1
|
Guo W, Zong S, Liu T, Chao Y, Wang K. The role of NOP58 in prostate cancer progression through SUMOylation regulation and drug response. Front Pharmacol 2024; 15:1476025. [PMID: 39494345 PMCID: PMC11530994 DOI: 10.3389/fphar.2024.1476025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Background Prostate cancer is one of the leading causes of cancer-related deaths in men. Its molecular pathogenesis is closely linked to various genetic and epigenetic alterations, including posttranslational modifications like SUMOylation. Identifying biomarkers that predict outcomes and specific therapeutic targets depends on a comprehensive understanding of these processes. With growing interest in SUMOylation as a mechanism affecting prostate cancer-related genes, this study aimed to investigate the central role of SUMOylation in prostate cancer prognostics, focusing on the significance of NOP58. Methods We conducted a comprehensive bioinformatics analysis, integrating differential expression analysis, survival analysis, gene set enrichment analysis (GSEA), and single-cell transcriptomic analyses using data from The Cancer Genome Atlas (TCGA). Key genes were identified through intersections of Venn diagrams, Boralta algorithm signatures, and machine learning models. These signaling mechanisms were validated through experimental studies, including immunohistochemical staining and gene ontology analyses. Results The dual-gene molecular subtype analysis with SUMO1, SUMO2, and XPO1 genes revealed significant differences in survival outcomes across molecular subtypes, further emphasizing the potential impact of NOP58 on SUMOylation, a key post-translational modification, in prostate cancer. NOP58 overexpression was strongly associated with shorter overall survival (OS), progression-free interval (PFI), and disease-specific death in prostate cancer patients. Immunohistochemical analysis confirmed that NOP58 was significantly overexpressed in prostate cancer tissues compared to normal tissues. ROC curve analysis demonstrated that NOP58 could distinguish prostate cancer from control samples with high diagnostic accuracy. Gene Ontology analysis, along with GSVA and GSEA, suggested that NOP58 may be involved in cell cycle regulation and DNA repair pathways. Moreover, NOP58 knockdown led to increased BCL2 expression and decreased Ki67 levels, promoting apoptosis and inhibiting cell proliferation. Colony formation assays further showed that NOP58 knockdown inhibited, while its overexpression promoted, colony formation, highlighting the critical role of NOP58 in prostate cancer cell growth and survival. Additionally, NOP58 was linked to drug responses, including Methotrexate, Rapamycin, Sorafenib, and Vorinostat. Conclusion NOP58 is a key regulator of prostate cancer progression through its mediation of the SUMOylation pathway. Its expression level serves as a reliable prognostic biomarker and an actionable therapeutic target, advancing precision medicine for prostate cancer. Targeting NOP58 may enhance therapeutic efficacy and improve outcomes in oncology.
Collapse
Affiliation(s)
| | | | | | | | - Kaichen Wang
- Department of Urinary Surgery, The Third Bethune Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Daniels J, Kyei KA, Badejoko-Okunade KA, Anim-Sampong S, Tagoe SNA, Antwi WK, Ainuson-Quampah J, Alabi A, Sowunmi A, Tackie JNO. Biochemical outcome after curative treatment for localized prostate cancer with external beam radiotherapy: a cross-sectional study. Ecancermedicalscience 2023; 17:1625. [PMID: 38414955 PMCID: PMC10898902 DOI: 10.3332/ecancer.2023.1625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Indexed: 02/29/2024] Open
Abstract
Although many patients who receive definitive radiotherapy (RT) for localised prostate cancer (CaP) experience long-term disease-free survival and better quality of life, some also have biochemical progression during follow-up. Oftentimes this implies additional treatment for patients with the accompanying challenges of cumulative treatment side effects, inconvenience and financial toxicity. This study retrospectively assessed the clinicopathological characteristics and biochemical outcomes of patients treated for localised CaP with external beam radiotherapy (EBRT) between 2015 and 2020 at a major cancer treatment centre in Accra, Ghana. Patients' socio-demographic and clinical data were collected from their hospital records and analysed with the Statistical Package for Social Sciences version 26. Biochemical failure (BCF) was defined as an increase in the level of serum prostate-specific antigen (PSA) >2 ng/mL above the nadir after curative therapy based on the Phoenix definition. The mean age was 67.6 years (SD ± 6.2). The majority of the study participants (n = 79, 64.8%) had initial PSA >20 ng/mL, with the highest recorded value of 705 ng/mL. All the patients had biopsy-proven adenocarcinoma of the prostate gland. Some patients received 3-dimensional conformal radiotherapy (3DCRT) on a cobalt-60 teletherapy machine whereas others were treated with either 3DCRT or intensity-modulated radiotherapy (IMRT) on a 6 MV Linac. In all, 13.1% of the patients experienced BCF after receiving EBRT after an average follow-up of 31.3 months. This study demonstrated a low rate of BCF among patients treated with EBRT for localised CaP in Ghana. Strong prognostic factors of biochemical outcome demonstrated in this study were the percentage of cores positive, grade group, and risk stratification. Diarrhaea and desquamation experienced by treated CaP patients were exclusively attributable to EBRT. RT produced a complete resolution of symptoms in some of the patients.
Collapse
Affiliation(s)
- Joseph Daniels
- National Centre for Radiotherapy, Oncology and Nuclear Medicine, Korle Bu Teaching Hospital, PO Box KB 369, Korle Bu, Accra, Ghana
| | - Kofi Adesi Kyei
- National Centre for Radiotherapy, Oncology and Nuclear Medicine, Korle Bu Teaching Hospital, PO Box KB 369, Korle Bu, Accra, Ghana
- Department of Radiography, University of Ghana, Legon, PO Box KB 143, Korle Bu, Accra, Ghana
| | - Kikelomo Adeola Badejoko-Okunade
- Department of Radiography, University of Ghana, Legon, PO Box KB 143, Korle Bu, Accra, Ghana
- Lagos University Teaching Hospital, Ishaga Road, PO Box 102215, Lagos, Nigeria
| | - Samuel Anim-Sampong
- Department of Radiography, University of Ghana, Legon, PO Box KB 143, Korle Bu, Accra, Ghana
| | - Samuel Nii Adu Tagoe
- Department of Radiography, University of Ghana, Legon, PO Box KB 143, Korle Bu, Accra, Ghana
| | - William Kwadwo Antwi
- Department of Radiography, University of Ghana, Legon, PO Box KB 143, Korle Bu, Accra, Ghana
| | - Joana Ainuson-Quampah
- Department of Dietetics, University of Ghana, Legon, PO Box KB 143, Korle Bu, Accra, Ghana
| | - Adewumi Alabi
- Lagos University Teaching Hospital, Ishaga Road, PO Box 102215, Lagos, Nigeria
| | - Anthonia Sowunmi
- Lagos University Teaching Hospital, Ishaga Road, PO Box 102215, Lagos, Nigeria
| | - Judith Naa Odey Tackie
- National Centre for Radiotherapy, Oncology and Nuclear Medicine, Korle Bu Teaching Hospital, PO Box KB 369, Korle Bu, Accra, Ghana
| |
Collapse
|
3
|
Boldrini L, Bardi M. WSB1 Involvement in Prostate Cancer Progression. Genes (Basel) 2023; 14:1558. [PMID: 37628609 PMCID: PMC10454498 DOI: 10.3390/genes14081558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Prostate cancer (PC) is polygenic disease involving many genes, and more importantly a host of gene-gene interactions, including transcriptional factors. The WSB1 gene is a transcriptional target of numerous oncoproteins, and its dysregulation can contribute to tumor progression by abnormal activation of targeted oncogenes. Using data from the Cancer Genome Atlas, we tested the possible involvement of WSB1 in PC progression. A multi-dimensional scaling (MDS) model was applied to clarify the association of WSB1 expression with other key genes, such as c-myc, ERG, Enhancer of Zeste 1 and 2 (EHZ1 and EZH2), WNT10a, and WNT 10b. An increased WSB1 expression was associated with higher PC grades and with a worse prognosis. It was also positively related to EZH1, EZH2, WNT10a, and WNT10b. Moreover, MDS showed the central role of WSB1 in influencing the other target genes by its central location on the map. Our study is the first to show a link between WSB1 expression and other genes involved in PC progression, suggesting a novel role for WSB1 in PC progression. This network between WSB1 and EZH2 through WNT/β-catenin may have an important role in PC progression, as suggested by the association between high WSB1 expression and unfavorable prognosis in our analysis.
Collapse
Affiliation(s)
- Laura Boldrini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy
| | - Massimo Bardi
- Department of Psychology & Behavioral Neuroscience, Randolph-Macon College, Ashland, VA 23005, USA
| |
Collapse
|
4
|
Li Z, Jiao X, Robertson AG, Di Sante G, Ashton AW, DiRocco A, Wang M, Zhao J, Addya S, Wang C, McCue PA, South AP, Cordon-Cardo C, Liu R, Patel K, Hamid R, Parmar J, DuHadaway JB, Jones SJM, Casimiro MC, Schultz N, Kossenkov A, Phoon LY, Chen H, Lan L, Sun Y, Iczkowski KA, Rui H, Pestell RG. The DACH1 gene is frequently deleted in prostate cancer, restrains prostatic intraepithelial neoplasia, decreases DNA damage repair, and predicts therapy responses. Oncogene 2023; 42:1857-1873. [PMID: 37095257 PMCID: PMC10238272 DOI: 10.1038/s41388-023-02668-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 04/26/2023]
Abstract
Prostate cancer (PCa), the second leading cause of death in American men, includes distinct genetic subtypes with distinct therapeutic vulnerabilities. The DACH1 gene encodes a winged helix/Forkhead DNA-binding protein that competes for binding to FOXM1 sites. Herein, DACH1 gene deletion within the 13q21.31-q21.33 region occurs in up to 18% of human PCa and was associated with increased AR activity and poor prognosis. In prostate OncoMice, prostate-specific deletion of the Dach1 gene enhanced prostatic intraepithelial neoplasia (PIN), and was associated with increased TGFβ activity and DNA damage. Reduced Dach1 increased DNA damage in response to genotoxic stresses. DACH1 was recruited to sites of DNA damage, augmenting recruitment of Ku70/Ku80. Reduced Dach1 expression was associated with increased homology directed repair and resistance to PARP inhibitors and TGFβ kinase inhibitors. Reduced Dach1 expression may define a subclass of PCa that warrants specific therapies.
Collapse
Affiliation(s)
- Zhiping Li
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - A Gordon Robertson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, VSZ 4S6, Canada
- Dxige Research, Courtenay, BC, V9N 1C2, Canada
| | - Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Anthony W Ashton
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
- Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Wynnewood, PA, 19096, USA
- Division of Perinatal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, 2006, Australia
| | - Agnese DiRocco
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Min Wang
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jun Zhao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Sankar Addya
- Department of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10th Street, Philadelphia, PA, 19107, USA
| | - Chenguang Wang
- Department of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10th Street, Philadelphia, PA, 19107, USA
| | - Peter A McCue
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10th Street, Philadelphia, PA, 19107, USA
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10th Street, Philadelphia, PA, 19107, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Mt. Sinai, Hospital, 1468 Madison Ave., Floor 15, New York, NY, 10029, USA
| | - Runzhi Liu
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Kishan Patel
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Rasha Hamid
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jorim Parmar
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - James B DuHadaway
- Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Wynnewood, PA, 19096, USA
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, VSZ 4S6, Canada
| | - Mathew C Casimiro
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
- Abraham Baldwin Agricultural College, Department of Science and Mathematics, Box 15, 2802 Moore Highway, Tifton, GA, 31794, USA
| | - Nikolaus Schultz
- Human Oncology and Pathogenesis Program, Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, 3601 Spruce St., Philadelphia, PA, 19104, USA
| | - Lai Yee Phoon
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Hao Chen
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Li Lan
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
- The Wistar Cancer Center, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Berenguer CV, Pereira F, Câmara JS, Pereira JAM. Underlying Features of Prostate Cancer-Statistics, Risk Factors, and Emerging Methods for Its Diagnosis. Curr Oncol 2023; 30:2300-2321. [PMID: 36826139 PMCID: PMC9955741 DOI: 10.3390/curroncol30020178] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently occurring type of malignant tumor and a leading cause of oncological death in men. PCa is very heterogeneous in terms of grade, phenotypes, and genetics, displaying complex features. This tumor often has indolent growth, not compromising the patient's quality of life, while its more aggressive forms can manifest rapid growth with progression to adjacent organs and spread to lymph nodes and bones. Nevertheless, the overtreatment of PCa patients leads to important physical, mental, and economic burdens, which can be avoided with careful monitoring. Early detection, even in the cases of locally advanced and metastatic tumors, provides a higher chance of cure, and patients can thus go through less aggressive treatments with fewer side effects. Furthermore, it is important to offer knowledge about how modifiable risk factors can be an effective method for reducing cancer risk. Innovations in PCa diagnostics and therapy are still required to overcome some of the limitations of the current screening techniques, in terms of specificity and sensitivity. In this context, this review provides a brief overview of PCa statistics, reporting its incidence and mortality rates worldwide, risk factors, and emerging screening strategies.
Collapse
Affiliation(s)
- Cristina V. Berenguer
- CQM—Centro de Química da Madeira, NPRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Ferdinando Pereira
- SESARAM—Serviço de Saúde da Região Autónoma da Madeira, EPERAM, Hospital Dr. Nélio Mendonça, Avenida Luís de Camões 6180, 9000-177 Funchal, Portugal
| | - José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, NPRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Correspondence:
| |
Collapse
|
6
|
Li Z, Jiao X, Robertson AG, Sante GD, Ashton AW, DiRocco A, Wang M, Zhao J, Addya S, Wang C, McCue PA, South AP, Cordon-Cardo C, Liu R, Patel K, Hamid R, Parmar J, DuHadaway JB, Jones SJ, Casimiro MC, Schultz N, Kossenkov A, Phoon LY, Chen H, Lan L, Sun Y, Iczkowski KA, Rui H, Pestell RG. The DACH1 gene is frequently deleted in prostate cancer, restrains prostatic intraepithelial neoplasia, decreases DNA damage repair, and predicts therapy responses. RESEARCH SQUARE 2023:rs.3.rs-2423179. [PMID: 36712010 PMCID: PMC9882663 DOI: 10.21203/rs.3.rs-2423179/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Prostate cancer (PCa), the second leading cause of death in American men, includes distinct genetic subtypes with distinct therapeutic vulnerabilities. The DACH1 gene encodes a winged helix/Forkhead DNA-binding protein that competes for binding to FOXM1 sites. Herein, DACH1 gene deletion within the 13q21.31-q21.33 region occurs in up to 18% of human PCa and was associated with increased AR activity and poor prognosis. In prostate OncoMice, prostate-specific deletion of the Dach1 gene enhanced prostatic intraepithelial neoplasia (PIN), and was associated with increased TGFb activity and DNA damage. Reduced Dach1 increased DNA damage in response to genotoxic stresses. DACH1 was recruited to sites of DNA damage, augmenting recruitment of Ku70/Ku80. Reduced Dach1 expression was associated with increased homology directed repair and resistance to PARP inhibitors and TGFb kinase inhibitors. Reduced Dach1 expression may define a subclass of PCa that warrants specific therapies.
Collapse
Affiliation(s)
- Zhiping Li
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902 Pennsylvania
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902 Pennsylvania
| | - A. Gordon Robertson
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902 Pennsylvania
| | - Anthony W. Ashton
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902 Pennsylvania
- Division of Perinatal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia; Sydney Medical School Northern, University of Sydney, NSW, 2006, Australia
- Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Wynnewood, PA 19096
| | - Agnese DiRocco
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902 Pennsylvania
| | - Min Wang
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902 Pennsylvania
| | - Jun Zhao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902 Pennsylvania
| | - Sankar Addya
- Department of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10 Street, Philadelphia, PA 19107
| | - Chenguang Wang
- Department of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10 Street, Philadelphia, PA 19107
| | - Peter A. McCue
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10 Street, Philadelphia, PA 19107
| | - Andrew P. South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10 Street, Philadelphia, PA 19107
| | - Carlos Cordon-Cardo
- Department of Pathology, Mt. Sinai, Hospital, 1468 Madison Ave., Floor 15, New York, NY, 10029
| | - Runzhi Liu
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902 Pennsylvania
| | - Kishan Patel
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902 Pennsylvania
| | - Rasha Hamid
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902 Pennsylvania
| | - Jorim Parmar
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902 Pennsylvania
| | - James B. DuHadaway
- Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Wynnewood, PA 19096
| | - Steven J. Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC VSZ 4S6, Canada
| | - Mathew C. Casimiro
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902 Pennsylvania
- Abraham Baldwin Agricultural College, Department of Science and Mathematics, Box 15, 2802 Moore Highway, Tifton, GA, 31794
| | - Nikolaus Schultz
- Human Oncology and Pathogenesis Program, Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrew Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, 3601 Spruce St., Philadelphia, PA 19104, USA
| | - Lai Yee Phoon
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA, and Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Hao Chen
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA, and Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Li Lan
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA, and Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard G. Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902 Pennsylvania
- The Wistar Cancer Center, Philadelphia, PA 19107
| |
Collapse
|
7
|
Urinary PCA3 a Superior Diagnostic Biomarker for Prostate Cancer among Ghanaian Men. DISEASE MARKERS 2022; 2022:1686991. [PMID: 36246565 PMCID: PMC9568348 DOI: 10.1155/2022/1686991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
Abstract
Introduction. Prostate cancer is one of the most commonly diagnosed cancers in men. Prostate-specific antigen (PSA) has been the biomarker of choice for screening and diagnosis of prostate cancer. However, inefficiencies exist with its diagnostic capabilities. This study thus evaluated the diagnostic and prognostic potential of urinary PCA3 as an alternative biomarker for prostate cancer in the Ghanaian population. Methods. A hospital-based cross-sectional study was conducted at the Urology Department of the 37 Military Hospital, Accra, Ghana. A total of 237 participants aged 40 years and above with any form of suspected prostate disorder were recruited into the study after written informed consent was obtained. Total serum PSA levels was measured using the electrochemiluminescence method and transrectal ultrasound-guided systematic core needle biopsies were obtained from each study participant. Receiver operating characteristic curve (ROC) analysis was used to evaluate the diagnostic accuracies of serum PSA, DRE, and PCA3 as diagnostic tools for prostate cancer. These three diagnostic tools were also evaluated in various combinations to ascertain the combinations with the best diagnostic accuracy. Results. Prostate cancer was diagnosed in 26.6% of the participants. Benign prostate hyperplasia and prostatitis were diagnosed in 48.5% and 24.9% participants, respectively. DRE had a sensitivity of 93.7% and a specificity of 12.1%. PSA had a sensitivity of 92.1% and a specificity of 16.1%. PCA3 had a sensitivity of 57.1% and a specificity of 85.6% and showed a better accuracy (
) compared to PSA (
) and DRE (
) as individual diagnostic tools. The combination of DRE+PCA3 score had the best diagnostic accuracy (
) with a sensitivity and specificity of 60.3% and 80.5%, respectively. Conclusion. The urinary PCA3 assay showed a better diagnostic performance compared to serum PSA and DRE. PCA3 as a stand-alone and in combination with DRE could be a suitable complimentary marker in diagnosis and management of prostate cancer.
Collapse
|
8
|
Gilloteaux DJ, Jamison JM, Summers JL, Taper HS. Xenografts on nude mouse diaphragm of human DU145 prostate carcinoma cells: mesothelium removal by outgrowths and angiogenesis. Ultrastruct Pathol 2022; 46:413-438. [PMID: 36165802 DOI: 10.1080/01913123.2022.2115596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Human prostate carcinoma DU145 cells, androgen-independent malignant cells, implanted in the athymic nu/nu male mouse, developed numerous tumors on peritoneal and retro-peritoneal organs whose growth aspects and vascular supply have yet to be investigated with fine structure techniques. A series of necropsies from moribund implanted mice diaphragms were examined with light, scanning, and transmission electron microscopy. DU145 xenografts installations, far away from the implanted site, were described as the smallest installation to large diaphragm outgrowths in moribund mice. Carcinomas did not show extracellular matrix and, reaching more than 0.15 mm in thickness, they revealed new structures in these outgrowths. Voids to be gland-like structures with mediocre secretion and, unexpectedly, intercellular spaces connected with fascicles of elongated DU145 cells that merged with a vascular supply originated from either the tumor cells and/or some perimysium vessels. In the largest carcinomas, most important vascular invasions coincidently accompanied the mouse lethality, similarly to human cancers. This androgen-independent model would be useful to study tumor outgrowth's changes related to testing anticancer strategy, including anti-angiogenic therapies involving toxicity, simultaneously with those of other vital organs with combined biomolecular and fine structure techniques.
Collapse
Affiliation(s)
- Dr Jacques Gilloteaux
- Department of Anatomical Sciences, St Georges' University International School of Medicine, KB Taylor Global Scholar's Program, Newcastle upon Tyne, UK, NE1 8JG.,Unit of Research in Molecular Physiology (URPhyM), NARILIS, Université de Namur, Namur, Belgium, 5000.,Department of Anatomical Sciences, Ohio Medical University (NEOMed/Northeastern Ohio Universities College of Medicine, Rootstown, OH, USA, 44272
| | - James M Jamison
- Department of Urology, Ohio Medical University (NEOMed/Northeastern Ohio Universities College of Medicine, Rootstown, OH, USA, 44272.,St Thomas Hospital, The Apatone Development Center, Summa Research Foundation, Akron, OH, USA, 44310
| | - Jack L Summers
- Department of Urology, Ohio Medical University (NEOMed/Northeastern Ohio Universities College of Medicine, Rootstown, OH, USA, 44272.,St Thomas Hospital, The Apatone Development Center, Summa Research Foundation, Akron, OH, USA, 44310
| | - Henryk S Taper
- Laboratoire de Pharmacologie Toxicologique et Cancérologique, School of Pharmacy, Université Catholique de Louvain, Brussels, Belgium, 1200
| |
Collapse
|
9
|
Fibromodulin Gene Variants (FMOD) as Potential Biomarkers for Prostate Cancer and Benign Prostatic Hyperplasia. DISEASE MARKERS 2022; 2022:5215247. [PMID: 35686032 PMCID: PMC9173908 DOI: 10.1155/2022/5215247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
Abstract
By the year 2050, the world's elderly population may increase exponentially, raising the rate of disease characteristic of this group, such as prostate cancer (PCa) and benign prostatic hyperplasia (BPH). Prostate disorders have a multifactorial etiology, especially age and genetic factors. Currently, PCa is the second most frequent neoplasm in the male population worldwide. The fibromodulin gene encodes a small leucine-rich proteoglycan (SLRP) which acts in the collagen fibrillogenesis pathway, cell adhesion, and modulation of TGF-β signaling pathways, which has been recently associated with PCa. The present study sequenced the coding region of the FMOD in a sample of 44 PCa, 90 BPH, and 82 controls from a Brazilian population, and the results identified 6 variants: 2 missenses (p.(Tyr42Ser) and p.(Pro24Ala)); 3 synonymous (p.(His253=), p.(Asn353=), and p.(Glu79=)); and 1 intronic (c.980-114A>G). Of these, p.(Tyr42Ser), p.(Pro24Ala), and p.(Asn353=) are rare variants, and p.(Tyr42Ser) was predicted as potential pathogenic by the algorithms used here, in addition to not being observed in controls, suggesting that may be a potential biomarker for development of PCa and BPH. In conclusion, we identified for the first time, in Brazilian individuals with PCa and BPH, a potentially pathogenic variant in the analysis of FMOD gene. Further studies are needed to investigate the deleterious effect of this variant on the structure and/or function of the FMOD protein.
Collapse
|
10
|
Hu Q, Chen G, Wang L, Cui X, Chang C, Fu Q. Nanoreactor of sarcosine oxidase-embedded ZIFs activates fluorescent response for diagnosis of prostate cancer. NEW J CHEM 2022. [DOI: 10.1039/d1nj06169k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorometric method was developed to detect sarcosine based on SOX@ZIF-8, which possessed great linearity, specificity, and easy operation.
Collapse
Affiliation(s)
- Qianqian Hu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Medical University, Xi’an 710038, China
| | - Guoning Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Lu Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xia Cui
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Chun Chang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Qiang Fu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Pharmaceutical Analysis, College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
11
|
Hu Q, Chen G, Han J, Wang L, Cui X, Wang P, Chang C, Fu Q. Determination of sarcosine based on magnetic cross-linked enzyme aggregates for diagnosis of prostate cancer. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Multiplexed Prostate Cancer Companion Diagnostic Devices. SENSORS 2021; 21:s21155023. [PMID: 34372259 PMCID: PMC8347987 DOI: 10.3390/s21155023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022]
Abstract
Prostate cancer (PCa) remains one of the most prominent forms of cancer for men. Since the early 1990s, Prostate-Specific Antigen (PSA) has been a commonly recognized PCa-associated protein biomarker. However, PSA testing has been shown to lack in specificity and sensitivity when needed to diagnose, monitor and/or treat PCa patients successfully. One enhancement could include the simultaneous detection of multiple PCa-associated protein biomarkers alongside PSA, also known as multiplexing. If conventional methods such as the enzyme-linked immunosorbent assay (ELISA) are used, multiplexed detection of such protein biomarkers can result in an increase in the required sample volume, in the complexity of the analytical procedures, and in adding to the cost. Using companion diagnostic devices such as biosensors, which can be portable and cost-effective with multiplexing capacities, may address these limitations. This review explores recent research for multiplexed PCa protein biomarker detection using optical and electrochemical biosensor platforms. Some of the novel and potential serum-based PCa protein biomarkers will be discussed in this review. In addition, this review discusses the importance of converting research protocols into multiplex point-of-care testing (xPOCT) devices to be used in near-patient settings, providing a more personalized approach to PCa patients’ diagnostic, surveillance and treatment management.
Collapse
|
13
|
Zhang Y, Fu Y. Comprehensive Analysis and Identification of an Immune-Related Gene Signature with Prognostic Value for Prostate Cancer. Int J Gen Med 2021; 14:2931-2942. [PMID: 34234523 PMCID: PMC8254424 DOI: 10.2147/ijgm.s321319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
Background The tumor microenvironment (TME) has recently been proven to play a crucial role in the development and prognosis of tumors. However, the current knowledge on the potential of the TME in prostate cancer (PCa) remains scarce. Purpose This study aims to elucidate the value of TME-related genes for PCa prognosis by integrative bioinformatics analysis. Materials and Methods We downloaded the immune and stromal scores of PCa samples via the ESTIMATE and correlated these scores to clinicopathological characteristics and recurrence-free survival (RFS) of patients. Based on these scores, the TME-related differentially expressed genes were identified for functional enrichment analysis. Cox regression analyses were performed to identify prognostic genes and establish a predictive risk model. Moreover, gene set enrichment analysis (GSEA) was performed to evaluate the relationship between risk score and immune pathway. Results The stromal and immune scores were associated with clinicopathological characteristics and RFS in PCa patients. In total, 238 intersecting differentially expressed genes were identified. Functional enrichment analysis further revealed that these genes dramatically participated in the immune-related pathways. The immune-related risk model was built with C-type lectin domain containing 7A (CLEC7A) and collagen type XI alpha 1 chain (COL11A1) using Cox regression analyses. Kaplan–Meier survival analysis showed that the expression levels of CLEC7A and COL11A1 were significantly associated with the RFS. Further, the RFS time in high-risk group was significantly shorter than that in low-risk group. The areas under the curve for the risk model in predicting 3- and 5-year RFS rates were 0.694 and 0.731, respectively. GSEA suggested that immunosuppression existed in high-risk PCa patients. Conclusion CLEC7A and COL11A1 were selected to build a predictive risk model, which may help clinicians to assess the prognosis of PCa patients and select appropriate targets for immunotherapy.
Collapse
Affiliation(s)
- Yongrui Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Yaowen Fu
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| |
Collapse
|
14
|
Ju G, Zhu Y, Du T, Cao W, Lin J, Li C, Xu D, Wang Z. MiR-197 Inhibitor Loaded AbCD133@MSNs@GNR Affects the Development of Prostate Cancer Through Targeting ITGAV. Front Cell Dev Biol 2021; 9:646884. [PMID: 34195187 PMCID: PMC8238009 DOI: 10.3389/fcell.2021.646884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer is one of the most severe male malignant tumors, which ranks second in mortality rate among all tumors. Traditional methods of treatment for prostate cancer produce obvious side effects and a high recurrence rate. Cancer stem cells are considered to be a group of cells that determine the proliferation, metastasis, and drug resistance of tumor. Prostate cancer therapy based on microRNAs and prostate cancer stem cells (PCSCs) has been a research hot spot in this field. Previous studies have reported that miR-197 plays an important role in the occurrence and development of prostate cancer, but the molecular mechanism of miR-197 on the development of prostate cancer has not been reported yet. In this study, we verified that miR-197 is significantly overexpressed in prostate cancer tissues and prostate cancer cells. Then, we verified that miR-197 expression affects the proliferation, invasion, and metastasis of prostate cancer cells by regulating integrin subunit alpha V (ITGAV) expression through STAT5 pathway, and the results indicated that the miR-197 inhibitor can be a prostate cancer suppressor. Then we synthesized the AbCD133@GNR@MSNs@miR-197 inhibitor drug carrier, in which 35.42 μg of the miR-197 inhibitor could be loaded in 1 mg of AbCD133@GNR@MSNs. The AbCD133@GNR@MSNs@miR-197 inhibitor demonstrated good photothermal properties and photothermal controlled-release properties. The modified CD133 antibodies on the surface of the nano drug carrier helped more drug carriers to enter the PCSCs. The pharmacodynamic effects of the AbCD133@GNR@MSNs@miR-197 inhibitor on PCSCs in vivo and in vitro were studied under near-infrared radiation. The results showed that the AbCD133@GNR@MSNs@miR-197 inhibitor prepared in this study could not only significantly suppress the development of PCSCs through ITGAV/STAT5 pathway but also significantly suppress the growth of PCSC solid tumors. In short, our study verified that miR-197 regulates the development of PCSCs through STAT5 pathway by targeting ITGAV, and the AbCD133@MSNs@GNR@miR-197 inhibitor could be a potential suppressor used in prostate cancer treatment. In short, our study found that miR-197 affected the development of prostate cancer by regulating ITGAV. The AbCD133@GNR@MSNs@miR-197 inhibitor prepared in this study could suppress the development and growth of PCSCs in vitro and in solid tumors not only by targeting the ITGAV but also through photothermal therapy. Our study not only provides a theoretical basis for the clinical treatment of prostate cancer but also provides a research scheme of drug loading and microRNA-based photothermal controlled therapy for prostate cancer.
Collapse
Affiliation(s)
- Guanqun Ju
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yingjian Zhu
- Department of Urology, Shanghai Jiangqiao Hospital, Shanghai General Hospital Jiading Branch, Shanghai, China
| | - Tao Du
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wanli Cao
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianhai Lin
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chun Li
- Key Laboratory of Functional Genomic and Molecular Diagnosis of Gansu Province, Lanzhou, China
| | - Dongliang Xu
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China.,Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhijun Wang
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
15
|
Zheng C, Wang J, Zhang J, Hou S, Zheng Y, Wang Q. Myelin and lymphocyte protein 2 regulates cell proliferation and metastasis through the Notch pathway in prostate adenocarcinoma. Transl Androl Urol 2021; 10:2067-2077. [PMID: 34159087 PMCID: PMC8185687 DOI: 10.21037/tau-21-244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Myelin and lymphocyte protein 2 (MAL2) is a proven oncogene in some human tumors. However, currently, little is known about the function of MAL2 in prostate adenocarcinoma (PRAD). This study sought to investigate the role of MAL2 on PRAD progression. Methods MAL2 expression in PRAD was first analyzed by the Gene Expression Profiling Interactive Analysis (GEPIA) database. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay and Western blot assay were used to detect the expression of MAL2 in PRAD tissues and cell lines. Additionally, immunohistochemistry (IHC) straining was used to detect the expression of MAL2 in PRAD pathological tissues. The Cell Counting Kit-8 (CCK-8) assay, clone formation assay and Flow cytometry were performed to investigate the effect of MAL2 on PRAD cell proliferation and cell apoptosis. Cell migration and invasion were measured by Transwell assay. The effect of MAL2 on epithelial-mesenchymal transition (EMT) progression and the Notch signaling pathway in PRAD was also investigated. Results MAL2 was discovered to be obviously upregulated in PRAD tissues and cell lines. The upregulation of MAL2 was closely associated with tumor, nodes and metastases (TNM) stage, the Gleason score and metastasis of PRAD patients, and affected the prognosis of PRAD patients. Functionally, the depletion of MAL2 suppressed cell proliferation, migration, invasion, and EMT progression, and promoted cell apoptosis of PRAD cells. In an in vivo experiment, MAL2 knockdown significantly suppressed tumor growth in mice. Further, inhibiting the Notch pathway reversed the effect of MAL2 knockdown on PRAD progression. Conclusions In sum, MAL2 was found to be upregulated in PRAD, and appears to act as a carcinogen in PRAD. Additionally, MAL2 appears to regulate PRAD progression through the Notch signaling pathway.
Collapse
Affiliation(s)
- Chenglong Zheng
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of TCM, Beijing, China.,Department of Andrology, Beijing Gulou Hospital of TCM, Beijing, China
| | - Ji Wang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of TCM, Beijing, China
| | - Jian Zhang
- Department of Preventive Treatment, Beijing Hospital of TCM, Capital Medical University, Beijing, China
| | - Shujuan Hou
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of TCM, Beijing, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of TCM, Beijing, China
| | - Qi Wang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of TCM, Beijing, China
| |
Collapse
|
16
|
Miranda A, Santos T, Carvalho J, Alexandre D, Jardim A, Caneira CF, Vaz V, Pereira B, Godinho R, Brito D, Chu V, Conde JP, Cruz C. Aptamer-based approaches to detect nucleolin in prostate cancer. Talanta 2021; 226:122037. [PMID: 33676639 DOI: 10.1016/j.talanta.2020.122037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022]
Abstract
We have investigated the expression of nucleolin (NCL) in liquid biopsies of prostate cancer (PCa) patients and healthy controls to determine its correlation with tumor prognosis. To detect NCL we used a modified AS1411 aptamer designated by AS1411-N5. In presence of NCL, AS1411-N5 increases the fluorescence by assuming a G-quadruplex (G4) structure, while in the absence of NCL the fluorescence signal remains quenched. The structural characterization of AS1411-N5 was performed by biophysical studies, which demonstrated the formation of G4 parallel conformation in the presence of 100 mM K+ and the ability to recognize NCL with high affinity (KD = 138.1 ± 5.5 nM). Furthermore, the clinical relevance of NCL in PCa liquid biopsies was assessed by using an NCL-based ELISA assay. The protein was measured in the peripheral blood mononuclear cells (PBMCs) cell lysate of 158 individuals, including PCa patients and healthy individuals. The results depicted a remarkable increase of NCL levels in the PBMC's lysate of PCa patients (mean of 626.1 pg/mL whole blood) when compared to healthy individuals (mean of 198.5 pg/mL whole blood). The ELISA results also provided evidence for the usefulness of determining NCL levels in advanced PCa stages. Furthermore, a microfluidic assay showed the ability of AS1411-N5 in recognizing NCL in spiked human plasma samples.
Collapse
Affiliation(s)
- André Miranda
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Tiago Santos
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Josué Carvalho
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Daniela Alexandre
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Andreia Jardim
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal; Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - CatarinaR F Caneira
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - Vírgilio Vaz
- Serviço de Urologia do Centro Hospitalar Universitário Cova da Beira (CHUCB), Covilhã, Portugal
| | - Bruno Pereira
- Faculdade de Ciências da Saúde, Universidade da Beira Interior (FCS-UBI), Covilhã, Portugal; Instituto Português de Oncologia (IPO), Coimbra, Portugal
| | | | - Duarte Brito
- Instituto Português de Oncologia (IPO), Coimbra, Portugal
| | - Virgínia Chu
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - João P Conde
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal.
| |
Collapse
|
17
|
Assadi M, Jokar N, Ghasemi M, Nabipour I, Gholamrezanezhad A, Ahmadzadehfar H. Precision Medicine Approach in Prostate Cancer. Curr Pharm Des 2021; 26:3783-3798. [PMID: 32067601 DOI: 10.2174/1381612826666200218104921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/12/2020] [Indexed: 12/19/2022]
Abstract
Prostate cancer is the most prevalent type of cancer and the second cause of death in men worldwide. Various diagnostic and treatment procedures are available for this type of malignancy, but High-grade or locally advanced prostate cancers showed the potential to develop to lethal phase that can be causing dead. Therefore, new approaches are needed to prolong patients' survival and to improve their quality of life. Precision medicine is a novel emerging field that plays an essential role in identifying new sub-classifications of diseases and in providing guidance in treatment that is based on individual multi-omics data. Multi-omics approaches include the use of genomics, transcriptomics, proteomics, metabolomics, epigenomics and phenomics data to unravel the complexity of a disease-associated biological network, to predict prognostic biomarkers, and to identify new targeted drugs for individual cancer patients. We review the impact of multi-omics data in the framework of systems biology in the era of precision medicine, emphasising the combination of molecular imaging modalities with highthroughput techniques and the new treatments that target metabolic pathways involved in prostate cancer.
Collapse
Affiliation(s)
- Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Narges Jokar
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mojtaba Ghasemi
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Los Angeles, CA 90033, United States
| | | |
Collapse
|
18
|
Gilgunn S, Murphy K, Stöckmann H, Conroy PJ, Murphy TB, Watson RW, O’Kennedy RJ, Rudd PM, Saldova R. Glycosylation in Indolent, Significant and Aggressive Prostate Cancer by Automated High-Throughput N-Glycan Profiling. Int J Mol Sci 2020; 21:ijms21239233. [PMID: 33287410 PMCID: PMC7730228 DOI: 10.3390/ijms21239233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 11/25/2022] Open
Abstract
The diagnosis and treatment of prostate cancer (PCa) is a major health-care concern worldwide. This cancer can manifest itself in many distinct forms and the transition from clinically indolent PCa to the more invasive aggressive form remains poorly understood. It is now universally accepted that glycan expression patterns change with the cellular modifications that accompany the onset of tumorigenesis. The aim of this study was to investigate if differential glycosylation patterns could distinguish between indolent, significant, and aggressive PCa. Whole serum N-glycan profiling was carried out on 117 prostate cancer patients’ serum using our automated, high-throughput analysis platform for glycan-profiling which utilizes ultra-performance liquid chromatography (UPLC) to obtain high resolution separation of N-linked glycans released from the serum glycoproteins. We observed increases in hybrid, oligomannose, and biantennary digalactosylated monosialylated glycans (M5A1G1S1, M8, and A2G2S1), bisecting glycans (A2B, A2(6)BG1) and monoantennary glycans (A1), and decreases in triantennary trigalactosylated trisialylated glycans with and without core fucose (A3G3S3 and FA3G3S3) with PCa progression from indolent through significant and aggressive disease. These changes give us an insight into the disease pathogenesis and identify potential biomarkers for monitoring the PCa progression, however these need further confirmation studies.
Collapse
Affiliation(s)
- Sarah Gilgunn
- School of Biotechnology, Dublin City University, D09 V209 Dublin 9, Ireland; (S.G.); (R.J.O.)
- National Centre for Sensor Research, Biomedical Diagnostics Institute, Dublin City University, D09 V209 Dublin 9, Ireland
| | - Keefe Murphy
- Department of Mathematics and Statistics, Maynooth University, Maynooth, W23 F2K8 Co. Kildare, Ireland;
| | - Henning Stöckmann
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland; (H.S.); (P.M.R.)
| | - Paul J. Conroy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC 3800, Australia;
| | - T. Brendan Murphy
- UCD School of Mathematics and Statistics, University College Dublin, D04 V1W8 Dublin 4, Ireland;
| | - R. William Watson
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin 4, Ireland;
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, D04 V1W8 Dublin 4, Ireland
| | - Richard J. O’Kennedy
- School of Biotechnology, Dublin City University, D09 V209 Dublin 9, Ireland; (S.G.); (R.J.O.)
- National Centre for Sensor Research, Biomedical Diagnostics Institute, Dublin City University, D09 V209 Dublin 9, Ireland
- Research, Development and Innovation, Qatar Foundation, Luqta Street, Doha 5825, Qatar
| | - Pauline M. Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland; (H.S.); (P.M.R.)
- Bioprocessing Technology Institute, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland; (H.S.); (P.M.R.)
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, D04 V1W8 Dublin 4, Ireland
- Correspondence: ; Tel.: +353-1215-8147
| |
Collapse
|
19
|
Zou Y, Tang F, Talbert JC, Ng CM. Using medical claims database to develop a population disease progression model for leuprorelin-treated subjects with hormone-sensitive prostate cancer. PLoS One 2020; 15:e0230571. [PMID: 32208461 PMCID: PMC7092991 DOI: 10.1371/journal.pone.0230571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 03/03/2020] [Indexed: 12/27/2022] Open
Abstract
Androgen deprivation therapy (ADT) is a widely used treatment for patients with hormone-sensitive prostate cancer (PCa). However, duration of treatment response varies, and most patients eventually experience disease progression despite treatment. Leuprorelin is a luteinizing hormone-releasing hormone (LHRH) agonist, a commonly used form of ADT. Prostate-specific antigen (PSA) is a biomarker for monitoring disease progression and predicting treatment response and survival in PCa. However, time-dependent profile of tumor regression and growth in patients with hormone-sensitive PCa on ADT has never been fully characterized. In this analysis, nationwide medical claims database provided by Humana from 2007 to 2011 was used to construct a population-based disease progression model for patients with hormone-sensitive PCa on leuprorelin. Data were analyzed by nonlinear mixed effects modeling utilizing Monte Carlo Parametric Expectation Maximization (MCPEM) method in NONMEM. Covariate selection was performed using a modified Wald’s approximation method with backward elimination (WAM-BE) proposed by our group. 1113 PSA observations from 264 subjects with malignant PCa were used for model development. PSA kinetics were well described by the final covariate model. Model parameters were well estimated, but large between-patient variability was observed. Hemoglobin significantly affected proportion of drug-resistant cells in the original tumor, while baseline PSA and antiandrogen use significantly affected treatment effect on drug-sensitive PCa cells (Ds). Population estimate of Ds was 3.78 x 10−2 day-1. Population estimates of growth rates for drug-sensitive (Gs) and drug-resistant PCa cells (GR) were 1.96 x 10−3 and 6.54 x 10−4 day-1, corresponding to a PSA doubling time of 354 and 1060 days, respectively. Proportion of the original PCa cells inherently resistant to treatment was estimated to be 1.94%. Application of population-based disease progression model to clinical data allowed characterization of tumor resistant patterns and growth/regression rates that enhances our understanding of how PCa responds to ADT.
Collapse
Affiliation(s)
- Yixuan Zou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States of America
- Department of Statistics, University of Kentucky, Lexington, KY, United States of America
| | - Fei Tang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States of America
| | - Jeffery C. Talbert
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States of America
| | - Chee M. Ng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States of America
- NewGround Pharmaceutical Consulting LLC, Foster City, CA, United States of America
- * E-mail:
| |
Collapse
|
20
|
Lima AR, Pinto J, Azevedo AI, Barros-Silva D, Jerónimo C, Henrique R, de Lourdes Bastos M, Guedes de Pinho P, Carvalho M. Identification of a biomarker panel for improvement of prostate cancer diagnosis by volatile metabolic profiling of urine. Br J Cancer 2019; 121:857-868. [PMID: 31588123 PMCID: PMC6889512 DOI: 10.1038/s41416-019-0585-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The lack of sensitive and specific biomarkers for the early detection of prostate cancer (PCa) is a major hurdle to improve patient management. METHODS A metabolomics approach based on GC-MS was used to investigate the performance of volatile organic compounds (VOCs) in general and, more specifically, volatile carbonyl compounds (VCCs) present in urine as potential markers for PCa detection. RESULTS Results showed that PCa patients (n = 40) can be differentiated from cancer-free subjects (n = 42) based on their urinary volatile profile in both VOCs and VCCs models, unveiling significant differences in the levels of several metabolites. The models constructed were further validated using an external validation set (n = 18 PCa and n = 18 controls) to evaluate sensitivity, specificity and accuracy of the urinary volatile profile to discriminate PCa from controls. The VOCs model disclosed 78% sensitivity, 94% specificity and 86% accuracy, whereas the VCCs model achieved the same sensitivity, a specificity of 100% and an accuracy of 89%. Our findings unveil a panel of 6 volatile compounds significantly altered in PCa patients' urine samples that was able to identify PCa, with a sensitivity of 89%, specificity of 83%, and accuracy of 86%. CONCLUSIONS It is disclosed a biomarker panel with potential to be used as a non-invasive diagnostic tool for PCa.
Collapse
Affiliation(s)
- Ana Rita Lima
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Joana Pinto
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana Isabel Azevedo
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Barros-Silva
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP) Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP) Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
- Department of Pathology and Molecular Immunology-Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP) Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
- Department of Pathology and Molecular Immunology-Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Paula Guedes de Pinho
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Márcia Carvalho
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal.
- UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Porto, Portugal.
| |
Collapse
|
21
|
Budna-Tukan J, Świerczewska M, Mazel M, Cieślikowski WA, Ida A, Jankowiak A, Antczak A, Nowicki M, Pantel K, Azria D, Zabel M, Alix-Panabières C. Analysis of Circulating Tumor Cells in Patients with Non-Metastatic High-Risk Prostate Cancer before and after Radiotherapy Using Three Different Enumeration Assays. Cancers (Basel) 2019; 11:cancers11060802. [PMID: 31185699 PMCID: PMC6627099 DOI: 10.3390/cancers11060802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
The characterization of circulating tumor cells (CTCs) can lead to a promising strategy for monitoring residual or relapsing prostate cancer (PCa) after local therapy. The aim of this study was to compare three innovative technologies for CTC enumeration in 131 high-risk patients with PCa, before and after radiotherapy, combined with androgen deprivation. The CTC number was tested using the FDA-cleared CellSearch® system, the dual fluoro-EPISPOT assay that only detects functional CTCs, and the in vivo CellCollector® technology. The highest percentage of CTC-positive patients was detected with the CellCollector® (48%) and dual fluoro-EPISPOT (42%) assays, while the CellSearch® system presented the lowest rate (14%). Although the concordance among methods was only 23%, the cumulative positivity rate was 79%. A matched-pair analysis of the samples before, and after, treatment suggested a trend toward a decrease in CTC count after treatment with all methods. CTC tended to be positivity correlated with age for the fluoro-EPISPOT assay and with PSA level from the data of three assays. Combining different CTC assays improved CTC detection rates in patients with non-metastatic high-risk PCa before and after treatment. Our findings do not support the hypothesis that radiotherapy leads to cancer cell release in the circulation.
Collapse
Affiliation(s)
- Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland.
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland.
| | - Martine Mazel
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France.
| | | | - Agnieszka Ida
- Department of Urology, Poznan University of Medical Sciences, 61-285 Poznan, Poland.
| | - Agnieszka Jankowiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland.
| | - Andrzej Antczak
- Department of Urology, Poznan University of Medical Sciences, 61-285 Poznan, Poland.
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland.
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - David Azria
- Radiation Oncology Department, Montpellier Cancer Institute, 34298 Montpellier, France.
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland.
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland.
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France.
| |
Collapse
|
22
|
Wen YA, Zhou BW, Lv DJ, Shu FP, Song XL, Huang B, Wang C, Zhao SC. Phosphoglycerate mutase 1 knockdown inhibits prostate cancer cell growth, migration, and invasion. Asian J Androl 2019; 20:178-183. [PMID: 29271400 PMCID: PMC5858104 DOI: 10.4103/aja.aja_57_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) is upregulated in many cancer types and involved in cell proliferation, migration, invasion, and apoptosis. However, the relationship between PGAM1 and prostate cancer is poorly understood. The present study investigated the changes in PGAM1 expression in prostate cancer tissues compared with normal prostate tissues and examined the cellular function of PGAM1 and its relationship with clinicopathological variables. Immunohistochemistry and Western blotting revealed that PGAM1 expression was upregulated in prostate cancer tissues and cell lines. PGAM1 expression was associated with Gleason score (P = 0.01) and T-stage (P = 0.009). Knockdown of PGAM1 by siRNA in PC-3 and 22Rv1 prostate cancer cell lines inhibited cell proliferation, migration, and invasion and enhanced cancer cell apoptosis. In a nude mouse xenograft model, PGAM1 knockdown markedly suppressed tumor growth. Deletion of PGAM1 resulted in decreased expression of Bcl-2, enhanced expression of Bax, caspases-3 and inhibition of MMP-2 and MMP-9 expression. Our results indicate that PGAM1 may play an important role in prostate cancer progression and aggressiveness, and that it might be a valuable marker of poor prognosis and a potential therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Yao-An Wen
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Bo-Wei Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dao-Jun Lv
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fang-Peng Shu
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xian-Lu Song
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Bin Huang
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shan-Chao Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
23
|
Schillaci O, Scimeca M, Trivigno D, Chiaravalloti A, Facchetti S, Anemona L, Bonfiglio R, Santeusanio G, Tancredi V, Bonanno E, Urbano N, Mauriello A. Prostate cancer and inflammation: A new molecular imaging challenge in the era of personalized medicine. Nucl Med Biol 2019; 68-69:66-79. [PMID: 30770226 DOI: 10.1016/j.nucmedbio.2019.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/23/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
The relationship between cancer and inflammation is one of the most important fields for both clinical and translational research. Despite numerous studies reported interesting and solid data about the prognostic value of the presence of inflammatory infiltrate in cancers, the biological role of inflammation in prostate cancer development is not yet fully clarified. The characterization of molecular pathways that connect altered inflammatory response and prostate cancer progression can provide the scientific rationale for the identification of new prognostic and predictive biomarkers. Specifically, the detection of infiltrating immune cells or related-cytokines by histology and/or by molecular imaging techniques could profoundly change the management of prostate cancer patients. In this context, the anatomic pathology and imaging diagnostic teamwork can provide a valuable support for the validation of new targets for diagnosis and therapy of prostate cancer lesions associated to the inflammatory infiltrate. The aim of this review is to summarize the current literature about the role of molecular imaging technique and anatomic pathology in the study of the mutual interaction occurring between prostate cancer and inflammation. Specifically, we reported the more recent advances in molecular imaging and histological methods for the early detection of prostate lesions associated to the inflammatory infiltrate.
Collapse
Affiliation(s)
- Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; University of San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Donata Trivigno
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Simone Facchetti
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Lucia Anemona
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Giuseppe Santeusanio
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Virginia Tancredi
- University of San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy; Department of Systems Medicine, School of Sport and Exercise Sciences, University of Rome "Tor Vergata", Rome, Italy
| | - Elena Bonanno
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Nicoletta Urbano
- Nuclear Medicine, Policlinico "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| |
Collapse
|
24
|
Al Bashir S, Alzoubi A, Alfaqih MA, Kheirallah K, Smairat A, Haddad H, Al-Dwairy A, Fawwaz BAB, Alzoubi M, Trpkov K. PTEN Loss in a Prostate Cancer Cohort From Jordan. Appl Immunohistochem Mol Morphol 2019; 28:389-394. [PMID: 30614821 DOI: 10.1097/pai.0000000000000732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Deletion of phosphatase and tensin homolog (PTEN) in prostate cancer has been associated with early biochemical recurrence, increased metastatic potential, and androgen independence. We evaluated the status of PTEN loss in a cohort of prostate cancer patients from Jordan. We investigated 71 patients with prostate cancer and 52 control subjects with benign prostatic hyperplasia (BPH). PTEN status was assessed by immunohistochemistry. PTEN mutations on exons 1, 2, 5, and 8 were also evaluated by polymerase chain reaction single-stranded conformation polymorphism (PCR-SSCP). We found PTEN loss in 42 of 71 (59.2%) evaluated prostate cancer cases by immunohistochemistry. In contrast, 51 of 52 BPH (98.1%) cases had an intact PTEN. In a subset of 24 prostate cancer cases evaluated by PCR-SSCP, we found PTEN mutations in 15 (62.5%) cases, whereas 22 (91.7%) of BPH controls lacked PTEN mutations. Exon 5 was the most frequently mutated exon (37.5%). Although the loss of PTEN was not significantly correlated with the Gleason Score (GS) or the World Health Organization (WHO)-International Society of Urological Pathology (ISUP) Grade Group (GG), we found higher frequency of PTEN loss (64%) in patients with GS≥4+3/GG≥3, compared with patients with GS≤3+4/GG≤2 (47.6%). In this first study to address the question of PTEN loss in a predominantly Arab population, we documented the frequency of PTEN loss in prostate cancer patients from Jordan, which was found to be higher than in comparable cohorts from East Asia, and was at the higher end of the range of reported frequency of PTEN loss in respective cohorts from North America and Western Europe. Although there was more frequent PTEN loss in cancers with higher GS/GG, this was not statistically significant.
Collapse
Affiliation(s)
| | | | | | - Khalid Kheirallah
- Public Health and Community Medicine, Faculty of Medicine, Jordan University of Science and Technology
| | | | | | | | | | - Mazhar Alzoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
25
|
Huang ZG, He RQ, Mo ZN. Prognostic value and potential function of splicing events in prostate adenocarcinoma. Int J Oncol 2018; 53:2473-2487. [PMID: 30221674 PMCID: PMC6203144 DOI: 10.3892/ijo.2018.4563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
Abstract
Prostate adenocarcinoma (PRAD) is one of the most common types of malignancy in males and at present, effective prognostic indicators are limited. The development of PRAD has been associated with abnormalities in alternative splicing (AS), a requisite biological process of gene expression in eukaryotic cells; however, the prognostic value of AS products and splicing events remains to be elucidated. In the present study, the data of splicing events and the clinical information of PRAD patients were obtained from The Cancer Genome Atlas (TCGA)SpliceSeq and TCGA databases, respectively. A prognostic index (PI) was generated from disease-free survival-associated splicing events (DFS-SEs), which were identified by univariate/multivariate Cox regression analysis. A total of 6,909 DFS-SEs were identified in PRAD. The corresponding genes for the DFS-SEs were significantly enriched in mitochondria and their associated pathways according to Gene Ontology annotation and in the pathways of fatty acid metabolism, oxidative phosphorylation and Huntington's disease according to a Kyoto Encyclopedia of Genes and Genomes pathway analysis. The PI for mutually exclusive exons had the greatest ability to predict the probability of five-year disease-free survival of patients with PRAD, with an area under the time-dependent receiver-operating characteristic curve of 0.7606. Patients with PRAD, when divided into a 'low' and a 'high' group based on their median PI for exon skip values, exhibited a marked difference in disease-free survival (low vs. high, 3,588.45±250.51 vs. 1,531.08±136.50 days; P=7.43×10−9). A correlation network between DFS-SEs of splicing factors and non-splicing factors was constructed to determine the potential mechanisms in PRAD, which included the potential regulatory interaction between the splicing event of splicing factor RNA binding motif protein 5-alternate terminator (AT)-64957 and the splicing event of non-splicing factor heterochromatin protein 1 binding protein 3-AT-939. In conclusion, the PIs derived from DFS-SEs are valuable prognostic factors for patients with PRAD, and the function of splicing events in PRAD deserves further exploration.
Collapse
Affiliation(s)
- Zhi-Guang Huang
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong-Quan He
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zeng-Nan Mo
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
26
|
Lima AR, Pinto J, Bastos MDL, Carvalho M, Guedes de Pinho P. NMR-based metabolomics studies of human prostate cancer tissue. Metabolomics 2018; 14:88. [PMID: 30830350 DOI: 10.1007/s11306-018-1384-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/11/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Prostate cancer (PCa) is one of the most prevalent cancers in men worldwide. Serum prostate-specific antigen (PSA) remains the most used biomarker in the detection and management of patients with PCa, in spite of the problems related with its low specificity, false positive rate and overdiagnosis. Furthermore, PSA is unable to discriminate indolent from aggressive PCa, which can lead to overtreatment. Early diagnosed and treated PCa can have a good prognosis and is potentially curable. Therefore, the discovery of new biomarkers able to detect clinically significant aggressive PCa is urgently needed. METHODS This revision was based on an electronic literature search, using Pubmed, with Nuclear Magnetic Resonance (NMR), tissue and prostate cancer as keywords. All metabolomic studies performed in PCa tissues by NMR spectroscopy, from 2007 until March 2018, were included in this review. RESULTS In the context of cancer, metabolomics allows the analysis of the entire metabolic profile of cancer cells. Several metabolic alterations occur in cancer cells to sustain their abnormal rates of proliferation. NMR proved to be a suitable methodology for the evaluation of these metabolic alterations in PCa tissues, allowing to unveil alterations in citrate, spermine, choline, choline-related compounds, lactate, alanine and glutamate. CONCLUSION The study of the metabolic alterations associated with PCa progression, accomplished by the analysis of PCa tissue by NMR, offers a promising approach for elucidating biochemical pathways affected by PCa and also for discovering new clinical biomarkers. The main metabolomic alterations associated with PCa development and promising biomarker metabolites for diagnosis of PCa were outlined.
Collapse
Affiliation(s)
- Ana Rita Lima
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Joana Pinto
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Márcia Carvalho
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Porto, Portugal
| | - Paula Guedes de Pinho
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
27
|
GC-MS-Based Endometabolome Analysis Differentiates Prostate Cancer from Normal Prostate Cells. Metabolites 2018; 8:metabo8010023. [PMID: 29562689 PMCID: PMC5876012 DOI: 10.3390/metabo8010023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer (PCa) is an important health problem worldwide. Diagnosis and management of PCa is very complex because the detection of serum prostate specific antigen (PSA) has several drawbacks. Metabolomics brings promise for cancer biomarker discovery and for better understanding PCa biochemistry. In this study, a gas chromatography–mass spectrometry (GC-MS) based metabolomic profiling of PCa cell lines was performed. The cell lines include 22RV1 and LNCaP from PCa with androgen receptor (AR) expression, DU145 and PC3 (which lack AR expression), and one normal prostate cell line (PNT2). Regarding the metastatic potential, PC3 is from an adenocarcinoma grade IV with high metastatic potential, DU145 has a moderate metastatic potential, and LNCaP has a low metastatic potential. Using multivariate analysis, alterations in levels of several intracellular metabolites were detected, disclosing the capability of the endometabolome to discriminate all PCa cell lines from the normal prostate cell line. Discriminant metabolites included amino acids, fatty acids, steroids, and sugars. Six stood out for the separation of all the studied PCa cell lines from the normal prostate cell line: ethanolamine, lactic acid, β-Alanine, L-valine, L-leucine, and L-tyrosine.
Collapse
|
28
|
Serum levels of miR-320 family members are associated with clinical parameters and diagnosis in prostate cancer patients. Oncotarget 2017. [PMID: 29535815 PMCID: PMC5828216 DOI: 10.18632/oncotarget.23781] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We studied the association of the serum levels of the microRNA family members miR-320a/-b/-c with clinico-pathological data to assess their applicability as diagnostic biomarker in prostate cancer (PCa) patients. The levels of miR-320a/-b/-c in 3 groups were evaluated by qRT-PCR (145 patients with PCa, 31 patients with benign prostatic hyperplasia (BPH) and 19 healthy controls). The levels of the three family members of miR-320 were directly correlated within each group (P < 0.001), but they differed significantly among the three groups (P < 0.001). The serum levels of the miR-320 family members were significantly increased in older patients compared to younger patients (≤ 66 years vs. > 66 years, P ≤ 0.001). In addition, the levels of all three miR-320 family members were significantly different in patients with low tumor stage compared with those with high tumor stage (miR-320a: P = 0.034; miR-320b: P = 0.006; miR-320c: P = 0.007) and in patients with low serum PSA compared with those with high serum PSA (≤ 4 ng vs. > 4 ng; miR-320a: P = 0.003; miR-320b: P = 0.003; miR-320c: P = 0.006). The levels of these miRNAs were inversely correlated with serum PSA levels. Detection in the serum samples of PCa patients with or without PSA relapse revealed higher levels of miR-320a/-b/-c in the group without PSA relapse before/after radical prostatectomy than in that with PCa relapse. In summary, the differences among the PCa/BPH/healthy control groups with respect to miR-320a/-b/-c levels in conjunction with higher levels in patients without a PSA relapse than in those with a relapse suggest the diagnostic potential of these miRNA-320 family members in PCa patients.
Collapse
|
29
|
Wang J, Chen X, Tong S, Zhou H, Sun J, Gou Y, Wu F, Hu J, Xu J, Ding G. Overexpression of WDFY2 inhibits prostate cancer cell growth and migration via inactivation of Akt pathway. Tumour Biol 2017; 39:1010428317704821. [PMID: 28653900 DOI: 10.1177/1010428317704821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy and is the second leading deadly reason among male cancer. WDFY2, which is found to be a cancer-specific fusion gene with CDKN2D in ovarian cancer, is a new gene with unknown function in carcinogenesis. In this study, we investigated the role of WDFY2 in prostate cancer development. We examined WDFY2 expression in human prostate tissue specimens and prostate cancer cell lines BPH-1, LNCaP, PC3, and DU-145. Overexpression of WDFY2 was performed to evaluate the role of WDFY2 in cell proliferation, migration, and colony formation of prostate cancer cells. We analyzed the clinical impact and prognosis of WDFY2 expression on the progress of prostate cancer through data from online datasets. Our results showed that WDFY2 had lower expression level in prostate tumors than in normal tissues. Overexpression of WDFY2 in prostate cancer cells DU145 and PC-3 led to the suppression of cancer cell migration and colony formation. Furthermore, we found that WDFY2 exerted its role by suppressing the activity of Akt pathway other than the epithelial-mesenchymal transition progression. In conclusion, we have uncovered WDFY2 as a tumor suppressor gene and a new potential biomarker for cancer progression. Our results showed that WDFY2 inhibited cancer cell colony formation and migration via suppressing Akt pathway, making it a potential new therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Jianqing Wang
- 1 Department of Urology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Xu Chen
- 2 Institutes of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Shijun Tong
- 1 Department of Urology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Huihui Zhou
- 3 Department of Pathology, Affiliated Yuhuangding Hospital of Qingdao University, Qingdao, P.R. China
| | - Jianliang Sun
- 1 Department of Urology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Yuancheng Gou
- 1 Department of Urology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Fei Wu
- 1 Department of Urology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Jimeng Hu
- 1 Department of Urology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Jianfeng Xu
- 1 Department of Urology, Huashan Hospital, Fudan University, Shanghai, P.R. China.,4 Program for Personalized Cancer Care and Department of Surgery, North Shore University Health System, Evanston, IL, USA
| | - Guanxiong Ding
- 1 Department of Urology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
30
|
Hu C, Chen B, Zhou Y, Shan Y. High expression of Rab25 contributes to malignant phenotypes and biochemical recurrence in patients with prostate cancer after radical prostatectomy. Cancer Cell Int 2017; 17:45. [PMID: 28400705 PMCID: PMC5387234 DOI: 10.1186/s12935-017-0411-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
Background Ras-related protein 25 (Rab25) functions either as an oncogene or a tumor suppressor with a cancer type-dependent manner. We aimed to investigate clinical significance of Rab25 in prostate cancer (PCa). Methods Quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry were respectively performed to detect Rab25 mRNA and protein expression in PCa and adjacent non-cancerous prostate tissues. Receiver-operating characteristic curve analysis was used to evaluate predictive diagnostic value of Rab25. Associations of Rab25 expression with various clinicopathological characteristics and biochemical recurrence-free survival of PCa patients were statistically evaluated. In vitro, PCa cell proliferation was assessed by CCK-8 assay, and the cell migration and invasion activities were evaluated by Transwell assay, following the transfection of Rab25 small interfering RNA. Results Ras-related protein 25 mRNA and protein expression in PCa tissues were both significantly higher than adjacent non-cancerous prostate tissues (both P < 0.001). The area under the curve of Rab25 immunoreactive score (IRS) was 0.896 (P < 0.001) with 74.0% sensitivity and 95.0% specificity. High Rab25 IRS was significantly associated with high Gleason score (P = 0.02) and distant metastasis (P = 0.01). PCa patients with high Rab25 IRS had shorter overall and biochemical recurrence-free survivals than those with low Rab25 IRS (both P < 0.001). Cox regression analysis identified Rab25 as an independent biomarker for both overall and biochemical recurrence-free survivals of PCa patients. By exploring its activities in vitro, Rab25 downregulation was found to inhibit PCa cell proliferation, migration and invasion. Conclusions High expression of Rab25 may contribute to malignant progression and biochemical recurrence of PCa patients after radical prostatectomy. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0411-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunhui Hu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Beibei Chen
- Department of Intensive Care Unit, Huai'an First People's Hospital, Huai'an, 223300 Jiangsu China
| | - Yibin Zhou
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| | - Yuxi Shan
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 China
| |
Collapse
|
31
|
Liang Q, Liu H, Xie LX, Li X, Zhang AH. High-throughput metabolomics enables biomarker discovery in prostate cancer. RSC Adv 2017. [DOI: 10.1039/c6ra25007f] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and the second leading cause of cancer death among men in the world.
Collapse
Affiliation(s)
- Qun Liang
- ICU Center
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Han Liu
- Simon Fraser University (SFU)
- Burnaby
- Canada
| | - Li-xiang Xie
- ICU Center
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Xue Li
- ICU Center
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Ai-Hua Zhang
- ICU Center
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| |
Collapse
|
32
|
Biomarker Discovery in Human Prostate Cancer: an Update in Metabolomics Studies. Transl Oncol 2016; 9:357-70. [PMID: 27567960 PMCID: PMC5006818 DOI: 10.1016/j.tranon.2016.05.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/21/2016] [Accepted: 05/31/2016] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and the second leading cause of cancer death among men in Western countries. Current screening techniques are based on the measurement of serum prostate specific antigen (PSA) levels and digital rectal examination. A decisive diagnosis of PCa is based on prostate biopsies; however, this approach can lead to false-positive and false-negative results. Therefore, it is important to discover new biomarkers for the diagnosis of PCa, preferably noninvasive ones. Metabolomics is an approach that allows the analysis of the entire metabolic profile of a biological system. As neoplastic cells have a unique metabolic phenotype related to cancer development and progression, the identification of dysfunctional metabolic pathways using metabolomics can be used to discover cancer biomarkers and therapeutic targets. In this study, we review several metabolomics studies performed in prostatic fluid, blood plasma/serum, urine, tissues and immortalized cultured cell lines with the objective of discovering alterations in the metabolic phenotype of PCa and thus discovering new biomarkers for the diagnosis of PCa. Encouraging results using metabolomics have been reported for PCa, with sarcosine being one of the most promising biomarkers identified to date. However, the use of sarcosine as a PCa biomarker in the clinic remains a controversial issue within the scientific community. Beyond sarcosine, other metabolites are considered to be biomarkers for PCa, but they still need clinical validation. Despite the lack of metabolomics biomarkers reaching clinical practice, metabolomics proved to be a powerful tool in the discovery of new biomarkers for PCa detection.
Collapse
|
33
|
Pu F, Salarian M, Xue S, Qiao J, Feng J, Tan S, Patel A, Li X, Mamouni K, Hekmatyar K, Zou J, Wu D, Yang JJ. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI. NANOSCALE 2016; 8:12668-82. [PMID: 26961235 PMCID: PMC5528195 DOI: 10.1039/c5nr09071g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd(3+) contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd(3+) binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 ± 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 ± 0.1 × 10(-22) M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM(-1) s(-1) and r2 of 37.9 mM(-1) s(-1) per Gd (55.2 and 75.8 mM(-1) s(-1) per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM(-1) s(-1) per Gd (188.0 mM(-1) s(-1) per molecule) and r1 of 18.6 mM(-1) s(-1) per Gd (37.2 mM(-1) s(-1) per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI.
Collapse
Affiliation(s)
- Fan Pu
- Departments of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Haeck JC, Bol K, de Ridder CMA, Brunel L, Fehrentz JA, Martinez J, van Weerden WM, Bernsen MR, de Jong M, Veenland JF. Imaging heterogeneity of peptide delivery and binding in solid tumors using SPECT imaging and MRI. EJNMMI Res 2016; 6:3. [PMID: 26769345 PMCID: PMC4713394 DOI: 10.1186/s13550-016-0160-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/05/2016] [Indexed: 01/03/2023] Open
Abstract
Background As model system, a solid-tumor patient-derived xenograft (PDX) model characterized by high peptide receptor expression and histological tissue homogeneity was used to study radiopeptide targeting. In this solid-tumor model, high tumor uptake of targeting peptides was expected. However, in vivo SPECT images showed substantial heterogeneous radioactivity accumulation despite homogenous receptor distribution in the tumor xenografts as assessed by in vitro autoradiography. We hypothesized that delivery of peptide to the tumor cells is dictated by adequate local tumor perfusion. To study this relationship, sequential SPECT/CT and MRI were performed to assess the role of vascular functionality in radiopeptide accumulation. Methods High-resolution SPECT and dynamic contrast-enhanced (DCE)-MRI were acquired in six mice bearing PC295 PDX tumors expressing the gastrin-releasing peptide (GRP) receptor. Two hours prior to SPECT imaging, animals received 25 MBq 111In(DOTA-(βAla)2-JMV594) (25 pmol). Images were acquired using multipinhole SPECT/CT. Directly after SPECT imaging, MR images were acquired on a 7.0-T dedicated animal scanner. DCE-MR images were quantified using semi-quantitative and quantitative models. The DCE-MR and SPECT images were spatially aligned to compute the correlations between radioactivity and DCE-MRI-derived parameters over the tumor. Results Whereas histology, in vitro autoradiography, and multiple-weighted MRI scans all showed homogenous tissue characteristics, both SPECT and DCE-MRI showed heterogeneous distribution patterns throughout the tumor. The average Spearman’s correlation coefficient between SPECT and DCE-MRI ranged from 0.57 to 0.63 for the “exchange-related” DCE-MRI perfusion parameters. Conclusions A positive correlation was shown between exchange-related DCE-MRI perfusion parameters and the amount of radioactivity accumulated as measured by SPECT, demonstrating that vascular function was an important aspect of radiopeptide distribution in solid tumors. The combined use of SPECT and MRI added crucial information on the perfusion efficiency versus radiopeptide uptake in solid tumors and showed that functional tumor characteristics varied locally even when the tissue appeared homogenous on current standard assessment techniques. Electronic supplementary material The online version of this article (doi:10.1186/s13550-016-0160-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J C Haeck
- Department of Radiology, Erasmus MC, Rotterdam, the Netherlands. .,Department of Medical Informatics, Erasmus MC, Rotterdam, the Netherlands. .,Department of Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, the Netherlands.
| | - K Bol
- Department of Radiology, Erasmus MC, Rotterdam, the Netherlands.,Department of Medical Informatics, Erasmus MC, Rotterdam, the Netherlands.,Department of Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, the Netherlands
| | - C M A de Ridder
- Department of Urology, Erasmus MC, Rotterdam, the Netherlands
| | - L Brunel
- IBMM, UMR 5247, CNRS, ENSCM, Faculté de Pharmacie, Université Montpellier, Montpellier, France
| | - J A Fehrentz
- IBMM, UMR 5247, CNRS, ENSCM, Faculté de Pharmacie, Université Montpellier, Montpellier, France
| | - J Martinez
- IBMM, UMR 5247, CNRS, ENSCM, Faculté de Pharmacie, Université Montpellier, Montpellier, France
| | - W M van Weerden
- Department of Urology, Erasmus MC, Rotterdam, the Netherlands
| | - M R Bernsen
- Department of Radiology, Erasmus MC, Rotterdam, the Netherlands.,Department of Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, the Netherlands
| | - M de Jong
- Department of Radiology, Erasmus MC, Rotterdam, the Netherlands.,Department of Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, the Netherlands
| | - J F Veenland
- Department of Radiology, Erasmus MC, Rotterdam, the Netherlands.,Department of Medical Informatics, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
35
|
Huang L, Li M, Wang D, He J, Wu W, Zeng Q, Li J, Xiao M, Hu J, He Y, Li Y, Mai L, Liu W. Overexpressed Rce1 is positively correlated with tumor progression and predicts poor prognosis in prostate cancer. Hum Pathol 2016; 47:109-14. [DOI: 10.1016/j.humpath.2015.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
|
36
|
Li S, Wu Z, Chen Y, Kang Z, Wang H, He P, Zhang X, Hu T, Zhang Q, Cai Y, Xu X, Guan M. Diagnostic and prognostic value of tissue and circulating levels of Ephrin-A2 in prostate cancer. Tumour Biol 2015; 37:5365-74. [PMID: 26561474 DOI: 10.1007/s13277-015-4398-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022] Open
Abstract
Ephrin-A2, a member of the Eph/ephrin family, is associated with tumorigenesis and tumor progression. This study aimed to assess the diagnostic and prognostic value of both serum and tissue levels of Ephrin-A2 in prostate cancer (PCa) management. One hundred and forty-five frozen prostate tissues, 55 paraffin-embedded prostate tissues, 88 serum samples, and seven prostate cell lines (RWPE-1, LNCaP, LNCaP-LN3, PC-3, PC-3M, PC-3M-LN4, and DU145) were examined via quantitative reverse transcription-PCR (qRT-PCR), immunohistochemistry, enzyme-linked immunosorbent assay, and western blotting. Induced Ephrin-A2 messenger RNA (mRNA) or protein expression was detected in 8.6 % (5/58) benign prostatic hyperplasia (BPH), 59.8 % (52/87) PCa, and five prostate cancer cell lines. Ephrin-A2 immunostaining was present in 6.7 % (1/15) patients with BPHs and 62.5 % (25/40) clinically localized PCa. Accordingly, serum Ephrin-A2 was significantly higher in PCa patients compared to those in the BPH patients and controls (P < 0.001). The expression of Ephrin-A2 was higher in tumor patients with an elevated Gleason score or T3-T4 staging. Ephrin-A2 expression was correlated with Ki-67 expression in PCa patients, both at the gene scale and protein level. Our data indicate that Ephrin-A2 is a potential diagnostic and prognostic biomarker and a promising molecular therapeutic target to attenuate prostate cancer progression.
Collapse
Affiliation(s)
- Shibao Li
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China.,Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhiyuan Wu
- Department of Laboratory Medicine, Huashan Hospital North, Fudan University, Shanghai, China
| | - Yuming Chen
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China
| | - Zhihua Kang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China
| | - Hua Wang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China
| | - Ping He
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xinju Zhang
- Central Laboratory, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Tingting Hu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China
| | - Qunfeng Zhang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China.,Department of Laboratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yanqun Cai
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China.,Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Xiao Xu
- Central Laboratory, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China. .,Department of Laboratory Medicine, Huashan Hospital North, Fudan University, Shanghai, China. .,Central Laboratory, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China.
| |
Collapse
|
37
|
Pencik J, Schlederer M, Gruber W, Unger C, Walker SM, Chalaris A, Marié IJ, Hassler MR, Javaheri T, Aksoy O, Blayney JK, Prutsch N, Skucha A, Herac M, Krämer OH, Mazal P, Grebien F, Egger G, Poli V, Mikulits W, Eferl R, Esterbauer H, Kennedy R, Fend F, Scharpf M, Braun M, Perner S, Levy DE, Malcolm T, Turner SD, Haitel A, Susani M, Moazzami A, Rose-John S, Aberger F, Merkel O, Moriggl R, Culig Z, Dolznig H, Kenner L. STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nat Commun 2015; 6:7736. [PMID: 26198641 PMCID: PMC4525303 DOI: 10.1038/ncomms8736] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/04/2015] [Indexed: 12/27/2022] Open
Abstract
Prostate cancer (PCa) is the most prevalent cancer in men. Hyperactive STAT3 is thought to be oncogenic in PCa. However, targeting of the IL-6/STAT3 axis in PCa patients has failed to provide therapeutic benefit. Here we show that genetic inactivation of Stat3 or IL-6 signalling in a Pten-deficient PCa mouse model accelerates cancer progression leading to metastasis. Mechanistically, we identify p19(ARF) as a direct Stat3 target. Loss of Stat3 signalling disrupts the ARF-Mdm2-p53 tumour suppressor axis bypassing senescence. Strikingly, we also identify STAT3 and CDKN2A mutations in primary human PCa. STAT3 and CDKN2A deletions co-occurred with high frequency in PCa metastases. In accordance, loss of STAT3 and p14(ARF) expression in patient tumours correlates with increased risk of disease recurrence and metastatic PCa. Thus, STAT3 and ARF may be prognostic markers to stratify high from low risk PCa patients. Our findings challenge the current discussion on therapeutic benefit or risk of IL-6/STAT3 inhibition.
Collapse
Affiliation(s)
- Jan Pencik
- Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria
| | - Michaela Schlederer
- Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Gruber
- Department of Molecular Biology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Christine Unger
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Steven M. Walker
- Center for Cancer Research and Cell Biology, Queen's University Belfast, BT7 1NN Belfast, UK
| | - Athena Chalaris
- Institute of Biochemistry, University of Kiel, 24098 Kiel, Germany
| | - Isabelle J. Marié
- Department of Pathology and NYU Cancer Institute, NYU School of Medicine, New York 10016, USA
- Department of Microbiology and NYU Cancer Institute, NYU School of Medicine, New York 10016, USA
| | - Melanie R. Hassler
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tahereh Javaheri
- Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria
| | - Osman Aksoy
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Jaine K. Blayney
- NI Stratified Medicine Research Group, University of Ulster, BT47 6SB Londonderry, UK
| | - Nicole Prutsch
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Anna Skucha
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Merima Herac
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver H. Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Peter Mazal
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria
| | - Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Valeria Poli
- Molecular Biotechnology Center (MBC), Department of Genetics, Biology and Biochemistry, University of Turin, Turin 10126, Italy
| | - Wolfgang Mikulits
- Department of Medicine I, Division: Institute for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Robert Eferl
- Department of Medicine I, Division: Institute for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard Kennedy
- Center for Cancer Research and Cell Biology, Queen's University Belfast, BT7 1NN Belfast, UK
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Marcus Scharpf
- Institute of Pathology and Neuropathology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Martin Braun
- Institute of Pathology, Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, 53127 Bonn, Germany
| | - Sven Perner
- Institute of Pathology, Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, 53127 Bonn, Germany
| | - David E. Levy
- Department of Pathology and NYU Cancer Institute, NYU School of Medicine, New York 10016, USA
- Department of Microbiology and NYU Cancer Institute, NYU School of Medicine, New York 10016, USA
| | - Tim Malcolm
- Department of Pathology, University of Cambridge, CB2 0QQ Cambridge, UK
| | - Suzanne D. Turner
- Department of Pathology, University of Cambridge, CB2 0QQ Cambridge, UK
| | - Andrea Haitel
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Susani
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ali Moazzami
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Stefan Rose-John
- Institute of Biochemistry, University of Kiel, 24098 Kiel, Germany
| | - Fritz Aberger
- Department of Molecular Biology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Olaf Merkel
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria
- Unit for Translational Methods in Cancer Research, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
- Unit of Pathology of Laboratory Animals (UPLA), University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
38
|
Magnetic Resonance Imaging-Ultrasound Fusion Targeted Prostate Biopsy in a Consecutive Cohort of Men with No Previous Biopsy: Reduction of Over Detection through Improved Risk Stratification. J Urol 2015; 194:1601-6. [PMID: 26100327 DOI: 10.1016/j.juro.2015.06.078] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2015] [Indexed: 11/20/2022]
Abstract
PURPOSE MRF-TB (magnetic resonance imaging-ultrasound fusion targeted prostate biopsy) may improve the detection of prostate cancer in men presenting for prostate biopsy. We report clinical outcomes of 12-core systematic biopsy and MRF-TB in men who presented for primary biopsy and further describe pathological characteristics of cancers detected by systematic biopsy and not by MRF-TB. MATERIALS AND METHODS Clinical outcomes of 452 consecutive men who underwent prebiopsy multiparametric magnetic resonance imaging followed by MRF-TB and systematic biopsy at our institution between June 2012 and June 2015 were captured in an institutional review board approved database. Clinical characteristics, biopsy results and magnetic resonance imaging suspicion scores were queried from the database. RESULTS Prostate cancer was detected in 207 of 382 men (54.2%) with a mean±SD age of 64±8.5 years and mean±SEM prostate specific antigen 6.8±0.3 ng/ml who met study inclusion criteria. The cancer detection rate of systematic biopsy and MRF-TB was 49.2% and 43.5%, respectively (p=0.006). MRF-TB detected more Gleason score 7 or greater cancers than systematic biopsy (117 of 132 or 88.6% vs 102 of 132 or 77.3%, p=0.037). Of 41 cancers detected by systematic biopsy but not by MRF-TB 34 (82.9%) demonstrated Gleason 6 disease, and 26 (63.4%) and 34 (82.9%) were clinically insignificant by Epstein criteria and a UCSF CAPRA (University of California-San Francisco-Cancer of the Prostate Risk Assessment) score of 2 or less, respectively. CONCLUSIONS In men presenting for primary prostate biopsy MRF-TB detects more high grade cancers than systematic biopsy. Most cancers detected by systematic biopsy and not by MRF-TB are at clinically low risk. Prebiopsy magnetic resonance imaging followed by MRF-TB decreases the detection of low risk cancers while significantly improving the detection and risk stratification of high grade disease.
Collapse
|
39
|
Roberts MJ, Chow CWK, Schirra HJ, Richards R, Buck M, Selth LA, Doi SAR, Samaratunga H, Perry-Keene J, Payton D, Yaxley J, Lavin MF, Gardiner RA. Diagnostic performance of expression of PCA3, Hepsin and miR biomarkers inejaculate in combination with serum PSA for the detection of prostate cancer. Prostate 2015; 75:539-49. [PMID: 25597828 DOI: 10.1002/pros.22942] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/11/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND METHODS Here, we report on the evaluation of the diagnostic performance of ejaculate-derived PCA3, Hepsin, and miRNAs to complement serum PSA to detect prostate cancer. cDNA was prepared from 152 candidate specimens following RNA isolation and amplification for PSA, PCA3 and Hepsin qPCR, with 66 having adequate RNA for all three assays. Small RNA sequencing and examination of PCa-associated miRNAs miR-200b, miR-200c, miR-375 and miR-125b was performed on 20 specimens. We compared findings from prostate biopsies using D'Amico and PRIAS classifications and in relation to whole gland histopathology following radical prostatectomy. Multivariate logistic regression modeling and clinical risk (incorporating standard clinicopathological variables) were performed for all ejaculate-based markers. RESULTS While Hepsin alone was not of predictive value, the Hepsin:PCA3 ratio together with serum PSA, expressed as a univariate composite score based on multivariate logistic regression, was shown to be a better predictor than PSA alone of prostate cancer status (AUC 0.724 vs. 0.676) and risk, using D'Amico (AUC 0.701 vs. 0.680) and PRIAS (AUC 0.679 vs. 0.659) risk stratification criteria as classified using prostate biopsies. It was also possible to analyse a subgroup of patients for miRNA expression with miR-200c (AUC 0.788) and miR-375 (AUC 0.758) showing best single marker performance, while a combination of serum PSA, miR-200c, and miR-125b further improved prediction for prostate cancer status when compared to PSA alone determined by biopsy (AUC 0.869 vs. 0.672; P < 0.05), and risk (D'Amico/PRIAS) as well as by radical prostatectomy histology (AUC 0.809 vs. 0.690). For prostate cancer status by biopsy, at a sensitivity of 90%, the specificity of the test increased from 11% for PSA alone to 67% for a combination of PSA, miR-200c, and miR-125b. CONCLUSIONS These results show that use of a combination of different types of genetic markers in ejaculate together with serum PSA are at least as sensitive as those reported in DRE urine. Furthermore, a combination of serum PSA and selected miRNAs improved prediction of prostate cancer status. This approach may be helpful in triaging patients for MRI and biopsy, when confirmed by larger studies.
Collapse
Affiliation(s)
- Matthew J Roberts
- The University of Queensland, Centre for Clinical Research, Brisbane, Qld, Australia; Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Qld, Australia; The University of Queensland, Centre for Advanced Imaging, Brisbane, Qld, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Inflammation and prostate cancer: friends or foe? Inflamm Res 2015; 64:275-86. [PMID: 25788425 DOI: 10.1007/s00011-015-0812-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Prostate cancer is the most common non-cutaneous malignancy diagnosed in men. Moving from histological observations since a long time, it has been recognized that innate and adaptive immunity actively participates in the pathogenesis, surveillance, and progression of prostate cancer. MATERIALS AND METHODS A PubMed and Web of Science databases search was performed for studies providing evidence on the roles of the innate and adaptive immunity during the development and progression of prostate cancer. CONCLUSIONS There are growing evidences that chronic inflammation is involved in the regulation of cellular events in prostate carcinogenesis, including disruption of the immune response and regulation of the tumor microenvironment. This review discusses the role played by the innate and adaptive immune system in the local progression of prostate cancer, and the prognostic information that we can currently understand and exploit.
Collapse
|
41
|
Wach S, Al-Janabi O, Weigelt K, Fischer K, Greither T, Marcou M, Theil G, Nolte E, Holzhausen HJ, Stöhr R, Huppert V, Hartmann A, Fornara P, Wullich B, Taubert H. The combined serum levels of miR-375 and urokinase plasminogen activator receptor are suggested as diagnostic and prognostic biomarkers in prostate cancer. Int J Cancer 2015; 137:1406-16. [PMID: 25754273 DOI: 10.1002/ijc.29505] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/12/2015] [Indexed: 12/17/2022]
Abstract
This study aimed to assess the applicability of miR-375 in combination with the soluble urokinase plasminogen activator receptor (suPAR) protein as a diagnostic and/or prognostic biomarker for prostate cancer (PCa) patients. miR-375 levels by qRT-PCR and suPAR levels by ELISA were evaluated in serum samples from 146 PCa patients, 35 benign prostate hyperplasia (BPH) patients and 18 healthy controls. Antigen levels of suPAR differed between healthy controls and PCa or BPH patients, whereas miR-375 levels differed between PCa and BPH patients or healthy controls (p < 0.001). Additionally, suPAR levels differed between the Gleason sum groups GS = 7 versus GS > 7, with higher levels in the latter group (p = 0.011), and miR-375 levels were higher in the tumor stage group T3-T4 compared with the T1-T2 group (p = 0.039). A high concentration of suPAR was associated with a poor disease-specific survival (DSS; p = 0.039). The combination of suPAR and miR-375 levels identified a patient group possessing high levels for both parameters. This was associated with a poorer 10-year overall survival (OS) and DSS, with a 6.38-fold increased risk of death and a 7.68-fold increased risk of tumor-related death (p = 0.00026 and p = 0.014; univariate Cox's regression analysis). In a multivariate Cox's regression analysis PCa patients with high levels of suPAR and miR-375 showed a 5.72-fold increased risk of death in OS (p = 0.006). In summary, the differences between the PCa/BPH/healthy control cohorts for either suPAR and miR-375 levels in conjunction with the association of combined high suPAR/miR-375 levels with a poor prognosis suggest a diagnostic and prognostic impact for PCa patients.
Collapse
Affiliation(s)
- Sven Wach
- Department of Urology, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Omar Al-Janabi
- Department of Urology, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katrin Weigelt
- Department of Urology, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kersten Fischer
- Department of Urology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Marios Marcou
- Department of Urology, Martin Luther University Halle-Wittenberg, Halle, Germany.,Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Gerit Theil
- Department of Urology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Elke Nolte
- Department of Urology, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Robert Stöhr
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Verena Huppert
- Department of Urology, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paolo Fornara
- Department of Urology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Bernd Wullich
- Department of Urology, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Helge Taubert
- Department of Urology, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
42
|
Shen Y, Ma Z, Chen F, Dong Q, Hu Q, Bai L, Chen J. Effective photothermal chemotherapy with docetaxel-loaded gold nanospheres in advanced prostate cancer. J Drug Target 2015; 23:568-76. [DOI: 10.3109/1061186x.2015.1018910] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Jiang H, He D, Xu H, Liu J, Qu L, Tong S. Cullin-1 promotes cell proliferation via cell cycle regulation and is a novel in prostate cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:1575-1583. [PMID: 25973042 PMCID: PMC4396298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND There is no reliable marker available for early detection, diagnostic confirmation, or disease prognosis available of prostate cancer (PCa). We aimed to evaluate the function of Cullin-1 and unravel its underlying molecular mechanism to develop novel treatment options equivalent to PCa. METHOD We used immunohistochemistry to analyze the correlation between Cullin-1 expression and clinicopathologic variables and patient survival. The Cullin-1 level was tested in PCa cells. The role of regulation of Cullin-1 in PCa was applied in vitro and vivo. In addition, we further investigated the signaling pathway of Cullin-1 in prostate cancer cell proliferation. RESULT We first discovered that Cullin-1 expression was upregulated in human PCa tissues and inversely related with PCa differentiation. We then found that high expression of Cullin-1 protein suggested a poor prognosis in PCa patients. Also, Cullin-1 promotes PCa cell proliferation in vitro and tumor growth in vivo. We then found that the mechanism of Cullin-1 regulation on cell-cycle progression is due to increased expression of p21 and p27, and decreased expression of cyclin D1 and cyclin E after Cullin-1 knockdown. CONCLUSION Cullin-1 exerts multiple biological effects in the PCa cell line. Through promoting proliferation and by countering cisplatin-induced apoptosis, Cullin-1 has been deeply implicated in the pathogenesis and development of PCa.
Collapse
|
44
|
Ihnatovych I, Sielski NL, Hofmann WA. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues. PLoS One 2014; 9:e108609. [PMID: 25259793 PMCID: PMC4178219 DOI: 10.1371/journal.pone.0108609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/01/2014] [Indexed: 12/15/2022] Open
Abstract
Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C). Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP) model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate-) cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN) lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.
Collapse
Affiliation(s)
- Ivanna Ihnatovych
- Department of Physiology and Biophysics, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - Neil L. Sielski
- Department of Physiology and Biophysics, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - Wilma A. Hofmann
- Department of Physiology and Biophysics, University at Buffalo-State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
Lin YL, Xie PG, Wang L, Ma JG. Aberrant methylation of protocadherin 17 and its clinical significance in patients with prostate cancer after radical prostatectomy. Med Sci Monit 2014; 20:1376-82. [PMID: 25091018 PMCID: PMC4136940 DOI: 10.12659/msm.891247] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Aberrant methylation of protocadherin 17 (PCDH17) has been reported in several human cancers. However, the methylation status of PCDH17 in prostate cancer and its clinical significance remains unclear. The aim of this study was to investigate the methylation status of PCDH17 and its clinical significance in patients with prostate cancer after radical prostatectomy. Material/Methods The methylation status of PCDH17 in 152 prostate cancer tissues and 51 non-tumoral prostate tissues was examined by methylation-specific PCR (MSP). Then the association between PCDH17 methylation and clinicopathologic parameters was analyzed. Kaplan-Meier survival analysis, log-rank test and multivariate Cox proportional hazard model analysis were used to analyze the correlation between PCDH17 methylation and prognosis of patients with prostate cancer. Results Our data demonstrated that PCDH17 methylation occurred frequently in prostate cancer. PCDH17 methylation was significantly associated with higher pathological Gleason score (P=0.0315), advanced pathological stage (P=0.0260), higher level of preoperative PSA (P=0.0354), positive angiolymphatic invasion (P=0.0461), positive lymph node metastasis (P=0.0362), and biochemical recurrence (BCR) (P=0.0018). In addition, PCDH17 methylation was an independent predictor of poor biochemical recurrence-free (BCR-free) survival and overall survival for patients with prostate cancer. Conclusions PCDH17 methylation is a frequent tumor-specific event in prostate cancer, and is significantly correlated with shorter BCR-free survival and overall survival of patients with prostate cancer after radical prostatectomy. PCDH17 methylation in tumor samples after radical prostatectomy may be used as an independent prognostic biomarker.
Collapse
Affiliation(s)
- Ying-Li Lin
- Department of Urology, Xuzhou Cancer Hospital (Affiliated Xuzhou Hospital, Jiangsu University), Xuzhou, China (mainland)
| | - Pei-Gen Xie
- Department of Spine Surgery, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (mainland)
| | - Li Wang
- Department of Urology, Affiliated Hospital, Hebei University of Engineering, Handan, China (mainland)
| | - Jian-Guo Ma
- Department of Urology, Third Hospital, Hebei Medical University, Shijiazhuang, China (mainland)
| |
Collapse
|