1
|
Miyasawa EM, Ervolino E, Cardoso JDM, Theodoro LH, Silveira GRC, Molon RSD, Levin L, Garcia VG, Padovan LEM. Effects of systemic ozone administration on the fresh extraction sockets healing: a histomorphometric and immunohistochemical study in rats. J Appl Oral Sci 2024; 32:e20230412. [PMID: 38747807 PMCID: PMC11093522 DOI: 10.1590/1678-7757-2023-0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 05/19/2024] Open
Abstract
OBJECTIVE Studies have highlighted numerous benefits of ozone therapy in the field of medicine and dentistry, including its antimicrobial efficacy against various pathogenic microorganisms, its ability to modulate the immune system effectively, reduce inflammation, prevent hypoxia, and support tissue regeneration. However, its effects on dental extraction healing remain to be elucidated. .Therefore, this study aimed to evaluate the effects of systemically administered ozone (O3) at different doses in the healing of dental extraction sockets in rats. METHODOLOGY To this end, 72 Wistar rats were randomly divided into four groups after extraction of the right upper central incisor: Group C - control, no systemic treatment; Group OZ0.3 - animals received a single dose of 0.3 mg/kg O3; Group OZ0.7 - a single dose of 0.7 mg/kg O3; and Group OZ1.0 - a single dose of 1.0 mg/kg O3, intraperitoneally. In total, six animals from each group were euthanized at 7, 14, and 21 days after the commencement of treatment. Bone samples were harvested and further analyzed by descriptive histology, histomorphometry, and immunohistochemistry for osteocalcin (OCN) and tartrate-resistant acid phosphatase (TRAP) protein expression. RESULTS All applied doses of O3 were shown to increase the percentage of bone tissue (PBT) after 21 days compared to group C. After 14 days, the OZ0.7 and OZ1.0 groups showed significantly higher PBT when compared to group C. The OZ1.0 group presented the most beneficial results regarding PBT among groups, which denotes a dose-dependent response. OCN immunostaining was higher in all groups at 21 days. However, after seven and 14 days, the OZ1.0 group showed a significant increase in OCN immunostaining compared to C group. No differences in TRAP+ osteoclasts were found between groups and time points. CONCLUSION Therefore, O3 therapy at higher doses might be beneficial for bone repair of the alveolar socket following tooth extraction.
Collapse
Affiliation(s)
| | - Edilson Ervolino
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araçatuba, Grupo de Pesquisa e Estudo com Laser em Odontologia, Araçatuba, São Paulo, Brasil
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araçatuba, Departamento de Ciências Básicas, Araçatuba, São Paulo, Brasil
| | | | - Leticia Helena Theodoro
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araçatuba, Grupo de Pesquisa e Estudo com Laser em Odontologia, Araçatuba, São Paulo, Brasil
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araçatuba, Departamento de Diagnostico e Cirurgia, Araçatuba, São Paulo, Brasil
| | - Glauco Rodrigues Carmo Silveira
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araçatuba, Departamento de Ciências Básicas, Araçatuba, São Paulo, Brasil
| | - Rafael Scaf de Molon
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araçatuba, Departamento de Diagnostico e Cirurgia, Araçatuba, São Paulo, Brasil
| | - Liran Levin
- University of Alberta, Faculty of Medicine and Dentistry, Canada
| | - Valdir Gouveia Garcia
- Instituto Latino Americano de Pesquisa e Ensino Odontológico (ILAPEO), Curitiba, PR, Brasil
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araçatuba, Grupo de Pesquisa e Estudo com Laser em Odontologia, Araçatuba, São Paulo, Brasil
| | | |
Collapse
|
2
|
Gkouveris I, Hadaya D, Elzakra N, Soundia A, Bezouglaia O, Dry SM, Pirih F, Aghaloo T, Tetradis S. Inhibition of HMGB1/RAGE Signaling Reduces the Incidence of Medication-Related Osteonecrosis of the Jaw (MRONJ) in Mice. J Bone Miner Res 2022; 37:1775-1786. [PMID: 35711109 PMCID: PMC9474692 DOI: 10.1002/jbmr.4637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/07/2022] [Accepted: 06/04/2022] [Indexed: 11/06/2022]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a severe complication of antiresorptive or antiangiogenic medications, used in the treatment of bone malignancy or osteoporosis. Bone necrosis, mainly represented by osteocytic death, is always present in MRONJ sites; however, the role of osteocyte death in MRONJ pathogenesis is unknown. High mobility group box 1 (HMGB1) is a non-histone nucleoprotein that in its acetylated form accumulates in the cytoplasm, whereas non-acetylated HMGB1 localizes in the nucleus. SIRT1 deacetylase regulates cellular localization of HMGB1. Interestingly, HMGB1 is released during cell necrosis and promotes inflammation through signaling cascades, including activation of the RAGE receptor. Here, we utilized a well-established mouse MRONJ model that utilizes ligature-induced experimental periodontitis (EP) and treatment with either vehicle or zolendronic acid (ZA). Initially, we evaluated HMGB1-SIRT1 expression in osteocytes at 1, 2, and 4 weeks of treatment. Significantly increased cytoplasmic and perilacunar HMGB1 expression was observed at EP sites of ZA versus vehicle (Veh) animals at all time points. SIRT1 colocalized with cytoplasmic HMGB1 and presented a statistically significant increased expression at the EP sites of ZA animals for all time points. RAGE expression was significantly higher in the submucosal tissues EP sites of ZA animals compared with those in vehicle group. To explore the significance of increased cytoplasmic and extracellular HMGB1 and increased RAGE expression in MRONJ pathogenesis, we used pharmacologic inhibitors of these molecules. Combined HMGB1/RAGE inhibition resulted in lower MRONJ incidence with statistically significant decrease in osteonecrotic areas and bone exposure versus non-inhibitor treated ZA animals. Together, our data point to the role of HMGB1 as a central alarmin, overexpressed at early phase of MRONJ pathogenesis during osteocytic death. Moreover, HMGB1-RAGE pathway may represent a new promising therapeutic target in patients at high risk of MRONJ. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Ioannis Gkouveris
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Danny Hadaya
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Naseim Elzakra
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Akrivoula Soundia
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Olga Bezouglaia
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Sarah M Dry
- UCLA Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Flavia Pirih
- Division of Constitutive and Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Sotirios Tetradis
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Chan WC, Tan L, Liu J, Yang Q, Wang J, Wang M, Yue Y, Hao L, Man Y. Inhibition of Rgs10 aggravates periodontitis with collagen-induced arthritis via the NF-κB pathway. Oral Dis 2022; 29:1802-1811. [PMID: 35122384 DOI: 10.1111/odi.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the role of the Rgs10-associated nuclear factor (NF)-κB signalling pathway in periodontitis with rheumatoid arthritis. METHODS Porphyromonas gingivalis and collagen were locally applied to mice to establish in vivo periodontitis and rheumatoid arthritis models, respectively. Both agents were administered together to establish the comorbid group. All models were treated with adeno-associated virus-green fluorescent protein (AAV-GFP) or adeno-associated virus small hairpin Rgs10 (AAV-sh-Rgs10). In vivo expression of Rgs10 and inflammatory cytokines was analysed, along with exploration of the NF-κB signalling pathway in lipopolysaccharide (LPS)-stimulated mouse-derived RAW264.7 cells, with and without treatment of small interfering RNA (siRNA; Rgs10-Mus-MSS245072). RESULTS In the comorbidity mouse group (mice with both periodontitis and rheumatoid arthritis), inhibition of Rgs10 exacerbated periodontitis, along with upregulation of phospho-RelA (pP65), tumour necrosis factor-α (TNF-α), and interleukin-6 (IL-6) expression in the NF-κB signalling pathway. Similarly, treatment of LPS-stimulated RAW264.7 cells with siRNA resulted in the inhibition of Rgs10, along with upregulation of pP65, TNF-α, and IL-6 expression in vitro. CONCLUSION Inhibition of Rgs10 in mice with periodontitis and rheumatoid arthritis can promote the progression of periodontitis, indicating the potential therapeutic role of Rgs10 in this condition.
Collapse
Affiliation(s)
- Wei-Cheng Chan
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Liangyu Tan
- Department of Prosthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, People's Republic of China
| | - Jie Liu
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Qin Yang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Jiajia Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Min Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Yuan Yue
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Yi Man
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| |
Collapse
|
4
|
Ning W, Ma Y, Li S, Wang X, Pan H, Wei C, Zhang S, Bai D, Liu X, Deng Y, Acharya A, Pelekos G, Savkovic V, Li H, Gaus S, Haak R, Schmalz G, Ziebolz D, Ma Y, Xu Y. Shared Molecular Mechanisms between Atherosclerosis and Periodontitis by Analyzing the Transcriptomic Alterations of Peripheral Blood Monocytes. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:1498431. [PMID: 34899963 PMCID: PMC8664523 DOI: 10.1155/2021/1498431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/12/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This study investigated the nature of shared transcriptomic alterations in PBMs from periodontitis and atherosclerosis to unravel molecular mechanisms underpinning their association. METHODS Gene expression data from PBMs from patients with periodontitis and those with atherosclerosis were each downloaded from the GEO database. Differentially expressed genes (DEGs) in periodontitis and atherosclerosis were identified through differential gene expression analysis. The disease-related known genes related to periodontitis and atherosclerosis each were downloaded from the DisGeNET database. A Venn diagram was constructed to identify crosstalk genes from four categories: DEGs expressed in periodontitis, periodontitis-related known genes, DEGs expressed in atherosclerosis, and atherosclerosis-related known genes. A weighted gene coexpression network analysis (WGCNA) was performed to identify significant coexpression modules, and then, coexpressed gene interaction networks belonging to each significant module were constructed to identify the core crosstalk genes. RESULTS Functional enrichment analysis of significant modules obtained by WGCNA analysis showed that several pathways might play the critical crosstalk role in linking both diseases, including bacterial invasion of epithelial cells, platelet activation, and Mitogen-Activated Protein Kinases (MAPK) signaling. By constructing the gene interaction network of significant modules, the core crosstalk genes in each module were identified and included: for GSE23746 dataset, RASGRP2 in the blue module and VAMP7 and SNX3 in the green module, as well as HMGB1 and SUMO1 in the turquoise module were identified; for GSE61490 dataset, SEC61G, PSMB2, SELPLG, and FIBP in the turquoise module were identified. CONCLUSION Exploration of available transcriptomic datasets revealed core crosstalk genes (RASGRP2, VAMP7, SNX3, HMGB1, SUMO1, SEC61G, PSMB2, SELPLG, and FIBP) and significant pathways (bacterial invasion of epithelial cells, platelet activation, and MAPK signaling) as top candidate molecular linkage mechanisms between atherosclerosis and periodontitis.
Collapse
Affiliation(s)
- Wanchen Ning
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Simin Li
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xin Wang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hongying Pan
- School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI 48109, USA
| | - Chenxuan Wei
- School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI 48109, USA
| | - Shaochuan Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dongying Bai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Xiangqiong Liu
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Yupei Deng
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Aneesha Acharya
- Dr D Y Patil Dental College and Hospital, Dr D Y Patil Vidyapeeth, Pimpri, Pune, India
| | - George Pelekos
- Faculty of Dentistry, University of Hong Kong, Hong KongChina
| | - Vuk Savkovic
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, 04103 Leipzig, Germany
| | - Hanluo Li
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, 04103 Leipzig, Germany
| | - Sebastian Gaus
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, 04103 Leipzig, Germany
| | - Rainer Haak
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103 Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103 Leipzig, Germany
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103 Leipzig, Germany
| | - Yanbo Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province 271000, China
| |
Collapse
|
5
|
Sun B, Ying S, Ma Q, Li H, Li J, Song J. Metformin ameliorates HMGB1-mediated oxidative stress through mTOR pathway in experimental periodontitis. Genes Dis 2021; 10:542-553. [DOI: 10.1016/j.gendis.2021.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/08/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022] Open
|
6
|
Oyama M, Ukai T, Yamashita Y, Yoshimura A. High-mobility group box 1 released by traumatic occlusion accelerates bone resorption in the root furcation area in mice. J Periodontal Res 2020; 56:186-194. [PMID: 33247463 DOI: 10.1111/jre.12813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Traumatic occlusion can cause bone resorption without bacterial infection. Although bone resorption in periodontitis has been relatively well studied, little is known about bone resorption by traumatic occlusion. High-mobility group box 1 (HMGB1) is released from damaged tissue and has been recently shown to promote bone resorption in a murine periodontitis model and may also promote bone resorption by traumatic occlusion. The present study aimed to examine whether HMGB1 accelerates bone resorption by traumatic occlusion in mice. MATERIALS AND METHODS Occlusal trauma was induced in the lower left first molar of mice by bonding a wire to the upper left first molar, and bone resorption and osteoclast formation were evaluated histochemically. The expression of HMGB1, Toll-like receptor 4 (TLR4; the receptor for HMGB1), and receptor activator of NFκB ligand (RANKL; an essential osteoclast differentiation factor) was evaluated immunohistologically. In addition, mice were administrated with an anti-HMGB1-neutralizing antibody to analyze the role of HMGB1. RESULTS Bone resorption and osteoclast formation gradually increased until day 5 at the furcation area after the application of traumatic occlusion. Expression of HMGB1 was observed at the furcation area on day 1, but was attenuated by day 3. Expression of RANKL gradually increased until day 3, but was attenuated by day 5. Administration of anti-HMGB1 antibody significantly reduced the number of osteoclasts and the expression of RANKL and TLR4 at the furcation area. CONCLUSION Release of HMGB1 in the root furcation area accelerated bone resorption by up-regulating RANKL and TLR4 expression in mice with traumatic occlusion.
Collapse
Affiliation(s)
- Mika Oyama
- Department of Periodontology and Endodontology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takashi Ukai
- Oral Management Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Yasunori Yamashita
- Department of Periodontology and Endodontology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Atsutoshi Yoshimura
- Department of Periodontology and Endodontology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
7
|
Wei W, Xue L, Tan L, Liu J, Yang Q, Wang J, Yan B, Cai Q, Yang L, Yue Y, Hao L, Wang M, Li J. Inhibition of yes-associated protein dephosphorylation prevents aggravated periodontitis with occlusal trauma. J Periodontol 2020; 92:1036-1048. [PMID: 33094479 DOI: 10.1002/jper.19-0338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Occlusal trauma can aggravate periodontitis, but the mechanism remains unclear. Yes-associated protein (YAP), a mechanical stressor protein, may play an important role in this process. METHODS Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were applied to detect the expression of YAP and inflammatory factors in patients with periodontitis accompanied with or without occlusal trauma. Through local administration of Porphyromonas gingivalis and composite resin bonding on maxillary molars in mice, we established periodontitis and occlusal trauma models. Treatment with or without XAV939, to inhibit YAP activation, was performed in these models. Micro-computed tomography, immunofluorescence (IF), and qRT-PCR were used to explore the YAP pathway in periodontitis with occlusal trauma. Cyclic stress and lipopolysaccharide (LPS) stimuli were applied to the L929 mouse fibroblast cell line with or without XAV939. Western blot, IF, and qRT-PCR were used to verify the in vivo results. RESULTS Activated dephosphorylated YAP and increased expression of inflammatory factors were observed in patients with periodontitis accompanied with occlusal trauma. In the mouse model of periodontitis with occlusal trauma, YAP transferred into the nucleus, resulting in Jun N-terminal kinases (JNK) related pro-inflammatory pathway up-regulation. L929 cell cyclic stress and LPS stimulation results confirmed the in vivo results. Application of XAV939 inhibited YAP protein dephosphorylation and reduced JNK pro-inflammatory pathway factor expression in vivo and in vitro. CONCLUSIONS Occlusal trauma can activate YAP nuclear transfer, resulting in the up-regulation of the JNK pro-inflammatory pathway. This can be inhibited by the XAV939 YAP inhibitor.
Collapse
Affiliation(s)
- Wei Wei
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lili Xue
- Department of stomatology, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Liangyu Tan
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jie Liu
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qin Yang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jiajia Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Bing Yan
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Qiaoling Cai
- Department of stomatology, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Li Yang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yuan Yue
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Min Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jinle Li
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
8
|
Yamashiro K, Ideguchi H, Aoyagi H, Yoshihara-Hirata C, Hirai A, Suzuki-Kyoshima R, Zhang Y, Wake H, Nishibori M, Yamamoto T, Takashiba S. High Mobility Group Box 1 Expression in Oral Inflammation and Regeneration. Front Immunol 2020; 11:1461. [PMID: 32760399 PMCID: PMC7371933 DOI: 10.3389/fimmu.2020.01461] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a non-histone DNA-binding protein of about 30 kDa. It is released from a variety of cells into the extracellular milieu in response to inflammatory stimuli and acts on specific cell-surface receptors, such as receptors for advanced glycation end-products (RAGE), Toll-like receptor (TLR)2, TLR4, with or without forming a complex with other molecules. HMGB1 mediates various mechanisms such as inflammation, cell migration, proliferation, and differentiation. On the other hand, HMGB1 enhances chemotaxis acting through the C-X-C motif chemokine ligand (CXCL)12/C-X-C chemokine receptor (CXCR)4 axis and is involved in regeneration. In the oral cavity, high levels of HMGB1 have been detected in the gingival tissue from periodontitis and peri-implantitis patients, and it has been shown that secreted HMGB1 induces pro-inflammatory cytokine expression, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, which prolong inflammation. In contrast, wound healing after tooth extraction or titanium dental implant osseointegration requires an initial acute inflammation, which is regulated by secreted HMGB1. This indicates that secreted HMGB1 regulates angiogenesis and bone remodeling by osteoclast and osteoblast activation and promotes bone healing in oral tissue repair. Therefore, HMGB1 can prolong inflammation in the periodontal tissue and, conversely, can regenerate or repair damaged tissues in the oral cavity. In this review, we highlight the role of HMGB1 in the oral cavity by comparing its function and regulation with its function in other diseases. We also discuss the necessity for further studies in this field to provide more specific scientific evidence for dentistry.
Collapse
Affiliation(s)
- Keisuke Yamashiro
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Hidetaka Ideguchi
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroaki Aoyagi
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Chiaki Yoshihara-Hirata
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Anna Hirai
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Risa Suzuki-Kyoshima
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yao Zhang
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Tadashi Yamamoto
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
9
|
Rath-Deschner B, Memmert S, Damanaki A, Nokhbehsaim M, Eick S, Cirelli JA, Götz W, Deschner J, Jäger A, Nogueira AVB. CXCL1, CCL2, and CCL5 modulation by microbial and biomechanical signals in periodontal cells and tissues-in vitro and in vivo studies. Clin Oral Investig 2020; 24:3661-3670. [PMID: 32124070 DOI: 10.1007/s00784-020-03244-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/12/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVES This study was established to investigate whether the chemokines CXCL1, CCL2, and CCL5 are produced in periodontal cells and tissues and, if so, whether their levels are regulated by microbial and/or mechanical signals. MATERIALS AND METHODS The chemokine expression and protein levels in gingival biopsies from patients with and without periodontitis were analyzed by RT-PCR and immunohistochemistry. The chemokines were also analyzed in gingival biopsies from rats subjected to experimental periodontitis and/or orthodontic tooth movement. Additionally, chemokine levels were determined in periodontal fibroblasts exposed to the periodontopathogen Fusobacterium nucleatum and mechanical forces by RT-PCR and ELISA. RESULTS Higher CXCL1, CCL2, and CCL5 levels were found in human and rat gingiva from sites of periodontitis as compared with periodontally healthy sites. In the rat experimental periodontitis model, the bacteria-induced upregulation of these chemokines was significantly counteracted by orthodontic forces. In vitro, F. nucleatum caused a significant upregulation of all chemokines at 1 day. When the cells were subjected simultaneously to F. nucleatum and mechanical forces, the upregulation of chemokines was significantly inhibited. The transcriptional findings were paralleled at protein level. CONCLUSIONS This study provides original evidence in vitro and in vivo that the chemokines CXCL1, CCL2, and CCL5 are regulated by both microbial and mechanical signals in periodontal cells and tissues. Furthermore, our study revealed that biomechanical forces can counteract the stimulatory actions of F. nucleatum on these chemokines. CLINICAL RELEVANCE Mechanical loading might aggravate periodontal infection by compromising the recruitment of immunoinflammatory cells.
Collapse
Affiliation(s)
- Birgit Rath-Deschner
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany.
| | - Svenja Memmert
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany.,Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Anna Damanaki
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Sigrun Eick
- Department of Periodontology, Laboratory for Oral Microbiology, University of Bern, Bern, Switzerland
| | - Joni A Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, UNESP, Araraquara, Brazil
| | - Werner Götz
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Jäger
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany
| | - Andressa V B Nogueira
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
10
|
Severe magnesium deficiency compromises systemic bone mineral density and aggravates inflammatory bone resorption. J Nutr Biochem 2020; 77:108301. [DOI: 10.1016/j.jnutbio.2019.108301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/10/2019] [Accepted: 11/16/2019] [Indexed: 12/28/2022]
|
11
|
Souza JACD, Magalhães FAC, Oliveira GJPLD, DE Molon RS, Zuanon JA, Souza PPCD. Pam2CSK4 (TLR2 agonist) induces periodontal destruction in mice. Braz Oral Res 2020; 34:e012. [PMID: 32049112 DOI: 10.1590/1807-3107bor-2020.vol34.0012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 12/10/2019] [Indexed: 01/21/2023] Open
Abstract
Lipoproteins are important bacterial immunostimulating molecules capable of inducing receptor activator of nuclear factor-κB (RANKL) and osteoclast formation in vitro and in vivo . Although these molecules are present in periodontopathogenic bacteria, their role in periodontitis is not known. In this study, we used Pam2CSK4 (PAM2), a synthetic molecule that mimics bacterial lipoprotein, to investigate the effects of lipoproteins on periodontitis in mice. C57BL/6 male mice were randomly divided into three experimental groups: 1) Negative control group: animals received vehicle injection; 2) Positive control group: animals received injection of Escherichia coli lipopolysaccharide (LPS); 3) PAM2 group: animals received PAM2 injection. All the injections were performed bilaterally every other day into the palatal mucosa between first and second molars. After twenty-four days, the animals were euthanized to assess alveolar bone volume (micro-CT), cellular and extracellular composition in the gingiva (stereometric analysis), and osteoclast numbers (TRAP staining). Treatment with either PAM2 or LPS induced gingival inflammation, as demonstrated by increased infiltration of inflammatory cells and enhanced angiogenesis, associated with a smaller number of fibroblasts and decreased extracellular matrix. Importantly, treatment not only with LPS but also with PAM2 resulted in a larger number of TRAP+ multinucleated osteoclasts and significant loss of alveolar bone. Collectively, our data demonstrate that PAM2 can induce gingival inflammation and bone loss in mice, broadening the avenues of investigation into the role of lipoproteins in the pathogenesis of periodontal disease.
Collapse
Affiliation(s)
| | | | | | - Rafael Scaf DE Molon
- Universidade Estadual Paulista - Unesp, School of Dentistry, Department of Diagnosis and Surgery, Araraquara, SP, Brazil
| | - José Antonio Zuanon
- Universidade Estadual Paulista - Unesp, School of Dentistry, Department of Physiology and Pathology, Araraquara, SP, Brazil
| | | |
Collapse
|
12
|
Pei X, Meng S, Gou C, Du Q. [Expression of high mobility group protein B1 in periodontal tissues and its association with hepatic lipid metabolism in diabetic rats with periodontitis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:6-12. [PMID: 32376562 DOI: 10.12122/j.issn.1673-4254.2020.01.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the expression of high mobility group box-1 protein (HMGB1) and its downstream products, receptor for advanced glycation end-products (RAGE) and tumor necrosis factor-α (TNF-α), in periodontal tissues of diabetic rats with periodontitis, and explore the association of HMGB1 with hepatic lipid metabolism. METHODS Immunohistochemical staining was used to detect the expression of HMGB1, RAGE and TNF-α in the periodontal tissues in rat models of diabetes mellitus (DM), periodontitis (CP), and diabetic periodontitis (DM + CP). The serum levels of the indicators of lipid metabolism and biochemical indexes of liver damage were detected by spectroscopy. RESULTS The expressions of HMGB1 and RAGE in the periodontal tissues were significantly higher in DM group than in the control group, but the expression of TNF-α showed no significant difference among the groups. In CP group, the expressions of HMGB1 and TNF-α were significantly higher than those in the control group, and the expression of RAGE was comparable with that in the control group but significantly lower than that in DM and DM+CP group. The expressions of HMGB1, RAGE and TNF-α were all significantly higher in DM+CP group than in the control group. Compared with the control rats, the rats in DM, CP, DM+CP group all showed abnormal hepatic lipid metabolism with significantly elevated serum ALT levels. CONCLUSIONS HMGB1 and RAGE participate in the inflammation of the periodontal tissues in diabetic rats. Diabetes leads to elevated expression of HMGB1 in the periodontal tissues. Both periodontitis and hyperglycemia contribute to liver metabolic dysfunction. HMGB1- RAGE provides clues in the study of signaling pathways underlying the mutual susceptibility of diabetes and periodontitis.
Collapse
Affiliation(s)
- Xinfo Pei
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Stomatology, Xinhua Hospital Affiliated To Shanghai Jiaotong University, Shanghai 200092, China
| | - Shu Meng
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Chengdu 610041, China
| | - Ce Gou
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qin Du
- Department of Stomatology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu 610072, China.,School of Medicine, University of Electronic Science and Technology, Chengdu 610054, China
| |
Collapse
|
13
|
Wei W, Ren J, Yin W, Ding H, Lu Q, Tan L, Deng S, Liu J, Yang Q, Wang J, Wang M, Yue Y, Hao L. Inhibition of Ctsk modulates periodontitis with arthritis via downregulation of TLR9 and autophagy. Cell Prolif 2019; 53:e12722. [PMID: 31737959 PMCID: PMC6985664 DOI: 10.1111/cpr.12722] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
Objectives The mechanisms underlying the effects of Toll‐like receptor 9 (TLR9) and autophagy on rheumatoid arthritis (RA)‐aggravated periodontitis are unclear. We aimed to explore a novel target, cathepsin K (Ctsk)‐mediated TLR9‐related autophagy, during the progress of periodontitis with RA. Materials and Methods DBA/J1 mouse model of periodontitis with RA was created by local colonization of Porphyromonas gingivalis (Pg) and injection of collagen. The expression of Ctsk was inhibited by adeno‐associated virus (AAV). Micro‐CT, immunohistochemistry (IHC), Western blot and quantitative real‐time polymerase chain reaction (qRT‐PCR) were used to detect the expression of TLR9‐related autophagy in periodontitis with RA. Small interfering RNA (siRNA) and CpG oligodeoxynucleotides (CpG ODN) were applied in macrophages. Western blot, immunofluorescence (IF) and qRT‐PCR were used to verify the in vivo results. Results RA can promote periodontitis bone destruction in the lesion area, while inhibiting Ctsk could effectively alleviate this effect. The infiltration of macrophages, TLR9, autophagy proteins (TFEB and LC3) and inflammatory cytokines increased in the periodontitis‐with‐RA group and was reduced by the inhibition of Ctsk in the periodontal region. Macrophage stimulation confirmed the in vivo results. With the activation of TLR9 by CpG ODN, inhibition of Ctsk could suppress both TLR9 downstream signalling proteins and autophagy‐related proteins. Conclusions This study advanced a novel role for Ctsk in TLR9 and autophagy to explain the interaction between periodontitis and RA.
Collapse
Affiliation(s)
- Wei Wei
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jie Ren
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Wuwei Yin
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China.,Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Handong Ding
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Qiuyu Lu
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Liangyu Tan
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Shibing Deng
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jie Liu
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Qin Yang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jiajia Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Min Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Yuan Yue
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| |
Collapse
|
14
|
Anti-HMGB1 Neutralizing Antibody Attenuates Periodontal Inflammation and Bone Resorption in a Murine Periodontitis Model. Infect Immun 2018. [PMID: 29531138 DOI: 10.1128/iai.00111-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a non-histone DNA-binding protein that is secreted into the extracellular milieu in response to inflammatory stimuli. The secreted HMGB1 mediates various inflammatory diseases, including periodontitis; however, the underlying mechanisms of HMGB1-induced periodontal inflammation are not completely understood. Here, we examined whether anti-HMGB1 neutralizing antibody inhibits periodontal progression and investigated the molecular pathology of HMGB1 in vitro and in vivo. In vitro analysis indicated that HMGB1, granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-1β (IL-1β) were secreted in response to tumor necrosis factor-α (TNF-α) stimuli in human gingival epithelial cells (HGECs) and human monocytic leukemia cells (THP-1) treated with phorbol myristate acetate. Increased levels of GM-CSF and IL-1β were observed in the conditioned media from TNF-α-stimulated HGECs and THP-1 in vitro Simultaneous stimulation with TNF-α and anti-HMGB1 antibody significantly decreased TNF-α-induced inflammatory cytokine secretion. Experimental periodontitis was induced in mice using Porphyromonas gingivalis-soaked ligatures. The extracellular translocation was confirmed in gingival epithelia in the periodontitis model mice by immunofluorescence analysis. Systemic administration of anti-HMGB1 neutralizing antibody significantly inhibited translocation of HMGB1. The anti-HMGB1 antibody inhibited periodontal inflammation, expression of IL-1β and C-X-C motif chemokine ligand 1 (CXCL1), migration of neutrophils, and bone resorption, shown by bioluminescence imaging of myeloperoxidase activity, quantitative reverse transcription-PCR (RT-PCR), and micro-computed tomography analysis. These findings indicate that HMGB1 is secreted in response to inflammatory stimuli caused by periodontal infection, which is crucial for the initiation of periodontitis, and the anti-HMGB1 antibody attenuates the secretion of a series of inflammatory cytokines, consequently suppressing the progression of periodontitis.
Collapse
|
15
|
Vitkov L, Hartl D, Minnich B, Hannig M. Janus-Faced Neutrophil Extracellular Traps in Periodontitis. Front Immunol 2017; 8:1404. [PMID: 29123528 PMCID: PMC5662558 DOI: 10.3389/fimmu.2017.01404] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022] Open
Abstract
Periodontitis is characterized by PMN infiltration and formation of neutrophil extracellular traps (NETs). However, their functional role for periodontal health remains complex and partially understood. The main function of NETs appears to be evacuation of dental plaque pathogen-associated molecular patterns. The inability to produce NETs is concomitant with aggressive periodontitis. But in cases with exaggerated NET production, NETs are unable to maintain periodontal health and bystander damages occur. This pathology can be also demonstrated in animal models using lipopolysaccharide as PMN activator. The progress of periodontitis appears to be a consequence of the formation of gingival pockets obstructing the evacuation of both pathogen-associated and damage-associated molecular patterns, which are responsible for the self-perpetuation of inflammation. Thus, besides the pathogenic effects of the periodontal bacteria, the dysregulation of PMN activation appears to play a main role in the periodontal pathology. Consequently, modulation of PMN activation might be a useful approach to periodontal therapy.
Collapse
Affiliation(s)
- Ljubomir Vitkov
- Department of Cell Biology and Physiology, Division of Animal Structure and Function, University of Salzburg, Salzburg, Austria.,Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Dominik Hartl
- Department of Paediatrics, Paediatric Infectiology, Immunology and Cystic Fibrosis, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Bernd Minnich
- Department of Cell Biology and Physiology, Division of Animal Structure and Function, University of Salzburg, Salzburg, Austria
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| |
Collapse
|
16
|
High Mobility Group Box 1 Protein Level as a Novel Biomarker for the Development of Peri-Implant Disease. Sci Rep 2017; 7:7027. [PMID: 28765610 PMCID: PMC5539157 DOI: 10.1038/s41598-017-06937-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/21/2017] [Indexed: 11/22/2022] Open
Abstract
Peri-implant disease is a chronic inflammation of the soft and hard tissues around a dental implant, resulting from bacterial infection. Recent evidence indicates that some pro-inflammatory cytokines and chemokines released by immunocytes are substantially responsible for the progress and consequence of inflammation. High mobility group box 1 (HMGB1) is released into the extracellular matrix and acts as a key pro-inflammatory factor during injury, necrosis and inflammation. A higher concentration of HMGB1 has been found in gingival crevicular fluid from inflammatory gingival tissue than from healthy sites. HMGB1 mRNA and protein are overexpressed in murine periodontal ligament fibroblasts stimulated with lipopolysaccharide (LPS) and IL-1β. Thus, this study sought to assess HMGB1 expression in peri-implant crevicular fluid (PICF) at each stage of peri-implant disease and to investigate the correlation between HMGB1 and peri-implant disease progress. The results demonstrated that the HMGB1 expression level in PICF is indicative of the progress of peri-implant disease and hence may be a useful diagnostic and prognostic biomarker for peri-implant tissue.
Collapse
|
17
|
Zanetti F, Titz B, Sewer A, Lo Sasso G, Scotti E, Schlage WK, Mathis C, Leroy P, Majeed S, Torres LO, Keppler BR, Elamin A, Trivedi K, Guedj E, Martin F, Frentzel S, Ivanov NV, Peitsch MC, Hoeng J. Comparative systems toxicology analysis of cigarette smoke and aerosol from a candidate modified risk tobacco product in organotypic human gingival epithelial cultures: A 3-day repeated exposure study. Food Chem Toxicol 2017; 101:15-35. [PMID: 28025120 DOI: 10.1016/j.fct.2016.12.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/01/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
Abstract
Smoking is one of the major lifestyle-related risk factors for periodontal diseases. Modified risk tobacco products (MRTP) offer a promising alternative in the harm reduction strategy for adult smokers unable to quit. Using a systems toxicology approach, we investigated and compared the exposure effects of a reference cigarette (3R4F) and a heat-not-burn technology-based candidate MRTP, the Tobacco Heating System (THS) 2.2. Human gingival epithelial organotypic cultures were repeatedly exposed (3 days) for 28 min at two matching concentrations of cigarette smoke (CS) or THS2.2 aerosol. Results showed only minor histopathological alterations and minimal cytotoxicity upon THS2.2 aerosol exposure compared to CS (1% for THS2.2 aerosol vs. 30% for CS, at the high concentration). Among the 14 proinflammatory mediators analyzed, only 5 exhibited significant alterations with THS2.2 exposure compared with 11 upon CS exposure. Transcriptomic and metabolomic analysis indicated a general reduction of the impact in THS2.2 aerosol-exposed samples with respect to CS (∼79% lower biological impact for the high THS2.2 aerosol concentration compared to CS, and 13 metabolites significantly perturbed for THS2.2 vs. 181 for CS). This study indicates that exposure to THS2.2 aerosol had a lower impact on the pathophysiology of human gingival organotypic cultures than CS.
Collapse
Affiliation(s)
- Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Alain Sewer
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Giuseppe Lo Sasso
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Elena Scotti
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Str. 21, 51429 Bergisch Gladbach, Germany
| | - Carole Mathis
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Shoaib Majeed
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Laura Ortega Torres
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | | | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Keyur Trivedi
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Stefan Frentzel
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
18
|
Lin YC, Wu CY, Chang LY, Chen CC, Chen HH, Lai YL, Hung SL. Levels of high-mobility group box-1 in gingival crevicular fluid in nonsmokers and smokers with chronic periodontitis. J Formos Med Assoc 2017; 116:933-939. [PMID: 28209360 DOI: 10.1016/j.jfma.2017.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/04/2017] [Accepted: 01/12/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND/PURPOSE High-mobility group box-1 (HMGB1), a proinflammatory cytokine, plays a role in inflammatory disorders. Smoking is a well-established risk factor for periodontal disease. The aim of this study was to compare the levels of HMGB1 in the gingival crevicular fluid from periodontally healthy nonsmokers, chronic periodontitis nonsmokers, and chronic periodontitis smokers. Furthermore, the relationship between levels of HMGB1 and periodontal parameters was examined. METHODS Periodontal parameters of 17 nonsmokers with chronic periodontitis, nine smokers with chronic periodontitis, and nine periodontally healthy nonsmokers were examined. Gingival crevicular fluid samples were collected, and the levels of HMGB1 were analyzed using the enzyme-linked immunosorbent assay. RESULTS The median level of HMGB1 was statistically significantly higher in chronic periodontitis nonsmokers (37.5 ng/mL) than in chronic periodontitis smokers (9.5 ng/mL) and periodontally healthy nonsmokers (3.7 ng/mL). There was no significant difference in the levels of HMGB1 between chronic periodontitis smokers and periodontally healthy nonsmokers. Levels of HMGB1 were positively correlated with plaque index, gingival index, probing depth, and clinical attachment level of nonsmokers. However, no significant correlations were found between levels of HMGB1 and all periodontal parameters examined in chronic periodontitis smokers. CONCLUSION Chronic periodontitis nonsmokers had elevated levels of HMGB1 in gingival crevicular fluid. Moreover, the levels of HMGB1 were correlated with severity of periodontitis. Chronic periodontitis smokers exhibited lower levels of HMGB1 than chronic periodontitis nonsmokers. Further research is needed for understanding the role of HMGB1 in smoking and pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Yi-Chun Lin
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Yi Wu
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Lien-Yu Chang
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Chu Chen
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsuan-Hung Chen
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Lin Lai
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Shan-Ling Hung
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
19
|
Long-term evaluation of oral gavage with periodontopathogens or ligature induction of experimental periodontal disease in mice. Clin Oral Investig 2015; 20:1203-16. [PMID: 26411857 DOI: 10.1007/s00784-015-1607-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate in long-term periods the destruction of periodontal tissues and bacterial colonization induced by oral gavage with periodontopathogens or ligature experimental periodontal disease models. MATERIAL AND METHODS Forty-eight C57BL/6 J mice were divided into four groups: group C: negative control; group L: ligature; group G-Pg: oral gavage with Porphyromonas gingivalis; and group G-PgFn: oral gavage with Porphyromonas gingivalis associated with Fusobacterium nucleatum. Mice were infected by oral gavage five times in 2-day intervals. After 45 and 60 days, animals were sacrificed and the immune-inflammatory response in the periodontal tissue was assessed by stereometric analysis. The alveolar bone loss was evaluated by live microcomputed tomography and histometric analysis. qPCR was used to confirm the bacterial colonization in all the groups. Data were analyzed using the Kruskal-Wallis, Wilcoxon, and ANOVA tests, at 5 % of significance level. RESULTS Ligature model induced inflammation and bone resorption characterized by increased number of inflammatory cells and decreased number of fibroblasts, followed by advanced alveolar bone loss at 45 and 60 days (p < 0.05). Bacterial colonization in groups G-Pg and G-PgFn was confirmed by qPCR but inflammation and bone resorption were not observed (p < 0.05). CONCLUSIONS The ligature model but not the oral gavage models were effective to induce inflammation and bone loss in long-term periods. Pg colonization was observed in all models of experimental periodontal disease induction, independent of tissue alterations. These mice models of periodontitis validates, compliments, and enhances published PD models that utilize ligature or oral gavage and supports the importance of a successful colonization of a susceptible host, a bacterial invasion into vulnerable tissue, and host-bacterial interactions that lead to tissue destruction. CLINICAL RELEVANCE The ligature model was an effective approach to induce inflammation and bone loss similar to human periodontitis, but the oral gavage models were not efficient in inducing periodontal inflammation and tissue destruction in the conditions studied. Ligature models can provide a basis for future interventional studies that contribute to the understanding of the disease pathogenesis and the complex host response to microbial challenge.
Collapse
|
20
|
Johnson L, Atanasova KR, Bui PQ, Lee J, Hung SC, Yilmaz Ö, Ojcius DM. Porphyromonas gingivalis attenuates ATP-mediated inflammasome activation and HMGB1 release through expression of a nucleoside-diphosphate kinase. Microbes Infect 2015; 17:369-77. [PMID: 25828169 PMCID: PMC4426005 DOI: 10.1016/j.micinf.2015.03.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 12/13/2022]
Abstract
Many intracellular pathogens evade the innate immune response in order to survive and proliferate within infected cells. We show that Porphyromonas gingivalis, an intracellular opportunistic pathogen, uses a nucleoside-diphosphate kinase (NDK) homolog to inhibit innate immune responses due to stimulation by extracellular ATP, which acts as a danger signal that binds to P2X7 receptors and induces activation of an inflammasome and caspase-1. Thus, infection of gingival epithelial cells (GECs) with wild-type P. gingivalis results in inhibition of ATP-induced caspase-1 activation. However, ndk-deficient P. gingivalis is less effective than wild-type P. gingivalis in reducing ATP-mediated caspase-1 activation and secretion of the pro-inflammatory cytokine, IL-1β, from infected GECs. Furthermore, P. gingivalis NDK modulates release of high-mobility group protein B1 (HMGB1), a pro-inflammatory danger signal, which remains associated with chromatin in healthy cells. Unexpectedly, infection with either wild-type or ndk-deficient P. gingivalis causes release of HMGB1 from the nucleus to the cytosol. But HMGB1 is released to the extracellular space when uninfected GECs are further stimulated with ATP, and there is more HMGB1 released from the cells when ATP-treated cells are infected with ndk-deficient mutant than wild-type P. gingivalis. Our results reveal that NDK plays a significant role in inhibiting P2X7-dependent inflammasome activation and HMGB1 release from infected GECs.
Collapse
Affiliation(s)
- Larry Johnson
- Department of Molecular Cell Biology, University of California, Merced, CA 95343, USA; Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Kalina R Atanasova
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Phuong Q Bui
- Department of Molecular Cell Biology, University of California, Merced, CA 95343, USA; Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Jungnam Lee
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Shu-Chen Hung
- Department of Molecular Cell Biology, University of California, Merced, CA 95343, USA; Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Özlem Yilmaz
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA.
| | - David M Ojcius
- Department of Molecular Cell Biology, University of California, Merced, CA 95343, USA; Health Sciences Research Institute, University of California, Merced, CA 95343, USA.
| |
Collapse
|