: 28754466 DOI: 10.1016/j.nano.2017.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 06/26/2017] [Accepted: 07/09/2017] [Indexed: 12/30/2022]
Abstract
Although empirical findings have indicated increase in bone fracture risk in type 2 diabetes patients, that has yet to be proven by results obtained at the material level. Here, we report evidence showing nanoscale time-dependent deformation/recovery of in vitro calcified nodules mimicking bone turnover in type 2 diabetes in respect to methylglyoxal (MG)-induced glycation. Nanoindentation test results revealed that calcified nodules cultured with MG did not show adequate dimensional recovery, despite a large creep rate during constant load indentation testing. This lesser recovery is likely based on the linear matrix polymerization network formed by advanced glycation end products (AGEs) as a secondary product of MG. Since elevated serum MG and abnormal bone turnover related to the amount of AGEs are observed in cases of type 2 diabetes, this time-dependent behavior may be one of the factors of the bone fracture mechanism at the material level in affected patients.
Collapse
Affiliation(s)
- Reena Rodriguez
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan; Institute of Biomedical Technologies, Auckland University of Technology, Auckland, New Zealand
| | - Kentaro Yoshimura
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.
| | - Yo Shibata
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Reina Tanaka
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Risa Uyama
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Kiyohito Sasa
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Dai Suzuki
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Takashi Miyazaki
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
40
|
Kuroshima S, Kaku M, Ishimoto T, Sasaki M, Nakano T, Sawase T. A paradigm shift for bone quality in dentistry: A literature review. J Prosthodont Res 2017. [PMID: 28633987 DOI: 10.1016/j.jpor.2017.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The aim of this study was to present the current concept of bone quality based on the proposal by the National Institutes of Health (NIH) and some of the cellular and molecular factors that affect bone quality. STUDY SELECTION This is a literature review which focuses on collagen, biological apatite (BAp), and bone cells such as osteoblasts and osteocytes. RESULTS In dentistry, the term "bone quality" has long been considered to be synonymous with bone mineral density (BMD) based on radiographic and sensible evaluations. In 2000, the NIH proposed the concept of bone quality as "the sum of all characteristics of bone that influence the bone's resistance to fracture," which is completely independent of BMD. The NIH defines bone quality as comprising bone architecture, bone turnover, bone mineralization, and micro-damage accumulation. Moreover, our investigations have demonstrated that BAp, collagen, and bone cells such as osteoblasts and osteocytes play essential roles in controlling the current concept of bone quality in bone around hip and dental implants. CONCLUSION The current concept of bone quality is crucial for understanding bone mechanical functions. BAp, collagen and osteocytes are the main factors affecting bone quality. Moreover, mechanical loading dynamically adapts bone quality. Understanding the current concept of bone quality is required in dentistry.
Collapse
Affiliation(s)
- Shinichiro Kuroshima
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki-city, Nagasaki 852-8588, Japan.
| | - Masaru Kaku
- Division of Bio-prosthodontics, Graduate School of Medical and Dental Science, Niigata University, 2-5274, Gakkocho-dori, Chuo-ku, Niigata-City, Niigata 951-8514, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-city, Osaka 565-0871, Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki-city, Nagasaki 852-8588, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-city, Osaka 565-0871, Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki-city, Nagasaki 852-8588, Japan
| |
Collapse
|
41
|
Cohen DJ, Cheng A, Sahingur K, Clohessy RM, Hopkins LB, Boyan BD, Schwartz Z. Performance of laser sintered Ti-6Al-4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur. ACTA ACUST UNITED AC 2017; 12:025021. [PMID: 28452335 DOI: 10.1088/1748-605x/aa6810] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Long term success of bone-interfacing implants remains a challenge in compromised patients and in areas of low bone quality. While surface roughness at the micro/nanoscale can promote osteogenesis, macro-scale porosity is important for promoting mechanical stability of the implant over time. Currently, machining techniques permit pores to be placed throughout the implant, but the pores are generally uniform in dimension. The advent of laser sintering provides a way to design and manufacture implants with specific porosity and variable dimensions at high resolution. This approach enables production of metal implants that mimic complex geometries found in biology. In this study, we used a rabbit femur model to compare osseointegration of laser sintered solid and porous implants. Ti-6Al-4V implants were laser sintered in a clinically relevant size and shape. One set of implants had a novel porosity based on human trabecular bone; both sets had grit-blasted/acid-etched surfaces. After characterization, implants were inserted transaxially into rabbit femora; mechanical testing, micro-computed tomography (microCT) and histomorphometry were conducted 10 weeks post-operatively. There were no differences in pull-out strength or bone-to-implant contact. However, both microCT and histomorphometry showed significantly higher new bone volume for porous compared to solid implants. Bone growth was observed into porous implant pores, especially near apical portions of the implant interfacing with cortical bone. These results show that laser sintered Ti-6Al-4V implants with micro/nanoscale surface roughness and trabecular bone-inspired porosity promote bone growth and may be used as a superior alternative to solid implants for bone-interfacing implants.
Collapse
Affiliation(s)
- David J Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | | | | | | | | | | | | |
Collapse
|
42
|
Sophia K, Suresh S, Sudhakar U, Jayakumar P, Mathew D. Comparative Analysis of Salivary Alkaline Phosphatase in Post menopausal Women with and without Periodontitis. J Clin Diagn Res 2017; 11:ZC122-ZC124. [PMID: 28274061 DOI: 10.7860/jcdr/2017/24654.9309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/26/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Alkaline phosphatase is an intracellular destruction enzyme in the periodontium, and it takes part in the normal turnover of the periodontal ligament, alveolar bone, and root cementum formation and maintenance. AIM The aim of this case control study was to evaluate the enzyme Alkaline Phosphatase (ALP) level in saliva of post menopausal women with and without chronic periodontitis. MATERIALS AND METHODS In this study, 40 individuals, satisfying the study inclusion and exclusion criteria, were recruited. They were categorically divided, on the basis of gingival index, probing pocket depth and clinical attachment level, into two groups: Group I (post menopausal women with a clinically healthy periodontium, n=20); and Group II (post menopausal women with generalized chronic periodontitis, n=20). Clinical parameters assessed were Plaque Index (PI), Gingival Index (GI), Clinical Attachment Level (CAL) and Probing Pocket Depth (PPD). Unstimulated salivary samples were obtained in which the ALP concentration was measured using p-Nitrophenylphosphate, and 2-amino-2-methyl-1-propanol reagents in Beckman and Coulter, AU 480 auto analyser. Mann-Whitney U test was used to find statistical difference with respect to all clinical parameters such as PI, GI, CAL, PPD and salivary ALP levels. RESULTS The mean ALP in saliva was found to be higher in Group II compared to Group I and the difference was statistically significant with the p-value of 0.008. CONCLUSION A noteworthy increase in the ALP concentration was seen in saliva in our study (Group II) may be due to increased periodontal inflammation in post menopausal women. Thus salivary ALP can be taken as an additional biomarker to early diagnosis, development and progression of periodontitis especially among post menopausal women.
Collapse
Affiliation(s)
- Khumukcham Sophia
- Postgraduate Student, Department of Periodontics, Thaimoogambigai Dental College , Chennai, Tamil Nadu, India
| | - Snophia Suresh
- Professor, Department of Periodontics, Thaimoogambigai Dental College , Chennai, Tamil Nadu, India
| | - Uma Sudhakar
- Professor and Head, Department of Periodontics, Thaimoogambigai Dental College , Chennai, Tamil Nadu, India
| | - Parvathee Jayakumar
- Postgraduate Student, Department of Periodontics, Thaimoogambigai Dental College , Chennai, Tamil Nadu, India
| | - Danny Mathew
- Senior Lecturer, Department of Periodontics, Thaimoogambigai Dental College , Chennai, Tamil Nadu, India
| |
Collapse
|
43
|
Shanbhag S, Pandis N, Mustafa K, Nyengaard JR, Stavropoulos A. Cell Cotransplantation Strategies for Vascularized Craniofacial Bone Tissue Engineering: A Systematic Review and Meta-Analysis of Preclinical In Vivo Studies. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:101-117. [PMID: 27733094 DOI: 10.1089/ten.teb.2016.0283] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The regenerative potential of tissue-engineered bone constructs may be enhanced by in vitro coculture and in vivo cotransplantation of vasculogenic and osteogenic (progenitor) cells. The objective of this study was to systematically review the literature to answer the focused question: In animal models, does cotransplantation of osteogenic and vasculogenic cells enhance bone regeneration in craniofacial defects, compared with solely osteogenic cell-seeded constructs? Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, electronic databases were searched for controlled animal studies reporting cotransplantation of endothelial cells (ECs) with mesenchymal stem cells (MSCs) or osteoblasts in craniofacial critical size defect (CSD) models. Twenty-two studies were included comparing outcomes of MSC/scaffold versus MSC+EC/scaffold (co)transplantation in calvarial (n = 15) or alveolar (n = 7) CSDs of small (rodents, rabbits) and large animal (minipigs, dogs) models. On average, studies presented with an unclear to high risk of bias. MSCs were derived from autologous, allogeneic, xenogeneic, or human (bone marrow, adipose tissue, periosteum) sources; in six studies, ECs were derived from MSCs by endothelial differentiation. In most studies, MSCs and ECs were cocultured in vitro (2-17 days) before implantation. Coculture enhanced MSC osteogenic differentiation and an optimal MSC:EC seeding ratio of 1:1 was identified. Alloplastic copolymer or composite scaffolds were most often used for in vivo implantation. Random effects meta-analyses were performed for histomorphometric and radiographic new bone formation (%NBF) and vessel formation in rodents' calvarial CSDs. A statistically significant benefit in favor of cotransplantation versus MSC-only transplantation for radiographic %NBF was observed in rat calvarial CSDs (weighted mean difference 7.80% [95% confidence interval: 1.39-14.21]); results for histomorphometric %NBF and vessel formation were inconclusive. Overall, heterogeneity in the meta-analyses was high (I2 > 80%). In summary, craniofacial bone regeneration is enhanced by cotransplantation of vasculogenic and osteogenic cells. Although the direction of treatment outcome is in favor of cotransplantation strategies, the magnitude of treatment effect does not seem to be of relevance, unless proven otherwise in clinical studies.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- 1 Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen , Bergen, Norway .,2 Department of Periodontology, Faculty of Odontology, Malmö University , Malmö, Sweden
| | - Nikolaos Pandis
- 3 Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern , Bern, Switzerland
| | - Kamal Mustafa
- 1 Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen , Bergen, Norway
| | - Jens R Nyengaard
- 4 Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Aarhus University , Aarhus, Denmark
| | - Andreas Stavropoulos
- 2 Department of Periodontology, Faculty of Odontology, Malmö University , Malmö, Sweden
| |
Collapse
|
44
|
Chen AB, Minami K, Raposo JF, Matsuura N, Koizumi M, Yokota H, Ferreira HG. Transient modulation of calcium and parathyroid hormone stimulates bone formation. Endocrine 2016; 54:232-240. [PMID: 27503319 DOI: 10.1007/s12020-016-1066-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
Intermittent administration of parathyroid hormone can stimulate bone formation. Parathyroid hormone is a natural hormone that responds to serum calcium levels. In this study, we examined whether a transient increase and/or decrease in the serum calcium can stimulate bone formation. Using a mathematical model previously developed, we first predicted the effects of administration of parathyroid hormone, neutralizing parathyroid hormone antibody, calcium, and EGTA (calcium chelator) on the serum concentration of parathyroid hormone and calcium. The model predicted that intermittent injection of parathyroid hormone and ethylene glycol tetraacetic acid transiently elevated the serum parathyroid hormone, while that of parathyroid hormone antibody and calcium transiently reduced parathyroid hormone in the serum. In vitro analysis revealed that parathyroid hormone's transient changes (both up and down) elevated activating transcription factor 4-mediated osteocalcin expression. In the mouse model of osteoporosis, both intermittent administration of calcium and ethylene glycol tetraacetic acid showed tendency to increase bone mineral density of the upper limb (ulna and humerus) and spine, but the effects varied in a region-specific manner. Collectively, the study herein supports a common bone response to administration of calcium and its chelator through their effects on parathyroid hormone.
Collapse
Affiliation(s)
- Andy B Chen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Kazumasa Minami
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Department of Medical Physics & Engineering Osaka University Graduate School of Medicine Suita, Osaka, Japan
| | - João F Raposo
- Department of Public Health, Medical School, New University of Lisbon, Lisbon, Portugal
| | - Nariaki Matsuura
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Masahiko Koizumi
- Department of Medical Physics & Engineering Osaka University Graduate School of Medicine Suita, Osaka, Japan
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| | - Hugo G Ferreira
- REQIMTE, Department of Chemistry, New University of Lisbon, Lisbon, Portugal
| |
Collapse
|
45
|
Osseous Characteristics of Mice Lacking Cannabinoid Receptor 2 after Pulp Exposure. J Endod 2015; 41:853-7. [DOI: 10.1016/j.joen.2015.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/10/2015] [Accepted: 01/29/2015] [Indexed: 12/19/2022]
|
46
|
Biomechanical Stability of Dental Implants in Augmented Maxillary Sites: Results of a Randomized Clinical Study with Four Different Biomaterials and PRF and a Biological View on Guided Bone Regeneration. BIOMED RESEARCH INTERNATIONAL 2015; 2015:850340. [PMID: 25954758 PMCID: PMC4410536 DOI: 10.1155/2015/850340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/22/2015] [Accepted: 02/27/2015] [Indexed: 12/28/2022]
Abstract
Introduction. Bone regenerates mainly by periosteal and endosteal humoral and cellular activity, which is given only little concern in surgical techniques and choice of bone grafts for guided bone regeneration. This study investigates on a clinical level the biomechanical stability of augmented sites in maxillary bone when a new class of moldable, self-hardening calcium-phosphate biomaterials (SHB) is used with and without the addition of Platelet Rich Fibrin (aPRF) in the Piezotome-enhanced subperiosteal tunnel-technique (PeSPTT). Material and Methods. 82 patients with horizontal atrophy of anterior maxillary crest were treated with PeSPTT and randomly assigned biphasic (60% HA/40% bTCP) or monophasic (100% bTCP) SHB without or with addition of aPRF. 109 implants were inserted into the augmented sites after 8.3 months and the insertion-torque-value (ITV) measured as clinical expression of the (bio)mechanical stability of the augmented bone and compared to ITVs of a prior study in sinus lifting. Results. Significant better results of (bio)mechanical stability almost by two-fold, expressed by higher ITVs compared to native bone, were achieved with the used biomaterials and more constant results with the addition of aPRF. Conclusion. The use of SHB alone or combined with aPRF seems to be favourable to achieve a superior (bio)mechanical stable restored alveolar bone.
Collapse
|
47
|
TOMOAIA GHEORGHE, PASCA ROXANADIANA. On the Collagen Mineralization. A Review. CLUJUL MEDICAL (1957) 2015; 88:15-22. [PMID: 26528042 PMCID: PMC4508610 DOI: 10.15386/cjmed-359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/17/2014] [Indexed: 01/19/2023]
Abstract
Collagen mineralization (CM) is a challenging process that has received a lot of attention in the past years. Among the reasons for this interest, the key role is the importance of collagen and hydroxyapatite in natural bone, as major constituents. Different protocols of mineralization have been developed, specially using simulated body fluid (SBF) and many methods have been used to characterize the systems obtained, starting with methods of determining the mineral content (XRD, FTIR, Raman, High-Resolution Spectral Ultrasound Imaging), continuing with imaging methods (AFM, TEM, SEM, Fluorescence Microscopy), thermal analysis (DSC and TGA), evaluation of the mechanical and biological properties, including statistical methods and molecular modeling. In spite of the great number of studies regarding collagen mineralization, its mechanism, both in vivo and in vitro, is not completely understood. Some of the methods used in vitro and investigation methods are reviewed here.
Collapse
Affiliation(s)
- GHEORGHE TOMOAIA
- Orthopedic Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - ROXANA-DIANA PASCA
- Orthopedic Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Chemical Engineering Department, Babes-Bolyai University of Cluj-Napoca, Romania
| |
Collapse
|