1
|
Pacheco-Torres J, Sharma RK, Mironchik Y, Wildes F, Brennen WN, Artemov D, Krishnamachary B, Bhujwalla ZM. Prostate fibroblasts and prostate cancer associated fibroblasts exhibit different metabolic, matrix degradation and PD-L1 expression responses to hypoxia. Front Mol Biosci 2024; 11:1354076. [PMID: 38584702 PMCID: PMC10995317 DOI: 10.3389/fmolb.2024.1354076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/06/2024] [Indexed: 04/09/2024] Open
Abstract
Fibroblasts are versatile cells that play a major role in wound healing by synthesizing and remodeling the extracellular matrix (ECM). In cancers, fibroblasts play an expanded role in tumor progression and dissemination, immunosuppression, and metabolic support of cancer cells. In prostate cancer (PCa), fibroblasts have been shown to induce growth and increase metastatic potential. To further understand differences in the functions of human PCa associated fibroblasts (PCAFs) compared to normal prostate fibroblasts (PFs), we investigated the metabolic profile and ECM degradation characteristics of PFs and PCAFs using a magnetic resonance imaging and spectroscopy compatible intact cell perfusion assay. To further understand how PFs and PCAFs respond to hypoxic tumor microenvironments that are often observed in PCa, we characterized the effects of hypoxia on PF and PCAF metabolism, invasion and PD-L1 expression. We found that under normoxia, PCAFs displayed decreased ECM degradation compared to PFs. Under hypoxia, ECM degradation by PFs increased, whereas PCAFs exhibited decreased ECM degradation. Under both normoxia and hypoxia, PCAFs and PFs showed significantly different metabolic profiles. PD-L1 expression was intrinsically higher in PCAFs compared to PFs. Under hypoxia, PD-L1 expression increased in PCAFs but not in PFs. Our data suggest that PCAFs may not directly induce ECM degradation to assist in tumor dissemination, but may instead create an immune suppressive tumor microenvironment that further increases under hypoxic conditions. Our data identify the intrinsic metabolic, ECM degradation and PD-L1 expression differences between PCAFs and PFs under normoxia and hypoxia that may provide novel targets in PCa treatment.
Collapse
Affiliation(s)
- Jesus Pacheco-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC, Madrid, Spain
| | - Raj Kumar Sharma
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Flonne Wildes
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - W. Nathaniel Brennen
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dmitri Artemov
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Bosso M, Haddad D, Al Madhoun A, Al-Mulla F. Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines 2024; 12:211. [PMID: 38255314 PMCID: PMC10813379 DOI: 10.3390/biomedicines12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.
Collapse
Affiliation(s)
- Mira Bosso
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| |
Collapse
|
3
|
Lin TH, Kuo CH, Zhang YS, Chen PT, Chen SH, Li YZ, Lee YR. Piperlongumine Induces Cellular Apoptosis and Autophagy via the ROS/Akt Signaling Pathway in Human Follicular Thyroid Cancer Cells. Int J Mol Sci 2023; 24:ijms24098048. [PMID: 37175755 PMCID: PMC10179299 DOI: 10.3390/ijms24098048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. Recently, the global incidence of TC has increased rapidly. Differentiated thyroid cancer includes papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma (FTC), which are the most common types of TC. Although PTCs and FTCs exert good prognoses and high survival rates, FTCs tend to be more aggressive than PTCs. There is an urgent need to improve patient outcomes by developing effective therapeutic agents for FTCs. Piperlongumine exerts anti-cancer effects in various human carcinomas, including human anaplastic TCs and PTCs. However, the anti-cancer effects of piperlongumine in FTCs and the underlying mechanisms are yet to be elucidated. Therefore, in the present study, we evaluated the effect of piperlongumine on cell proliferation, cell cycle, apoptosis, and autophagy in FTC cells with flowcytometry and Western blot. We observed that piperlongumine caused growth inhibition, cell cycle arrest, apoptosis induction, and autophagy elevation in FTC cells. Activities of reactive oxygen species and the downstream PI3K/Akt pathway were the underlying mechanisms involved in piperlongumine mediated anti-FTC effects. Advancements in our understanding of the effects of piperlongumine in FTC hold promise for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Tsung-Hsing Lin
- Department of Emergency Medicine, Kuang Tien General Hospital, Taichung City 433, Taiwan
| | - Chin-Ho Kuo
- Department of Hematology-Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Yi-Sheng Zhang
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Pin-Tzu Chen
- Department of Hematology-Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Yi-Zhen Li
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
4
|
Seydi H, Nouri K, Rezaei N, Tamimi A, Hassan M, Mirzaei H, Vosough M. Autophagy orchestrates resistance in hepatocellular carcinoma cells. Biomed Pharmacother 2023; 161:114487. [PMID: 36963361 DOI: 10.1016/j.biopha.2023.114487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/26/2023] Open
Abstract
Treatment resistance is one of the major barriers for therapeutic strategies in hepatocellular carcinoma (HCC). Many studies have indicated that chemotherapy and radiotherapy induce autophagy machinery (cell protective autophagy) in HCC cells. In addition, many experiments report a remarkable crosstalk between treatment resistance and autophagy pathways. Thus, autophagy could be one of the key factors enabling tumor cells to hinder induced cell death after medical interventions. Therefore, extensive research on the molecular pathways involved in resistance induction and autophagy have been conducted to achieve the desired therapeutic response. The key molecular pathways related to the therapy resistance are TGF-β, MAPK, NRF2, NF-κB, and non-coding RNAs. In addition, EMT, drug transports, apoptosis evasion, DNA repair, cancer stem cells, and hypoxia could have considerable impact on the hepatoma cell's response to therapies. These mechanisms protect tumor cells against various treatments and many studies have shown that each of them is connected to the molecular pathways of autophagy induction in HCC. Hence, autophagy inhibition may be an effective strategy to improve therapeutic outcome in HCC patients. In this review, we further highlight how autophagy leads to poor response during treatment through a complex molecular network and how it enhances resistance in primary liver cancer. We propose that combinational regimens of approved HCC therapeutic protocols plus autophagy inhibitors may overcome drug resistance in HCC therapy.
Collapse
Affiliation(s)
- Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Kosar Nouri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Islamic Republic of Iran
| | - Atena Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
5
|
Xu Y, Zhang Y, Hao W, Zhao W, Yang G, Jing C. Hypoxia-induced Circular RNA hsa_circ_0006508 Promotes the Warburg Effect in Colorectal Cancer Cells. Balkan Med J 2023; 40:21-27. [PMID: 36397308 PMCID: PMC9874253 DOI: 10.4274/balkanmedj.galenos.2022.2022-7-80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background The hypoxia-induced Warburg effect promotes colorectal cancer malignancy with altered circular RNA (circRNA) expression. Aims To investigate the association with the Warburg effect in colorectal cancer and whether has_circ_0006508 can be induced by hypoxia. Study design In vitro cell lines and human-sample study. Methods The biological functions of circ_0006508 and miR-1272 in the viability, colony formation, and glycolysis under hypoxic conditions were determined by loss-of-function and gain-of-function experiments. The chromatin immunoprecipitation assay was used to demonstrate the direct binding between circ_0006508 promoters and hypoxia-inducible factor 1α (HIF-1α). Transcription activity was subjected to the Luciferase reporter assay. The correlation of circ_0006508 and miR-1272 with overall survival was determined with the Kaplan-Meier analysis. Results Upregulated circ_0006508 and downregulated miR-1272 were observed in colorectal cancer samples, which was associated with the TNM stage and overall survival. Functional assays demonstrated that the hypoxia-induced upregulated circ_0006508 and downregulated miR-1272 promoted the viability and Warburg effect of colorectal cancer in vitro. Mechanistically, HIF-1α-induced circ_0006508 could directly sponge miR-1272, which played a suppressive role in glycolysis. Conclusion Circ_0006508-mediated miR-1272 inhibition could promote the malignant behaviors of colorectal cancer with an upregulated Warburg effect.
Collapse
Affiliation(s)
- Yugang Xu
- Department of General Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Qingdao, China
| | - Ying Zhang
- Department of Hepatobiliary Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Wenli Hao
- Department of General Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Qingdao, China
| | - Wen Zhao
- Department of General Surgery, The Second People’s Hospital of Daiyue District, Taian, China
| | - Guang Yang
- Department of General Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Qingdao, China
| | - Changqing Jing
- Department of General Surgery, Shandong Provincial Hospital, Shandong, China,* Address for Correspondence: Department of General Surgery, Shandong Provincial Hospital, Shandong, China E-mail:
| |
Collapse
|
6
|
Zhang X, Tai Z, Miao F, Huang H, Zhu Q, Bao L, Chen Z. Metabolism heterogeneity in melanoma fuels deactivation of immunotherapy: Predict before protect. Front Oncol 2022; 12:1046102. [PMID: 36620597 PMCID: PMC9813867 DOI: 10.3389/fonc.2022.1046102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Malignant melanoma is widely acknowledged as the most lethal skin malignancy. The metabolic reprogramming in melanoma leads to alterations in glycolysis and oxidative phosphorylation (OXPHOS), forming a hypoxic, glucose-deficient and acidic tumor microenvironment which inhibits the function of immune cells, resulting in a low response rate to immunotherapy. Therefore, improving the tumor microenvironment by regulating the metabolism can be used to improve the efficacy of immunotherapy. However, the tumor microenvironment (TME) and the metabolism of malignant melanoma are highly heterogeneous. Therefore, understanding and predicting how melanoma regulates metabolism is important to improve the local immune microenvironment of the tumor, and metabolism regulators are expected to increase treatment efficacy in combination with immunotherapy. This article reviews the energy metabolism in melanoma and its regulation and prediction, the integration of immunotherapy and metabolism regulators, and provides a comprehensive overview of future research focal points in this field and their potential application in clinical treatment.
Collapse
Affiliation(s)
- Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China,Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China,Department of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Huang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China,Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Leilei Bao
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China,Department of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China,*Correspondence: Zhongjian Chen, ; Leilei Bao,
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China,*Correspondence: Zhongjian Chen, ; Leilei Bao,
| |
Collapse
|
7
|
Correlation of Glucose Metabolism with Cancer and Intervention with Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2192654. [PMID: 36276846 PMCID: PMC9586738 DOI: 10.1155/2022/2192654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/17/2022] [Accepted: 09/10/2022] [Indexed: 11/07/2022]
Abstract
Cancer is a complex disease with several distinct characteristics, referred to as “cancer markers” one of which is metabolic reprogramming, which is a common feature that drives cancer progression. Over the last ten years, researchers have focused on the reprogramming of glucose metabolism in cancer. In cancer, the oxidative phosphorylation metabolic pathway is converted into the glycolytic pathway in order to meet the growth requirements of cancer cells, thereby creating a microenvironment that promotes cancer progression. The precise mechanism of glucose metabolism in cancer cells is still unknown, but it is thought to involve the aberrant levels of metabolic enzymes, the influence of the tumor microenvironment (TME), and the activation of tumor-promoting signaling pathways. It is suggested that glucose metabolism is strongly linked to cancer progression because it provides energy to cancer cells and interferes with antitumor drug pharmacodynamics. Therefore, it is critical to unravel the mechanism of glucose metabolism in tumors in order to gain a better understanding of tumorigenesis and to lay the groundwork for future research into the identification of novel diagnostic markers and therapeutic targets for cancer treatment. Traditional Chinese Medicine (TCM) has the characteristics of multiple targets, multiple components, and less toxic side effects and has unique advantages in tumor treatment. In recent years, researchers have found that a variety of Chinese medicine monomers and compound recipes play an antitumor role by interfering with the reprogramming of tumor metabolism. The underlying mechanisms of metabolism reprogramming of tumor cells and the role of TCM in regulating glucose metabolism are reviewed in this study, so as to provide a new idea for antitumor research in Chinese medicine.
Collapse
|
8
|
Keloid Nodule Metabolic Activity for Continuous Expansion. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2022; 10:e4492. [PMID: 36032373 PMCID: PMC9400939 DOI: 10.1097/gox.0000000000004492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
Background We previously reported that keloid nodules had such specific structures that higher expression of autophagy proteins and glycolytic markers was observed in the central zone fibroblasts than in marginal zone fibroblasts. The purpose of this study is to investigate how keloid nodules play a role in metabolic activity for continuous expansion. Methods A total of 57 nodules were randomly chosen from seven keloid samples and divided into four groups of disease duration (2, 4, 6, and 17 years). Immunohistochemical and immunofluorescent analyses were performed. Results Immunohistochemical analysis with anti-CD-31 confirmed that the nodules had a structure with a greater number of vessels in the marginal zone than in the central zone. The density of fibroblasts in nodules (190.29 ± 64.45) was significantly higher than that of surrounding connective tissue (140.18 ± 63.94) (P < 0.05).The area of each nodule increased for 2 to 4 years, then decreased, graphically represented by an approximately horizontal line, to 17 years. The ratio of total nodule area/dermis area increased as disease duration lengthened. The maximum ratio was the 17-year group at 48.01%. The nodule number/dermis area ratio rose approximately with advancing disease duration. Conclusions Instead of increasing the size of the nodules, their number and total area increased within the keloid lesions. We believe that the keloid nodules must play an important role in energy metabolic activity for continuous growth by increasing in number and total area.
Collapse
|
9
|
Chen J, Gao P, Peng L, Liu T, Wu F, Xu K, Chen L, Tan F, Xing P, Wang Z, Di J, Jiang B, Su X. Downregulation of STK25 promotes autophagy via the Janus kinase 2/signal transducer and activator of transcription 3 pathway in colorectal cancer. Mol Carcinog 2022; 61:572-586. [PMID: 35349179 DOI: 10.1002/mc.23403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
Autophagy plays a crucial role in colorectal cancer (CRC) development. Our previous study suggested that serine/threonine protein kinase 25 (STK25) regulates aerobic glycolysis in CRC cells. Glycolysis modulates cellular autophagy during tumor growth; however, the role of STK25 in autophagy remains unclear. In this study, we found that STK25 expression was decreased in CRC tissues and CRC patients with high STK25 expression had a favorable prognosis. Functional assays suggested that STK25 inhibition promoted autophagy in CRC cells. Overexpression of STK25 exhibited the opposite effects. Moreover, the results of western blot demonstrated that silencing STK25 induced autophagy by activating the JAK2/STAT3 pathway. Therefore, STK25 could be a potential indicator for therapies targeting the JAK2/STAT3 pathway in CRC.
Collapse
Affiliation(s)
- Jiangbo Chen
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Pin Gao
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Peng
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Tianqi Liu
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Fan Wu
- Inner Mongolia People's Hospital, Hohhot, China
| | - Kai Xu
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lei Chen
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Fei Tan
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Pu Xing
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Zaozao Wang
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiabo Di
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Beihai Jiang
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangqian Su
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
10
|
Chen S, Nishi M, Morine Y, Shimada M, Tokunaga T, Kashihara H, Takasu C, Yamada S, Wada Y. Epigallocatechin‑3‑gallate hinders metabolic coupling to suppress colorectal cancer malignancy through targeting aerobic glycolysis in cancer‑associated fibroblasts. Int J Oncol 2022; 60:19. [PMID: 35029285 PMCID: PMC8776327 DOI: 10.3892/ijo.2022.5309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
In recent times, researchers working on tumor metabolism have paid increasing attention to the tumor microenvironment. Emerging evidence has confirmed that epigenetic modifications of cancer-associated fibroblasts (CAFs) alters the characteristics of glucose metabolism to achieve a symbiotic relationship with the cancer cells. Epigallocatechin-3-gallate (EGCG) exerts anti-tumor effects via a variety of mechanisms, although the underlying mechanism that accounts for the effects of EGCG on glucose metabolic alterations of CAFs have yet to be elucidated. In the present study, through co-culture with colorectal cancer (CRC) cells, human intestinal fibroblasts were transformed into CAFs, and exhibited enhanced aerobic glycolysis. Induced CAFs were able to enhance the proliferation, migration and invasion of CRC cells in vitro. EGCG treatment led to direct inhibition of the proliferation and migration of CRC cells; furthermore, EGCG treatment of CAFs suppressed their tumor-promoting capabilities by inhibiting their glycolytic activity. Blocking the lactic acid efflux of CAFs with a monocarboxylate transporter 4 (MCT4) inhibitor or through silencing MCT4 could also suppress their tumor-promoting capabilities, indicating that lactate fulfills an important role in the metabolic coupling that occurs between CAFs and cancer cells. Taken together, the results of the present study showed that EGCG targeting of the metabolism of tumor stromal cells provided a safe and effective strategy of anti-cancer therapy.
Collapse
Affiliation(s)
- Shuhai Chen
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| | - Masaaki Nishi
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| | - Yuji Morine
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| | - Mitsuo Shimada
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| | - Takuya Tokunaga
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| | - Hideya Kashihara
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| | - Chie Takasu
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| | - Shinichiro Yamada
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| | - Yuma Wada
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| |
Collapse
|
11
|
Cai W, Bao W, Chen S, Yang Y, Li Y. Metabolic syndrome related gene signature predicts the prognosis of patients with pancreatic ductal carcinoma. A novel link between metabolic dysregulation and pancreatic ductal carcinoma. Cancer Cell Int 2021; 21:698. [PMID: 34930261 PMCID: PMC8690436 DOI: 10.1186/s12935-021-02378-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Background Pancreatic cancer is one of the most common malignancies worldwide. In recent years, specific metabolic activities, which involves the development of tumor, caused wide public concern. In this study, we wish to explore the correlation between metabolism and progression of tumor. Methods A retrospective analysis including 95 patients with pancreatic ductal adenocarcinoma (PDAC) and PDAC patients from The Cancer Genome Atlas (TCGA), the International Cancer Genome Consortium (ICGC), and The Gene Expression Omnibus (GEO) database were involved in our study. Multivariate Cox regression analysis was used to construct the prognosis model. The potential connection between metabolism and immunity of PDAC was investigated through a weighted gene co-expression network analysis (WGCNA). 22 types of Tumor-infiltrating immune cells (TIICs) between high-risk and low-risk groups were estimated through CIBERSORT. Moreover, the potential immune-related signaling pathways between high-risk and low-risk groups were explored through the gene set enrichment analysis (GSEA). The role of key gene GMPS in developing pancreatic tumor was further investigated through CCK-8, colony-information, and Transwell. Results The prognostic value of the MetS factors was analyzed using the Cox regression model, and a clinical MetS-based nomogram was established. Then, we established a metabolism-related signature to predict the prognosis of PDAC patients based on the TCGA databases and was validated in the ICGC database and the GEO database to find the distinct molecular mechanism of MetS genes in PDAC. The result of WGCNA showed that the blue module was associated with risk score, and genes in the blue module were found to be enriched in the immune-related signaling pathway. Furthermore, the result of CIBERSORT demonstrated that proportions of T cells CD8, T cells Regulatory, Tregs NK cells Activated, Dendritic cells Activated, and Mast cells Resting were different between high-risk and low-risk groups. These differences are potential causes of different prognoses of PDAC patients. GSEA and the protein–protein interaction network (PPI) further revealed that our metabolism-related signature was significantly enriched in immune‐related biological processes. Moreover, knockdown of GMPS in PDAC cells suppressed proliferation, migration, and invasion of tumor cells, whereas overexpression of GMPS performed oppositely. Conclusion The results shine light on fundamental mechanisms of metabolic genes on PDAC and establish a reliable and referable signature to evaluate the prognosis of PDAC. GMPS was identified as a potential candidate oncogene with in PDAC, which can be a novel biomarker and therapeutic target for PDAC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02378-w.
Collapse
Affiliation(s)
- Weiyang Cai
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenming Bao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengwei Chen
- Department of Nephrology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan, China
| | - Yan Yang
- Department of Ultrasound, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325000, Zhejiang, People's Republic of China.
| | - Yanyan Li
- Department of Ultrasound, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
12
|
Duraj T, Carrión-Navarro J, Seyfried TN, García-Romero N, Ayuso-Sacido A. Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle. Mol Metab 2021; 54:101389. [PMID: 34749013 PMCID: PMC8637646 DOI: 10.1016/j.molmet.2021.101389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Aberrant metabolism is recognized as a hallmark of cancer, a pillar necessary for cellular proliferation. Regarding bioenergetics (ATP generation), most cancers display a preference not only toward aerobic glycolysis ("Warburg effect") and glutaminolysis (mitochondrial substrate level-phosphorylation) but also toward other metabolites such as lactate, pyruvate, and fat-derived sources. These secondary metabolites can assist in proliferation but cannot fully cover ATP demands. SCOPE OF REVIEW The concept of a static metabolic profile is challenged by instances of heterogeneity and flexibility to meet fuel/anaplerotic demands. Although metabolic therapies are a promising tool to improve therapeutic outcomes, either via pharmacological targets or press-pulse interventions, metabolic plasticity is rarely considered. Lack of bioenergetic analysis in vitro and patient-derived models is hindering translational potential. Here, we review the bioenergetics of cancer and propose a simple analysis of major metabolic pathways, encompassing both affordable and advanced techniques. A comprehensive compendium of Seahorse XF bioenergetic measurements is presented for the first time. MAJOR CONCLUSIONS Standardization of principal readouts might help researchers to collect a complete metabolic picture of cancer using the most appropriate methods depending on the sample of interest.
Collapse
Affiliation(s)
- Tomás Duraj
- Faculty of Medicine, Institute for Applied Molecular Medicine (IMMA), CEU San Pablo University, 28668, Madrid, Spain.
| | - Josefa Carrión-Navarro
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain; Faculty of Medicine, Universidad Francisco de Vitoria, 28223, Madrid, Spain.
| |
Collapse
|
13
|
The Secrets of Alternative Autophagy. Cells 2021; 10:cells10113241. [PMID: 34831462 PMCID: PMC8623506 DOI: 10.3390/cells10113241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
For many years, it was thought that ATG5 and ATG7 played a pivotal role in autophagy, and that the knockdown of one of these genes would result in its inhibition. However, cells with ATG5 or ATG7 depletion still generate autophagic vacuoles with mainly trans-Golgi-originated isolation membranes and do not die. This indicates that autophagy can occur via ATG5/ATG7-independent alternative autophagy. Its molecular mechanism differs from that of the canonical pathway, including inter alia the phosphorylation of ULK1, and lack of LC3 modifications. As the alternative autophagy pathway has only recently been described, little is known of its precise role; however, a considerable body of evidence suggests that alternative autophagy participates in mitochondrion removal. This review summarizes the latest progress made in research on alternative autophagy and describes its possible molecular mechanism, roles and methods of detection, and possible modulators. There is a need for further research focused on types of autophagy, as this can elucidate the functioning of various cell types and the pathogenesis of human and animal diseases.
Collapse
|
14
|
Lendvai G, Szekerczés T, Illyés I, Csengeri M, Schlachter K, Szabó E, Lotz G, Kiss A, Borka K, Schaff Z. Autophagy activity in cholangiocarcinoma is associated with anatomical localization of the tumor. PLoS One 2021; 16:e0253065. [PMID: 34129628 PMCID: PMC8205141 DOI: 10.1371/journal.pone.0253065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
The presence of autophagy has been indicated in cholangiocarcinoma (CC), which disease has poor prognosis and limited treatment options. Recently, CC has been classified by anatomical localization as intrahepatic (iCC), perihilar (pCC) and distal (dCC), showing different clinical and molecular characteristics. Thus, our aim was to compare autophagy activity in CC samples resected from different anatomical locations. Further, we investigated whether autophagy could be modulated in cell lines originated from iCC and extrahepatic CC (eCC) following the treatments with autophagy inhibitory and inducing agents. Tissue microarrays were prepared from 70 CC (28 iCC, 19 pCC and 23 dCC), 31 adjacent non-tumorous and 9 hepatocellular carcinoma (HCC) samples. Autophagy markers LC3, p62 and Beclin1 as well as proliferation marker Ki-67 were monitored by immunohistochemistry and were associated with patients' survival. Modulation of autophagy was investigated in cell lines originated from iCC (HuH-28), eCC (TFK-1) and HCC (HepG2) by treating the cells with chloroquine (CQ) for inhibition and with Rapamycin, 5-Fluorouracil (5-FU) and Sorafenib for induction of autophagy. Our results indicated an inhibited autophagy in iCC and pCC tumor tissues, whereas active autophagy seemed to occur in dCC, especially in samples displaying low Ki-67 index. Additionally, low level of Beclin1 and high level of Ki-67 were associated with poor overall survival in dCC, suggesting the prognostic role of these proteins in dCC. Beside a baseline autophagy detected in each cell line, Rapamycin and 5-FU induced autophagy in iCC and HepG2 cell lines, Sorafenib in iCC cells. A chemotherapy agent in combination with CQ decreased IC50 effectively in the cell lines where basal and/or induced autophagy were present. In conclusion, we revealed differences in the autophagy activities of CC tissues and cell lines originated from different anatomical locations, which might influence patients' treatment. Our results also suggest a prognostic role of Beclin1 and Ki-67 in dCC.
Collapse
Affiliation(s)
- Gábor Lendvai
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Tímea Szekerczés
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Ildikó Illyés
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Milán Csengeri
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Krisztina Schlachter
- Department of Surgical and Molecular Pathology, Center of Tumor Pathology, National Institute of Oncology, Budpest, Hungary
| | - Erzsébet Szabó
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Gábor Lotz
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - András Kiss
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Katalin Borka
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zsuzsa Schaff
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Metabolic Interplay between the Immune System and Melanoma Cells: Therapeutic Implications. Biomedicines 2021; 9:biomedicines9060607. [PMID: 34073463 PMCID: PMC8227307 DOI: 10.3390/biomedicines9060607] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant melanoma represents the most fatal skin cancer due to its aggressive biological behavior and high metastatic potential. Treatment strategies for advanced disease have dramatically changed over the last years due to the introduction of BRAF/MEK inhibitors and immunotherapy. However, many patients either display primary (i.e., innate) or eventually develop secondary (i.e., acquired) resistance to systemic treatments. Treatment resistance depends on multiple mechanisms driven by a set of rewiring processes, which involve cancer metabolism, epigenetic, gene expression, and interactions within the tumor microenvironment. Prognostic and predictive biomarkers are needed to guide patients’ selection and treatment decisions. Indeed, there are no recognized clinical or biological characteristics that identify which patients will benefit more from available treatments, but several biomarkers have been studied with promising preliminary results. In this review, we will summarize novel tumor metabolic pathways and tumor-host metabolic crosstalk mechanisms leading to melanoma progression and drug resistance, with an overview on their translational potential as novel therapeutic targets.
Collapse
|
16
|
Kumar PR, Moore JA, Bowles KM, Rushworth SA, Moncrieff MD. Mitochondrial oxidative phosphorylation in cutaneous melanoma. Br J Cancer 2021; 124:115-123. [PMID: 33204029 PMCID: PMC7782830 DOI: 10.1038/s41416-020-01159-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
The Warburg effect in tumour cells is associated with the upregulation of glycolysis to generate ATP, even under normoxic conditions and the presence of fully functioning mitochondria. However, scientific advances made over the past 15 years have reformed this perspective, demonstrating the importance of oxidative phosphorylation (OXPHOS) as well as glycolysis in malignant cells. The metabolic phenotypes in melanoma display heterogeneic dynamism (metabolic plasticity) between glycolysis and OXPHOS, conferring a survival advantage to adapt to harsh conditions and pathways of chemoresistance. Furthermore, the simultaneous upregulation of both OXPHOS and glycolysis (metabolic symbiosis) has been shown to be vital for melanoma progression. The tumour microenvironment (TME) has an essential supporting role in promoting progression, invasion and metastasis of melanoma. Mesenchymal stromal cells (MSCs) in the TME show a symbiotic relationship with melanoma, protecting tumour cells from apoptosis and conferring chemoresistance. With the significant role of OXPHOS in metabolic plasticity and symbiosis, our review outlines how mitochondrial transfer from MSCs to melanoma tumour cells plays a key role in melanoma progression and is the mechanism by which melanoma cells regain OXPHOS capacity even in the presence of mitochondrial mutations. The studies outlined in this review indicate that targeting mitochondrial trafficking is a potential novel therapeutic approach for this highly refractory disease.
Collapse
Affiliation(s)
- Prakrit R Kumar
- Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Jamie A Moore
- Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Kristian M Bowles
- Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
- Department of Haematology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Stuart A Rushworth
- Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, Norwich, UK.
| | - Marc D Moncrieff
- Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia, Norwich, UK.
- Department of Plastic and Reconstructive Surgery, Norfolk and Norwich University Hospital, Norwich, NR4 7UY, UK.
| |
Collapse
|
17
|
Hou F, Wang H, Zhang Y, Zhu N, Liu H, Li J. Construction and Evaluation of Folic Acid-Modified 3-Bromopyruvate Cubosomes. Med Sci Monit 2020; 26:e924620. [PMID: 32956335 PMCID: PMC7518016 DOI: 10.12659/msm.924620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Direct 3-bromopyruvate chemotherapy often causes side effects. We thus aimed to construct and evaluate folic acid-modified 3-bromopyruvate liquid crystalline nanoparticles (3BP-LCNP-FA) and assess their targeted antitumor effects in tumor-bearing nude mice. Material/Methods A liquid crystalline nanoparticle formulation was screened, and the structure was characterized using polarizing light- and transmission electron microscopy. The folate target was then synthesized and characterized using differential scanning calorimetry and proton nuclear magnetic resonance spectroscopy. In vitro, human CNE-2Z and MDA-MB-231 tumor cells were used to evaluate 3BP-LCNP-FA effects on tumor cell morphology and proliferation. Different drug formulations were administered to tumor-bearing nude mice to observe the treatment effects. Hepatic and renal toxicities were assessed using hematoxylin and eosin-stained liver, kidney, and lung sections along with serological analysis of liver and kidney injury markers (e.g., aspartate aminotransferase, alanine transaminase, blood urea nitrogen, and creatinine). Tumor tissue was observed for changes using proliferating cell nuclear antigen immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Results We successfully prepared 3BP-LCNP-FA of spherical shape with uniform size using the aforementioned techniques; drug loading did not alter crystal morphology. These cubosomes exhibited more potent antitumor activity than 3-bromopyruvate alone or non-folic acid-conjugated 3-bromopyruvate liquid crystalline nanoparticles in vitro and in vivo without obvious toxic side effects. Conclusions It is possible to successfully construct 3BP-LCNP-FA as a drug delivery vehicle that is more efficacious than 3-bromopyruvate and has no obvious toxic effects. Thus, folic acid-modified cubosomes can be used as effective carriers for targeted drug administration.
Collapse
Affiliation(s)
- Fangyan Hou
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Hairong Wang
- School of Pharmacy, Bengbu Medical College, Anhui, China (mainland)
| | - Yawen Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Na Zhu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (mainland)
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Jianchun Li
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| |
Collapse
|
18
|
Harihar S, Ray S, Narayanan S, Santhoshkumar A, Ly T, Welch DR. Role of the tumor microenvironment in regulating the anti-metastatic effect of KISS1. Clin Exp Metastasis 2020; 37:209-223. [PMID: 32088827 PMCID: PMC7339126 DOI: 10.1007/s10585-020-10030-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/19/2020] [Indexed: 12/29/2022]
Abstract
KISS1, a metastasis suppressor gene, has been shown to block metastasis without affecting primary tumor formation. Loss of KISS1 leads to invasion and metastasis in multiple cancers, which is the leading cause of cancer morbidity and mortality. The discovery of KISS1 has provided a ray of hope for early clinical diagnosis and for designing effective treatments targeting metastatic cancer. However, this goal requires greater holistic understanding of its mechanism of action. In this review, we go back into history and highlight some key developments, from the discovery of KISS1 to its role in regulating multiple physiological processes including cancer. We discuss key emerging roles for KISS1, specifically interactions with tissue microenvironment to promote dormancy and regulation of tumor cell metabolism, acknowledged as some of the key players in tumor progression and metastasis. We finally discuss strategies whereby KISS1 might be exploited clinically to treat metastasis.
Collapse
Affiliation(s)
- Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Srijit Ray
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Samyukta Narayanan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Anirudh Santhoshkumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Thuc Ly
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
- The University Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
- The University Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| |
Collapse
|
19
|
Molejon MI, Weiz G, Breccia JD, Vaccaro MI. Glycoconjugation: An approach to cancer therapeutics. World J Clin Oncol 2020; 11:110-120. [PMID: 32257842 PMCID: PMC7103525 DOI: 10.5306/wjco.v11.i3.110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/31/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer constitutes the second leading cause of death globally and is considered to have been responsible for an estimated 9.6 million fatalities in 2018. Although treatments against gastrointestinal tumors have recently advanced, those interventions can only be applied to a minority of patients at the time of diagnosis. Therefore, new therapeutic options are necessary for advanced stages of the disease. Glycosylation of antitumor agents, has been found to improve pharmacokinetic parameters, reduce side effects, and expand drug half-life in comparison with the parent compounds. In addition, glycosylation of therapeutic agents has been proven to be an effective strategy for their targeting tumor tissue, thereby reducing the doses of the glycodrugs administered to patients. This review focusses on the effect of the targeting properties of glycosylated antitumor agents on gastrointestinal tumors.
Collapse
Affiliation(s)
- Maria I Molejon
- Institute of Earth and Environmental Sciences from La Pampa (INCITAP), National University of La Pampa, School of Natural Sciences (CONICET-UNLPam), Santa Rosa 6300, La Pampa, Argentina
- Institute of Biochemistry and Molecular Medicine (UBA-CONICET), Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Gisela Weiz
- Institute of Earth and Environmental Sciences from La Pampa (INCITAP), National University of La Pampa, School of Natural Sciences (CONICET-UNLPam), Santa Rosa 6300, La Pampa, Argentina
| | - Javier D Breccia
- Institute of Earth and Environmental Sciences from La Pampa (INCITAP), National University of La Pampa, School of Natural Sciences (CONICET-UNLPam), Santa Rosa 6300, La Pampa, Argentina
| | - Maria Ines Vaccaro
- Institute of Biochemistry and Molecular Medicine (UBA-CONICET), Department of Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires C1113AAD, Argentina
| |
Collapse
|
20
|
Varisli L, Cen O, Vlahopoulos S. Dissecting pharmacological effects of chloroquine in cancer treatment: interference with inflammatory signaling pathways. Immunology 2020; 159:257-278. [PMID: 31782148 PMCID: PMC7011648 DOI: 10.1111/imm.13160] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Chloroquines are 4-aminoquinoline-based drugs mainly used to treat malaria. At pharmacological concentrations, they have significant effects on tissue homeostasis, targeting diverse signaling pathways in mammalian cells. A key target pathway is autophagy, which regulates macromolecule turnover in the cell. In addition to affecting cellular metabolism and bioenergetic flow equilibrium, autophagy plays a pivotal role at the interface between inflammation and cancer progression. Chloroquines consequently have critical effects in tissue metabolic activity and importantly, in key functions of the immune system. In this article, we will review the work addressing the role of chloroquines in the homeostasis of mammalian tissue, and the potential strengths and weaknesses concerning their use in cancer therapy.
Collapse
Affiliation(s)
- Lokman Varisli
- Union of Education and Science Workers (EGITIM SEN), Diyarbakir Branch, Diyarbakir, Turkey
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, Turkey
| | - Osman Cen
- Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Natural Sciences, Joliet Jr College, Joliet, IL, USA
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
Barbosa AM, Martel F. Targeting Glucose Transporters for Breast Cancer Therapy: The Effect of Natural and Synthetic Compounds. Cancers (Basel) 2020; 12:cancers12010154. [PMID: 31936350 PMCID: PMC7016663 DOI: 10.3390/cancers12010154] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Reprogramming of cellular energy metabolism is widely accepted to be a cancer hallmark. The deviant energetic metabolism of cancer cells-known as the Warburg effect-consists in much higher rates of glucose uptake and glycolytic oxidation coupled with the production of lactic acid, even in the presence of oxygen. Consequently, cancer cells have higher glucose needs and thus display a higher sensitivity to glucose deprivation-induced death than normal cells. So, inhibitors of glucose uptake are potential therapeutic targets in cancer. Breast cancer is the most commonly diagnosed cancer and a leading cause of cancer death in women worldwide. Overexpression of facilitative glucose transporters (GLUT), mainly GLUT1, in breast cancer cells is firmly established, and the consequences of GLUT inhibition and/or knockout are under investigation. Herein we review the compounds, both of natural and synthetic origin, found to interfere with uptake of glucose by breast cancer cells, and the consequences of interference with that mechanism on breast cancer cell biology. We will also present data where the interaction with GLUT is exploited in order to increase the efficiency or selectivity of anticancer agents, in breast cancer cells.
Collapse
Affiliation(s)
- Ana M. Barbosa
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4169-007 Porto, Portugal;
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-22-042-6654
| |
Collapse
|
22
|
Gonzalez CD, Resnik R, Vaccaro MI. Secretory Autophagy and Its Relevance in Metabolic and Degenerative Disease. Front Endocrinol (Lausanne) 2020; 11:266. [PMID: 32477265 PMCID: PMC7232537 DOI: 10.3389/fendo.2020.00266] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Proteins to be secreted through so-called "conventional mechanisms" are characterized by the presence of an N-terminal peptide that is a leader or signal peptide, needed for access to the endoplasmic reticulum and the Golgi apparatus for further secretion. However, some relevant cytosolic proteins lack of this signal peptides and should be secreted by different unconventional or "non-canonical" processes. One form of this unconventional secretion was named secretory autophagy (SA) because it is specifically associated with the autophagy pathway. It is defined by ATG proteins that regulate the biogenesis of the autophagosome, its representative organelle. The canonical macroautophagy involves the fusion of the autophagosomes with lysosomes for content degradation, whereas the SA pathway bypasses this degradative process to allow the secretion. ATG5, as well as other factors involved in autophagy such as BCN1, are also activated as part of the secretory pathway. SA has been recognized as a new mechanism that is becoming of increasing relevance to explain the unconventional secretion of a series of cytosolic proteins that have critical biological importance. Also, SA may play a role in the release of aggregation-prone protein since it has been related to the autophagosome biogenesis machinery. SA requires the autophagic pathway and both, secretory autophagy and canonical degradative autophagy are at the same time, integrated and highly regulated processes that interact in ultimate cross-talking molecular mechanisms. The potential implications of alterations in SA, its cargos, pathways, and regulation in human diseases such as metabolic/aging pathological processes are predictable. Further research of SA as potential target of therapeutic intervention is deserved.
Collapse
Affiliation(s)
- Claudio Daniel Gonzalez
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- CEMIC University Institute, Buenos Aires, Argentina
| | - Roxana Resnik
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- CEMIC University Institute, Buenos Aires, Argentina
| | - Maria Ines Vaccaro
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- CEMIC University Institute, Buenos Aires, Argentina
- *Correspondence: Maria Ines Vaccaro ;
| |
Collapse
|
23
|
Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res 2019; 150:104511. [DOI: 10.1016/j.phrs.2019.104511] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
|
24
|
Garufi A, Traversi G, Cirone M, D'Orazi G. HIPK2 role in the tumor-host interaction: Impact on fibroblasts transdifferentiation CAF-like. IUBMB Life 2019; 71:2055-2061. [PMID: 31414572 PMCID: PMC6899452 DOI: 10.1002/iub.2144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
The dialogue between cancer cells and the surrounding fibroblasts, tumor-associated macrophages (TAM), and immune cells can create a tumor microenvironment (TME) able to promote tumor progression and metastasis and induce resistance to anticancer therapies. Cancer cells, by producing growth factors and cytokines, can recruit and activate fibroblasts in the TME inducing their transdifferention in cancer-associated fibroblasts (CAFs). Then, CAFs, in a reciprocal cross-talk with cancer cells, sustain cancer growth and survival and support malignancy and tumor resistance to therapies. Therefore, the identification of the molecular mechanisms regulating the interplay between cancer cells and fibroblasts can offer an intriguing opportunity for novel diagnostic and therapeutic anticancer purpose. HIPK2 is a multifunctional tumor suppressor protein that modulates cancer cell growth and apoptosis in response to anticancer drugs and negatively regulates pathways involved in tumor progression and chemoresistance. HIPK2 protein downregulation is induced by hypoxia and hyperglycemia and HIPK2 knockdown favors tumor progression and resistance to therapy other than a pseudohypoxic, inflammatory, and angiogenic cancer phenotype. Therefore, we hypothesized that HIPK2 modulation in cancer cells could contribute to modify the tumor-host interaction. In support of our hypothesis, here we provide evidence that culturing human fibroblasts (hFB) with conditioned media derived from cancer cells undergoing HIPK2 knockdown (CMsiHIPK2 ) triggered their transdifferentiation CAF-like, compared to hFB cultured with CM-derived from HIPK2-carrying control cancer cells. CAF transdifferentiation was identified by expression of several markers including α-smooth muscle actin (α-SMA) and collagen I and correlated with autophagy-mediated caveolin-1 degradation. Although the molecular mechanisms dictating CAF-transdifferentiation need to be elucidated, these results open the way to further study the role of HIPK2 in TME remodeling for prognostic and therapeutic purpose.
Collapse
Affiliation(s)
- Alessia Garufi
- Department of Medical SciencesUniversity “G. d'Annunzio”ChietiItaly
- Department of ResearchIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Gianandrea Traversi
- Department of Medical SciencesUniversity “G. d'Annunzio”ChietiItaly
- Department of ResearchIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Mara Cirone
- Department of Experimental Medicine“Sapienza” University of Rome, Italy, Laboratory affiliated to Pasteur InstituteRomeItaly
| | - Gabriella D'Orazi
- Department of Medical SciencesUniversity “G. d'Annunzio”ChietiItaly
- Department of ResearchIRCCS Regina Elena National Cancer InstituteRomeItaly
| |
Collapse
|
25
|
Duan X, Chen B, Cui Y, Zhou L, Wu C, Yang Z, Wen Y, Miao X, Li Q, Xiong L, He J. Ready player one? Autophagy shapes resistance to photodynamic therapy in cancers. Apoptosis 2019; 23:587-606. [PMID: 30288638 DOI: 10.1007/s10495-018-1489-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photodynamic therapy (PDT) is a procedure used in cancer therapy that has been shown to be useful for certain indications. Considerable evidence suggests that PDT might be superior to conventional modalities for some indications. In this report, we examine the relationship between PDT responsiveness and autophagy, which can exert a cytoprotective effect. Autophagy is an essential physiological process that maintains cellular homeostasis by degrading dysfunctional or impaired cellular components and organelles via a lysosome-based pathway. Autophagy, which includes macroautophagy and microautophagy, can be a factor that decreases or abolishes responses to various therapeutic protocols. We systematically discuss the mechanisms underlying cell-fate decisions elicited by PDT; analyse the principles of PDT-induced autophagy, macroautophagy and microautophagy; and present evidence to support the notion that autophagy is a critical mechanism in resistance to PDT. A combined strategy involving autophagy inhibitors may be able to further enhance PDT efficacy. Finally, we provide suggestions for future studies, note where our understanding of the relevant molecular regulators is deficient, and discuss the correlations among PDT-induced resistance and autophagy, especially microautophagy.
Collapse
Affiliation(s)
- Xian Duan
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Chen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanan Cui
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Chenkai Wu
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhulin Yang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiongying Miao
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinglong Li
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| | - Jun He
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
26
|
Alföldi R, Balog JÁ, Faragó N, Halmai M, Kotogány E, Neuperger P, Nagy LI, Fehér LZ, Szebeni GJ, Puskás LG. Single Cell Mass Cytometry of Non-Small Cell Lung Cancer Cells Reveals Complexity of In vivo And Three-Dimensional Models over the Petri-dish. Cells 2019; 8:E1093. [PMID: 31527554 PMCID: PMC6770097 DOI: 10.3390/cells8091093] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 12/28/2022] Open
Abstract
Single cell genomics and proteomics with the combination of innovative three-dimensional (3D) cell culture techniques can open new avenues toward the understanding of intra-tumor heterogeneity. Here, we characterize lung cancer markers using single cell mass cytometry to compare different in vitro cell culturing methods: two-dimensional (2D), carrier-free, or bead-based 3D culturing with in vivo xenografts. Proliferation, viability, and cell cycle phase distribution has been investigated. Gene expression analysis enabled the selection of markers that were overexpressed: TMEM45A, SLC16A3, CD66, SLC2A1, CA9, CD24, or repressed: EGFR either in vivo or in long-term 3D cultures. Additionally, TRA-1-60, pan-keratins, CD326, Galectin-3, and CD274, markers with known clinical significance have been investigated at single cell resolution. The described twelve markers convincingly highlighted a unique pattern reflecting intra-tumor heterogeneity of 3D samples and in vivo A549 lung cancer cells. In 3D systems CA9, CD24, and EGFR showed higher expression than in vivo. Multidimensional single cell proteome profiling revealed that 3D cultures represent a transition from 2D to in vivo conditions by intermediate marker expression of TRA-1-60, TMEM45A, pan-keratin, CD326, MCT4, Gal-3, CD66, GLUT1, and CD274. Therefore, 3D cultures of NSCLC cells bearing more putative cancer targets should be used in drug screening as the preferred technique rather than the Petri-dish.
Collapse
Affiliation(s)
- Róbert Alföldi
- Avicor Ltd., H6726 Szeged, Hungary;
- University of Szeged, PhD School in Biology, H6726 Szeged, Hungary;
- AstridBio Technologies Ltd., H6726 Szeged, Hungary
| | - József Á. Balog
- University of Szeged, PhD School in Biology, H6726 Szeged, Hungary;
- Laboratory of Functional Genomics, HAS BRC, H6726 Szeged, Hungary; (N.F.); (M.H.); (E.K.)
| | - Nóra Faragó
- Laboratory of Functional Genomics, HAS BRC, H6726 Szeged, Hungary; (N.F.); (M.H.); (E.K.)
- Avidin Ltd., H6726 Szeged, Hungary; (L.I.N.); (L.Z.F.)
- Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences, Department of Physiology, Anatomy and Neuroscience, University of Szeged, H6726 Szeged, Hungary
| | - Miklós Halmai
- Laboratory of Functional Genomics, HAS BRC, H6726 Szeged, Hungary; (N.F.); (M.H.); (E.K.)
| | - Edit Kotogány
- Laboratory of Functional Genomics, HAS BRC, H6726 Szeged, Hungary; (N.F.); (M.H.); (E.K.)
| | - Patrícia Neuperger
- Laboratory of Functional Genomics, HAS BRC, H6726 Szeged, Hungary; (N.F.); (M.H.); (E.K.)
| | - Lajos I. Nagy
- Avidin Ltd., H6726 Szeged, Hungary; (L.I.N.); (L.Z.F.)
| | | | - Gábor J. Szebeni
- Laboratory of Functional Genomics, HAS BRC, H6726 Szeged, Hungary; (N.F.); (M.H.); (E.K.)
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H6726 Szeged, Hungary
| | - László G. Puskás
- Avicor Ltd., H6726 Szeged, Hungary;
- Laboratory of Functional Genomics, HAS BRC, H6726 Szeged, Hungary; (N.F.); (M.H.); (E.K.)
- Avidin Ltd., H6726 Szeged, Hungary; (L.I.N.); (L.Z.F.)
| |
Collapse
|
27
|
Liu HT, Huang DA, Li MM, Liu HD, Guo K. HSF1: a mediator in metabolic alteration of hepatocellular carcinoma cells in cross-talking with tumor-associated macrophages. Am J Transl Res 2019; 11:5054-5064. [PMID: 31497221 PMCID: PMC6731433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Recently, heat shock transcription factor 1 (HSF1) is observed to be involved in the process of cellular metabolism in cancer. However, the roles of HSF1 in the metabolic alteration of hepatocellular carcinoma (HCC) in tumor microenvironment remain elusive. Here, HCC cells were co-cultured with tumor-associated macrophages (TAM). The levels of glucose uptake, the lactate release, reactive oxygen species (ROS) and mtDNA content were measured by the associated Kits; all detected protocols were correspondingly according to the manufacturers' instructions. Recombinant lentiviruses with shRNA against HSF1 and MCT4 were transfected into HCC cells or TAMs. Western blot analysis was conducted to detect the relative levels of HSF1, MCT1 and MCT4 proteins. CCK-8 assay was utilized to assess cell proliferation. Based on the co-culture system with HCC cells and TAMs, metabolic alteration of HCC cells after co-culture with TAMs was observed. Furthermore, glucose consumption rate, lactate production rate and intercellular ROS level were decreased, while the copy number of mtDNA was increased in HSF1-knockdown HCC cells. Besides, metabolic crosstalk between HCC cells and TAMs was induced by HSF1 not only in HCC cells but also in TAMs through regulating individually MCT1 and MCT4 expressions. To the best of our knowledge, this is an important study to demonstrate the roles of HSF1 in regulating metabolic alteration of HCC cells induced by TAMs, which implies the potential use of HSF1 as a target modulating malignant behaviors of HCC cells.
Collapse
Affiliation(s)
- Hua Tian Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationShanghai, China
- Cancer Research Center, Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| | - Dan Ai Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, China
| | - Miao Miao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationShanghai, China
| | - He Deng Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationShanghai, China
| |
Collapse
|
28
|
Zhang X, Li Z, Xuan Z, Xu P, Wang W, Chen Z, Wang S, Sun G, Xu J, Xu Z. Novel role of miR-133a-3p in repressing gastric cancer growth and metastasis via blocking autophagy-mediated glutaminolysis. J Exp Clin Cancer Res 2018; 37:320. [PMID: 30572959 PMCID: PMC6302516 DOI: 10.1186/s13046-018-0993-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Autophagy plays a crucial role in sustaining the homeostasis in various malignant diseases. It has also been reported to promote tumor development in multiple cancers. Glutaminolysis instead of Warburg Effect produce adequate ATP and provide nitrogen and carbon to replenish the TCA cycle which has been discovered to be a new energy source for tumor cells recently. By means of degrading intracellular particles including amino acids, nucleotides, fatty acids, sugars and aged organisms, autophagy can recycle the aforementioned particles into bioenergetics and biosynthesis pathways, finally favoring tumor cells. MicroRNA is a kind of noncoding RNA that regulates the targeting gene expression mostly at post-transcription level. Among these miRNAs, microRNA-133a-3p is reported to be a tumor suppressor in numerous cancers. METHODS We characterized the down-regulated expression level of microRNA-133a-3p in gastric cancer via TCGA database. Subsequently, we verified the tumor suppressor role of microRNA-133a-3p in gastric cancer cells through a series biological function assay. We used immunofluorescence and transmission electron microscope to observe the negative effect of microRNA-133a-3p on autophagy and used dual-luciferase report assay to identify the candidate gene GABARAPL1 of microRNA-133A-3p.Then we used high performance liquid phase mass spectrometry and seahorse analysis to detect whether miR-133a-3p could block the glutaminolysis metabolism through autophagy. At last, we confirmed the tumor suppressor role of microRNA-133a-3p in vivo on PDX mice model. RESULTS We demonstrated that microRNA-133a-3p overexpression could block the activation of autophagy to ruin the abnormal glutaminolysis and further inhibit the growth and metastasis of gastric cancer cells. We successfully proved gastric cancer cells can replenish glutaminolysis via autophagy and microRNA-133a-3p could block aforementioned pathway by targeting core autophagy participants GABARAPL1 and ATG13.We then verified the negative function of microRNA-133a-3p on autophagy-mediated glutaminolysis both in PDX model and human gastric cancer organoid model. CONCLUSIONS MicroRNA-133a-3p targets GABARAPL1 to block autophagy-mediated glutaminolysis, further repressing gastric cancer growth and metastasis.
Collapse
Affiliation(s)
- Xing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou road, Nanjing, Jiangsu province China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou road, Nanjing, Jiangsu province China
| | - Zhe Xuan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou road, Nanjing, Jiangsu province China
| | - Penghui Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou road, Nanjing, Jiangsu province China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou road, Nanjing, Jiangsu province China
| | - Zheng Chen
- Department of Surgical Oncology, University of Miami, Miami, USA
| | - Sen Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou road, Nanjing, Jiangsu province China
| | - Guangli Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou road, Nanjing, Jiangsu province China
| | - Jianghao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou road, Nanjing, Jiangsu province China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou road, Nanjing, Jiangsu province China
- Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029 Jiangsu Province China
| |
Collapse
|
29
|
Lomelino CL, Andring JT, McKenna R. Crystallography and Its Impact on Carbonic Anhydrase Research. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2018; 2018:9419521. [PMID: 30302289 PMCID: PMC6158936 DOI: 10.1155/2018/9419521] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
X-ray and neutron crystallography are powerful techniques utilized to study the structures of biomolecules. Visualization of enzymes in complex with substrate/product and the capture of intermediate states can be related to activity to facilitate understanding of the catalytic mechanism. Subsequent analysis of small molecule binding within the enzyme active site provides insight into mechanisms of inhibition, supporting the design of novel inhibitors using a structure-guided approach. The first X-ray crystal structures were determined for small, ubiquitous enzymes such as carbonic anhydrase (CA). CAs are a family of zinc metalloenzymes that catalyze the hydration of CO2, producing HCO3 - and a proton. The CA structure and ping-pong mechanism have been extensively studied and are well understood. Though the function of CA plays an important role in a variety of physiological functions, CA has also been associated with diseases such as glaucoma, edema, epilepsy, obesity, and cancer and is therefore recognized as a drug target. In this review, a brief history of crystallography and its impact on CA research is discussed.
Collapse
Affiliation(s)
- Carrie L. Lomelino
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA
| | - Jacob T. Andring
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA
| | - Robert McKenna
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA
| |
Collapse
|
30
|
Nardi F, Fitchev P, Franco OE, Ivanisevic J, Scheibler A, Hayward SW, Brendler CB, Welte MA, Crawford SE. PEDF regulates plasticity of a novel lipid-MTOC axis in prostate cancer-associated fibroblasts. J Cell Sci 2018; 131:jcs.213579. [PMID: 29792311 DOI: 10.1242/jcs.213579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/10/2018] [Indexed: 12/27/2022] Open
Abstract
Prostate tumors make metabolic adaptations to ensure adequate energy and amplify cell cycle regulators, such as centrosomes, to sustain their proliferative capacity. It is not known whether cancer-associated fibroblasts (CAFs) undergo metabolic re-programming. We postulated that CAFs augment lipid storage and amplify centrosomal or non-centrosomal microtubule-organizing centers (MTOCs) through a pigment epithelium-derived factor (PEDF)-dependent lipid-MTOC signaling axis. Primary human normal prostate fibroblasts (NFs) and CAFs were evaluated for lipid content, triacylglycerol-regulating proteins, MTOC number and distribution. CAFs were found to store more neutral lipids than NFs. Adipose triglyceride lipase (ATGL) and PEDF were strongly expressed in NFs, whereas CAFs had minimal to undetectable levels of PEDF or ATGL protein. At baseline, CAFs demonstrated MTOC amplification when compared to 1-2 perinuclear MTOCs consistently observed in NFs. Treatment with PEDF or blockade of lipogenesis suppressed lipid content and MTOC number. In summary, our data support that CAFs have acquired a tumor-like phenotype by re-programming lipid metabolism and amplifying MTOCs. Normalization of MTOCs by restoring PEDF or by blocking lipogenesis highlights a previously unrecognized plasticity in centrosomes, which is regulated through a new lipid-MTOC axis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Francesca Nardi
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Philip Fitchev
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Omar E Franco
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Jelena Ivanisevic
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Adrian Scheibler
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Simon W Hayward
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Charles B Brendler
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY 14627, United States
| | - Susan E Crawford
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| |
Collapse
|
31
|
Hahne JC, Valeri N. Non-Coding RNAs and Resistance to Anticancer Drugs in Gastrointestinal Tumors. Front Oncol 2018; 8:226. [PMID: 29967761 PMCID: PMC6015885 DOI: 10.3389/fonc.2018.00226] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs are important regulators of gene expression and transcription. It is well established that impaired non-coding RNA expression especially the one of long non-coding RNAs and microRNAs is involved in a number of pathological conditions including cancer. Non-coding RNAs are responsible for the development of resistance to anticancer treatments as they regulate drug resistance-related genes, affect intracellular drug concentrations, induce alternative signaling pathways, alter drug efficiency via blocking cell cycle regulation, and DNA damage response. Furthermore, they can prevent therapeutic-induced cell death and promote epithelial-mesenchymal transition (EMT) and elicit non-cell autonomous mechanisms of resistance. In this review, we summarize the role of non-coding RNAs for different mechanisms resulting in drug resistance (e.g., drug transport, drug metabolism, cell cycle regulation, regulation of apoptotic pathways, cancer stem cells, and EMT) in the context of gastrointestinal cancers.
Collapse
Affiliation(s)
- Jens C. Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
| |
Collapse
|
32
|
Metabolic Reprogramming of Cancer Associated Fibroblasts: The Slavery of Stromal Fibroblasts. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6075403. [PMID: 29967776 PMCID: PMC6008683 DOI: 10.1155/2018/6075403] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022]
Abstract
Cancer associated fibroblasts (CAFs) are the main stromal cell type of solid tumour microenvironment and undergo an activation process associated with secretion of growth factors, cytokines, and paracrine interactions. One of the important features of solid tumours is the metabolic reprogramming that leads to changes of bioenergetics and biosynthesis in both tumour cells and CAFs. In particular, CAFs follow the evolution of tumour disease and acquire a catabolic phenotype: in tumour tissues, cancer cells and tumour microenvironment form a network where the crosstalk between cancer cells and CAFs is associated with cell metabolic reprogramming that contributes to CAFs activation, cancer growth, and progression and evasion from cancer therapies. In this regard, the study of CAFs metabolic reprogramming could contribute to better understand their activation process, the interaction between stroma, and cancer cells and could offer innovative tools for the development of new therapeutic strategies able to eradicate the protumorigenic activity of CAFs. Therefore, this review focuses on CAFs metabolic reprogramming associated with both differentiation process and cancer and stromal cells crosstalk. Finally, therapeutic responses and potential anticancer strategies targeting CAFs metabolic reprogramming are reviewed.
Collapse
|
33
|
Abstract
Most cancer cells perform glycolysis despite having sufficient oxygen. The specific metabolic pathways of cancer cells have become the focus of cancer treatment. Recently, accumulating evidence indicates oxidative phosphorylation (OXPHOS) and glycolysis can be regulated with each other. Thus, we suggest that the glycolysis of cancer cells is inhibited by restoring or improving OXPHOS in cancer cells. In our study, we found that oxaloacetate (OA) induced apoptosis in HepG2 cells in vivo and in vitro. Meanwhile, we found that OA induced a decrease in the energy metabolism of HepG2 cells. Further results showed that the expression and activity of glycolytic enzymes were decreased with OA treatment. Conversely, the expression and activity of enzymes involved in the TCA cycle and OXPHOS were increased with OA treatment. The results indicate that OA can inhibit glycolysis through enhancement of OXPHOS. In addition, OA‐mediated suppression of HIF1α, p‐Akt, and c‐myc led to a decrease in glycolysis level. Therefore, OA has the potential to be a novel anticancer drug.
Collapse
Affiliation(s)
- Ye Kuang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Xiaoyun Han
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Mu Xu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Qing Yang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| |
Collapse
|
34
|
Yang X, Xu X, Zhu J, Zhang S, Wu Y, Wu Y, Zhao K, Xing C, Cao J, Zhu H, Li M, Ye Z, Peng W. miR-31 affects colorectal cancer cells by inhibiting autophagy in cancer-associated fibroblasts. Oncotarget 2018; 7:79617-79628. [PMID: 27793031 PMCID: PMC5346740 DOI: 10.18632/oncotarget.12873] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 09/25/2016] [Indexed: 01/02/2023] Open
Abstract
Autophagy is a double-edged sword in tumor development. Recent studies have found that miRNAs have an inhibitory effect on the regulation of autophagy. It has been reported that miR-31 plays an important role in the development of colorectal cancer. However, what role miR-31 plays in colorectal cancer-associated fibroblasts (CAFs) has not been determined. In this study, we confirmed that the expression of miR-31 in CAFs was higher than in normal colorectal fibroblasts (NFs). We also found that treatment of CAFs with miR-31 mimic inhibited the expression of the autophagy-related genes Beclin-1, ATG, DRAM and LC3. In addition, we found up-regulation of miR-31 significantly affected colorectal cancer cell behaviors, including proliferation, invasion and apoptosis. Also, up-regulation of miR-31 in CAF could increase the radiosensitivity of colorectal cancer cells co-cultured with CAF. In summary, miR-31 can inhibit autophagy in colorectal CAFs, affect colorectal cancer development, and increase the radiosensitivity of colorectal cancer cells co-cultured with CAF. We hypothesize that miR-31 may become a new target of treatments for colorectal cancer.
Collapse
Affiliation(s)
- Xiaodong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiaohui Xu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Department of General Surgery, The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou 215400, China
| | - Junjia Zhu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shuyu Zhang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
| | - Yong Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yongyou Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Kui Zhao
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
| | - Hong Zhu
- Oncology Department, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ming Li
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
| | - Zhenyu Ye
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Wei Peng
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
35
|
Deregulation of Hexokinase II Is Associated with Glycolysis, Autophagy, and the Epithelial-Mesenchymal Transition in Tongue Squamous Cell Carcinoma under Hypoxia. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8480762. [PMID: 29682563 PMCID: PMC5841093 DOI: 10.1155/2018/8480762] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/03/2018] [Accepted: 01/14/2018] [Indexed: 12/15/2022]
Abstract
The glycolytic enzyme Hexokinase (HKII) participates in tumor glycolysis and the progression of various cancers, but its clinicopathological effect on the progression of tongue squamous cell carcinoma (TSCC) and its role in glycolysis, autophagy, and the epithelial-mesenchymal transition of TSCC in a hypoxic microenvironment remain unknown. Our results showed that HKII expression was dramatically increased in TSCC tissues and that its upregulation was significantly associated with the presence of pathological differentiation, lymph node metastasis, and clinical stage. The level of autophagy-specific protein LC3, EMT-related proteins, and the migration and invasion capabilities of TSCC cells all increased under hypoxia. Moreover, hypoxia increased the glucose consumption and lactate production of TSCC cells, and we demonstrated that the expression of the glycolytic key gene HKII was significantly higher than in that of the control group. Notably, the downregulation of HKII resulted in a significant decrease of TSCC cell glucose consumption lactate production and autophagic activity during hypoxia. HKII knockdown blocked the migratory and invasive capacity of TSCC cells and we specifically determined that the EMT ability decreased. Therefore, our findings revealed that the upregulation of HKII enhanced glycolysis and increased autophagy and the epithelial-mesenchymal transition of tongue squamous cell carcinoma under hypoxia.
Collapse
|
36
|
Chen S, Chen X, Shan T, Ma J, Lin W, Li W, Kang Y. MiR-21-mediated Metabolic Alteration of Cancer-associated Fibroblasts and Its Effect on Pancreatic Cancer Cell Behavior. Int J Biol Sci 2018; 14:100-110. [PMID: 29483829 PMCID: PMC5821053 DOI: 10.7150/ijbs.22555] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/23/2017] [Indexed: 12/12/2022] Open
Abstract
In this study, we investigated whether the metabolic alteration of cancer-associated fibroblasts (CAFs) occurs via miR-21 remodeling and the effect of this alteration on pancreatic cancer cells. CAFs and normal fibroblasts (NFs) were isolated and cultured. Glucose consumption and lactic acid production were tested, and lactate dehydrogenase (LDHA), pyruvate kinase m2 (PKM2), and miR-21 expression were examined. The level of glycolysis in CAFs was determined after treatment with a miR-21 inhibitor. Primary miR-21-NC CAFs and miR-21-inhibitor CAFs were indirectly co-cultured with BxPc-3 in vitro, and the invasion capacity of these cells was determined. The aerobic oxidation index of cancer cells and the expression of succinodehydrogenase (SDH) and fumarate hydratase (FH) were assessed. Compared with NFs, CAFs showed enhanced glucose uptake capacity, lactic acid production, and elevated LDHA, PKM2, and miR-21 expression. After miR-21 inhibitor treatment, the extent of glycolysis in CAFs was reduced. After indirect co-culture with CAFs, oxidative phosphorylation and SDH, FH, and MCT expression increased in BxPc-3 cells. After co-culture with miR-21-inhibitor-CAFs, oxidative phosphorylation and invasion ability of the pancreatic cancer cells decreased. MiR-21 was involved in metabolic alteration of CAFs and affected the development of cancer cells. This metabolic alteration may be an important mechanism by which the microenvironment promotes tumor progression in a nonvascular manner.
Collapse
Affiliation(s)
- Shuo Chen
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004 China
| | - Xi Chen
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004 China
| | - Tao Shan
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004 China
| | - Jiancang Ma
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004 China
| | - Wanrun Lin
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032 China
| | - Wei Li
- Graduate School, Fourth Military Medical University, Xi'an 710033, China
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
37
|
Fischer GM, Gopal YV, McQuade JL, Peng W, DeBerardinis RJ, Davies MA. Metabolic strategies of melanoma cells: Mechanisms, interactions with the tumor microenvironment, and therapeutic implications. Pigment Cell Melanoma Res 2018; 31:11-30. [PMID: 29049843 PMCID: PMC5742019 DOI: 10.1111/pcmr.12661] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022]
Abstract
Melanomas are metabolically heterogeneous, and they are able to adapt in order to utilize a variety of fuels that facilitate tumor progression and metastasis. The significance of metabolism in melanoma is supported by growing evidence of impact on the efficacy of contemporary therapies for this disease. There are also data to support that the metabolic phenotypes of melanoma cells depend upon contributions from both intrinsic oncogenic pathways and extrinsic factors in the tumor microenvironment. This review summarizes current understanding of the metabolic processes that promote cutaneous melanoma tumorigenesis and progression, the regulation of cancer cell metabolism by the tumor microenvironment, and the impact of metabolic pathways on targeted and immune therapies.
Collapse
Affiliation(s)
- Grant M. Fischer
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Y.N. Vashisht Gopal
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Jennifer L. McQuade
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Weiyi Peng
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Ralph J. DeBerardinis
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390
| | - Michael A. Davies
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
- Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| |
Collapse
|
38
|
Belalcazar A, Shaib WL, Farren MR, Zhang C, Chen Z, Yang L, Lesinski GB, El-Rayes BF, Nagaraju GP. Inhibiting heat shock protein 90 and the ubiquitin-proteasome pathway impairs metabolic homeostasis and leads to cell death in human pancreatic cancer cells. Cancer 2017; 123:4924-4933. [PMID: 28841232 DOI: 10.1002/cncr.30944] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/29/2017] [Accepted: 07/09/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Heat shock protein 90 (HSP90) and the ubiquitin-proteasome pathway play crucial roles in the homeostasis of pancreatic cancer cells. This study combined for the first time the HSP90 inhibitor ganetespib (Gan) and the proteasome inhibitor carfilzomib (Carf) to target key mechanisms of homeostasis in pancreatic cancer. It was hypothesized that Gan plus Carf would elicit potent antitumor activity by modulating complementary homeostatic processes. METHODS In vitro and in vivo effects of this combination on mechanisms of cell growth and viability were evaluated with human pancreatic cancer cell lines (MIA PaCa-2 and HPAC). RESULTS Combined treatment with Gan and Carf significantly decreased cell viability. The mechanism varied by cell line and involved G2 -M cell-cycle arrest accompanied by a consistent reduction in key cell-cycle regulatory proteins and concomitant upregulation of p27. Further studies revealed increased autophagy markers, including the upregulation of autophagy related 7 and light chain 3 cleavage, and evidence of apoptosis (increased Bax expression and processing of caspase 3). Immunoblot analyses confirmed the modulation of other pathways that influence cell viability, including phosphoinositide 3-kinase/Akt and nuclear factor κB. Finally, the treatment of athymic mice bearing HPAC tumors with Gan and Carf significantly reduced tumor growth in vivo. An immunoblot analysis of freshly isolated tumors from animals at the end of the study confirmed in vivo modulation of key signaling pathways. CONCLUSIONS The results reveal Gan plus Carf to be a promising combination with synergistic antiproliferative, apoptotic, and pro-autophagy effects in preclinical studies of pancreatic cancer and will further the exploration of the utility of this treatment combination in clinical trials. Cancer 2017;123:4924-33. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Astrid Belalcazar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Walid L Shaib
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Matthew R Farren
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Chao Zhang
- Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Zhengjia Chen
- Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Lily Yang
- Surgery, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| |
Collapse
|
39
|
microRNA-33a-5p increases radiosensitivity by inhibiting glycolysis in melanoma. Oncotarget 2017; 8:83660-83672. [PMID: 29137372 PMCID: PMC5663544 DOI: 10.18632/oncotarget.19014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
Glycolysis was reported to have a positive correlation with radioresistance. Our previous study found that the miR-33a functioned as a tumor suppressor in malignant melanoma by targeting hypoxia-inducible factor1-alpha (HIF-1α), a gene known to promote glycolysis. However, the role of miR-33a-5p in radiosensitivity remains to be elucidated. We found that miR-33a-5p was downregulated in melanoma tissues and cells. Cell proliferation was downregulated after overexpression of miR-33a-5p in WM451 cells, accompanied by a decreased level of glycolysis. In contrast, cell proliferation was upregulated after inhibition of miR-33a-5p in WM35 cells, accompanied by increased glycolysis. Overexpression of miR-33a-5p enhanced the sensitivity of melanoma cells to X-radiation by MTT assay, while downregulation of miR-33a-5p had the opposite effects. Finally, in vivo experiments with xenografts in nude mice confirmed that high expression of miR-33a-5p in tumor cells increased radiosensitivity via inhibiting glycolysis. In conclusions, miR-33a-5p promotes radiosensitivity by negatively regulating glycolysis in melanoma.
Collapse
|
40
|
Wang Z, He R, Xia H, Wei Y, Wu S. Knockdown of STMN1 enhances osteosarcoma cell chemosensitivity through inhibition of autophagy. Oncol Lett 2017; 13:3465-3470. [PMID: 28529574 PMCID: PMC5431541 DOI: 10.3892/ol.2017.5941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 02/27/2017] [Indexed: 11/19/2022] Open
Abstract
Chemoresistance is a major cause for the poor prognosis of osteosarcoma (OS) patients. However, our understanding of mechanisms underlying chemoresistance in OS are limited. The present study aimed to investigate the effect of stathmin 1 (STMN1) on paclitaxel-induced chemoresistance, as well as the underlying mechanism. Western blot analysis data revealed that the expression level of STMN1 was dramatically increased in OS cell lines (HOS, Saos-2, U-2OS and MG-63), when compared to normal osteoblast hFOB1.19 cells. Furthermore, treatment with paclitaxel led to upregulation of STMN1 in U-2OS cells, accompanied by activation of autophagy, which may attenuate the cytotoxicity of paclitaxel in OS cells. Following knockdown of STMN1 expression, paclitaxel-induced autophagy was significantly reduced, accompanied by increased cytotoxicity of paclitaxel to U-2OS cells. In addition, blockade of mammalian target of rapamycin signaling attenuated the inhibitory effect of STMN1 knockdown on autophagy in OS cells. In conclusion, the present study demonstrated that knockdown of STMN1 enhances osteosarcoma cell chemosensitivity to paclitaxel through inhibition of autophagy. Therefore, STMN1 may be a potential target for the treatment of chemoresistant OS.
Collapse
Affiliation(s)
- Zili Wang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Rongzhen He
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Hansong Xia
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu Wei
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Song Wu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
41
|
Shan T, Chen S, Chen X, Lin WR, Li W, Ma J, Wu T, Cui X, Ji H, Li Y, Kang Y. Cancer-associated fibroblasts enhance pancreatic cancer cell invasion by remodeling the metabolic conversion mechanism. Oncol Rep 2017; 37:1971-1979. [PMID: 28260082 PMCID: PMC5367364 DOI: 10.3892/or.2017.5479] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/30/2016] [Indexed: 12/02/2022] Open
Abstract
We investigated the mechanism of cancer-associated fibroblasts (CAFs) in promoting the invasion and metastasis of pancreatic cancer cells in a non-vascular manner. We verified the original generation of isolated cultured CAFs and normal fibroblasts (NFs) based on the expression of α-SMA and vimentin, and we examined the cell glycolysis level through glucose consumption and lactate production experiments. The mRNA and protein expression of CAF glycolytic enzymes, lactate dehydrogenase and pyruvate kinase m2, were examined by RT-PCR and western blotting, respectively. In vitro culture first-generation pancreatic CAFs were collected and cultured together with pancreas cancer BxPc-3 and Panc-1 cells. Cell invasion and migration were assessed using a Transwell assay and scratch test, respectively. Mitochondrial activity was assessed by experimentally determining oxidative phosphorylation (OP) activity. The aerobic oxidation index of cancer cells was also examined. Succinate dehydrogenase, fumarate hydratase (FH), and monocarboxylate transporter 1 (MCT1) expression were examined using an MCT1-specific inhibitor to remove ‘tumor-stromal’ metabolic coupling to observe the influence of cell interstices on pancreas cancer progression. First-generation isolated cultured CAFs and NFs both grew well, and showed active proliferation. Glucose absorption and lactate production were significantly enhanced in CAFs compared with that in NFs. PCR and western blotting showed that the lactate dehydrogenase and pyruvate kinase m2 mRNA and protein expression levels were increased in the CAFs. After indirect co-culture, OP was increased in the BxPc-3 and Panc-1 cells; correspondingly, succinate dehydrogenase, FH and MCT expression were increased. After the MCT1-specific inhibitor removed ‘tumor-stromal’ metabolic coupling, the migration and invasion abilities of the pancreatic cancer cells were decreased. Pancreatic CAFs can alter metabolism as well as communicate with and respond to cancer cell migration and invasion. This may be an important mechanism for promoting tumor progression in a non-vascular manner in the tumor microenvironment. The mechanism by which CAFs reshape metabolic transition requires further analysis.
Collapse
Affiliation(s)
- Tao Shan
- Department of General Surgery, The Second Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shuo Chen
- Department of General Surgery, The Second Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xi Chen
- Department of General Surgery, The Second Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wan Run Lin
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Wei Li
- Graduate School, Fourth Military Medical University, Xi'an, Shaanxi 710033, P.R. China
| | - Jiancang Ma
- Department of General Surgery, The Second Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Tao Wu
- Department of General Surgery, The Second Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xijuan Cui
- Department of General Surgery, First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hong Ji
- Department of General Surgery, The Second Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yiming Li
- Department of General Surgery, The Second Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
42
|
Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Ishige N. Proliferation and motility of hepatocellular, pancreatic and gastric cancer cells grown in a medium without glucose and arginine, but with galactose and ornithine. Oncol Lett 2017; 13:1276-1280. [PMID: 28454246 DOI: 10.3892/ol.2017.5568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/10/2016] [Indexed: 12/14/2022] Open
Abstract
Human primary hepatocytes are able to survive in a medium without glucose and arginine, but supplemented with galactose and ornithine (hepatocyte selection medium; HSM). To address the possibility of the application of HSM in cancer therapy, hepatocellular carcinoma cells, pancreatic cancer cells and gastric cancer cells were cultured in HSM. Cell proliferation was analyzed using an MTS assay. Morphological changes were analyzed using hematoxylin and eosin staining. Apoptosis was analyzed using a TUNEL assay and cell motility was assessed with a scratch assay. Cell proliferation was significantly suppressed in cell lines grown in HSM (P<0.01 in all the cell lines). Hematoxylin and eosin staining revealed pyknotic nuclei, suggesting that these cells had undergone apoptosis. The number of TUNEL-positive cells was significantly increased in HSM. In the scratch assay, the distance between the growing edge and the scratched edge was significantly lower (P<0.01 in all the cell lines) in cells cultured in HSM, compared with those grown in Dulbecco's modified Eagle's medium or RPMI-1640. Therefore, the proliferation and motility of hepatocellular carcinoma cells, pancreatic cancer cells and gastric cancer cells was suppressed, and these cells subsequently underwent apoptosis in a medium without glucose and arginine, but containing galactose and ornithine.
Collapse
Affiliation(s)
- Minoru Tomizawa
- Department of Gastroenterology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - Fuminobu Shinozaki
- Department of Radiology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - Yasufumi Motoyoshi
- Department of Neurology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - Takao Sugiyama
- Department of Rheumatology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - Shigenori Yamamoto
- Department of Pediatrics, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - Naoki Ishige
- Department of Neurosurgery, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| |
Collapse
|
43
|
Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect. Acta Pharmacol Sin 2016; 37:1013-9. [PMID: 27374491 DOI: 10.1038/aps.2016.47] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/22/2016] [Indexed: 12/11/2022] Open
Abstract
Tumor cells rely mainly on glycolysis for energy production even in the presence of sufficient oxygen, a phenomenon termed the Warburg effect, which is the most outstanding characteristic of energy metabolism in cancer cells. This metabolic adaptation is believed to be critical for tumor cell growth and proliferation, and a number of onco-proteins and tumor suppressors, including the PI3K/Akt/mTOR signaling pathway, Myc, hypoxia-inducible factor and p53, are involved in the regulation of this metabolic adaptation. Moreover, glycolytic cancer cells are often invasive and impervious to therapeutic intervention. Thus, altered energy metabolism is now appreciated as a hallmark of cancer and a promising target for cancer treatment. A better understanding of the biology and the regulatory mechanisms of aerobic glycolysis has the potential to facilitate the development of glycolysis-based therapeutic interventions for cancer. In addition, glycolysis inhibition combined with DNA damaging drugs or chemotherapeutic agents may be effective anticancer strategies through weakening cell damage repair capacity and enhancing drug cytotoxicity.
Collapse
|
44
|
Dong T, Kang X, Liu Z, Zhao S, Ma W, Xuan Q, Liu H, Wang Z, Zhang Q. Altered glycometabolism affects both clinical features and prognosis of triple-negative and neoadjuvant chemotherapy-treated breast cancer. Tumour Biol 2016; 37:8159-68. [PMID: 26715276 DOI: 10.1007/s13277-015-4729-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022] Open
Abstract
Glycometabolism is a distinctive aspect of energy metabolism in breast cancer, and key glycometabolism enzymes/pathways (glycolysis, hexosamine biosynthetic pathway, and pentose phosphate pathway) may directly or indirectly affect the clinical features. In this study, we analyzed the particular correlation between the altered glycometabolism and clinical features of breast cancer to instruct research and clinical treatment. Tissue microarrays containing 189 hollow needle aspiration samples and 295 triple-negative breast cancer tissues were used to test the expression of M2 isoform of pyruvate kinase (PKM2), glutamine-fructose-6-phosphate transaminase 1 (GFPT1), glucose-6-phosphate dehydrogenase (G6PD), and p53 by immunohistochemistry and the intensity of these glycometabolism-related protein was evaluated. Chi-square test, Kaplan-Meier estimates, and Cox proportional hazards model were used to analyze the relationship between the expression of these factors and major clinical features. PKM2, GFPT1, and G6PD affect the pathologic complete response rate of neoadjuvant chemotherapy patients in different ways; pyruvate kinase muscle isozyme 2 (PKM2) and G6PD are closely associated with the molecular subtypes, whereas GFPT1 is correlated with cancer size. All these three factors as well as p53 have impacts on the progression-free survival and overall survival of triple-negative breast cancer patients. Cancer size shows significant association with PKM2 and GFPT1 expression, while the pN stage and grade are associated with PKM2 and G6PD expression. Our study support that clinical characteristics are reflections of specific glycometabolism pathways, so their relationships may shed light on the orientation of research or clinical treatment. The expression of PKM2, GFPT1, and G6PD are hazardous factors for prognosis: high expression of these proteins predict worse progression-free survival and overall survival in triple-negative breast cancer, as well as worse pathologic complete response rate in neoadjuvant chemotherapy breast cancer. However, p53 appears as a protective factor only in the patients receiving neoadjuvant chemotherapy. All the four proteins, PKM2, GFPT1, G6PD and p53, are prognostic markers of breast cancer. The correlation among them suggests that there may be crosstalk of the four proteins in breast cancer.
Collapse
Affiliation(s)
- Tieying Dong
- Department of Internal Medicine, The Third Affiliated Hospital of Harbin Medical University, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Xinmei Kang
- Department of Internal Medicine, The Third Affiliated Hospital of Harbin Medical University, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Zhaoliang Liu
- Cancer Research Institute, Harbin Medical University, Harbin, China
- Cancer Research Institute of Heilongjiang, Harbin, China
| | - Shu Zhao
- Department of Internal Medicine, The Third Affiliated Hospital of Harbin Medical University, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Wenjie Ma
- Department of Internal Medicine, The Third Affiliated Hospital of Harbin Medical University, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Qijia Xuan
- Department of Internal Medicine, The Third Affiliated Hospital of Harbin Medical University, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Hang Liu
- Department of Internal Medicine, The Third Affiliated Hospital of Harbin Medical University, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Zhipeng Wang
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingyuan Zhang
- Department of Internal Medicine, The Third Affiliated Hospital of Harbin Medical University, Haping Road 150 of Nangang District, Harbin, Heilongjiang Province, 150081, China.
- Cancer Research Institute of Heilongjiang, Harbin, China.
| |
Collapse
|
45
|
Georgescu I, Gooding RJ, Doiron RC, Day A, Selvarajah S, Davidson C, Berman DM, Park PC. Molecular characterization of Gleason patterns 3 and 4 prostate cancer using reverse Warburg effect-associated genes. Cancer Metab 2016; 4:8. [PMID: 27152194 PMCID: PMC4857335 DOI: 10.1186/s40170-016-0149-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 03/29/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Gleason scores (GS) 3+3 and 3+4 prostate cancers (PCa) differ greatly in their clinical courses, with Gleason pattern (GP) 4 representing a major independent risk factor for cancer progression. However, Gleason grade is not reliably ascertained by diagnostic biopsy, largely due to sampling inadequacies, subjectivity in the Gleason grading procedure, and a lack of more objective biomarker assays to stratify prostate cancer aggressiveness. In most aggressive cancer types, the tumor microenvironment exhibits a reciprocal pro-tumorigenic metabolic phenotype consistent with the reverse Warburg effect (RWE). The RWE can be viewed as a physiologic response to the epithelial phenotype that is independent of both the epithelial genotype and of direct tumor sampling. We hypothesize that differential expression of RWE-associated genes can be used to classify Gleason pattern, distinguishing GP3 from GP4 PCa foci. METHODS Gene expression profiling was conducted on RNA extracted from laser-capture microdissected stromal tissue surrounding 20 GP3 and 21 GP4 cancer foci from PCa patients with GS 3+3 and GS ≥4+3, respectively. Genes were probed using a 102-gene NanoString probe set targeted towards biological processes associated with the RWE. Differentially expressed genes were identified from normalized data by univariate analysis. A top-scoring pair (TSP) analysis was completed on raw gene expression values. Genes were analyzed for enriched Gene Ontology (GO) biological processes and protein-protein interactions using STRING and GeneMANIA. RESULTS Univariate analysis identified nine genes (FOXO1 (AUC: 0.884), GPD2, SPARC, HK2, COL1A2, ALDOA, MCT4, NRF2, and ATG5) that were differentially expressed between GP3 and GP4 stroma (p<0.05). However, following correction for false discovery, only FOXO1 retained statistical significance at q<0.05. The TSP analysis identified a significant gene pair, namely ATG5/GLUT1. Greater expression of ATG5 relative to GLUT1 correctly classified 77.4 % of GP3/GP4 samples. Enrichment for GO-biological processes revealed that catabolic glucose processes and oxidative stress response pathways were strongly associated with GP3 foci but not GP4. FOXO1 was identified as being a primary nodal protein. CONCLUSIONS We report that RWE-associated genes can be used to distinguish between GP3 and GP4 prostate cancers. Moreover, we find that the RWE response is downregulated in the stroma surrounding GP4, possibly via modulation of FOXO1.
Collapse
Affiliation(s)
- Ilinca Georgescu
- />Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON Canada
- />Division of Cancer Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston, ON Canada
| | - Robert J. Gooding
- />Division of Cancer Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston, ON Canada
- />Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, ON Canada
| | | | - Andrew Day
- />NCIC Clinical Trials Group, Queen’s University, Kingston, ON Canada
| | - Shamini Selvarajah
- />Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON Canada
| | - Chris Davidson
- />Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON Canada
| | - David M. Berman
- />Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON Canada
- />Division of Cancer Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston, ON Canada
| | - Paul C. Park
- />Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON Canada
- />Ontario Institute for Cancer Research, Toronto, ON Canada
| |
Collapse
|
46
|
CAF cellular glycolysis: linking cancer cells with the microenvironment. Tumour Biol 2016; 37:8503-14. [PMID: 27075473 DOI: 10.1007/s13277-016-5049-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/01/2016] [Indexed: 02/06/2023] Open
Abstract
Cancers have long being hallmarked as cells relying heavily on their glycolysis for energy generation in spite of having functional mitochondria. The metabolic status of the cancer cells have been revisited time and again to get better insight into the overall carcinogenesis process which revealed the apparent crosstalks between the cancer cells with the fibroblasts present in the tumour microenvironment. This review focuses on the mechanisms of transformations of normal fibroblasts to cancer-associated fibroblasts (CAF), the participation of the CAF in tumour progression with special interest to the role of CAF cellular glycolysis in the overall tumorigenesis. The fibroblasts, when undergoes the transformation process, distinctly switches to a more glycolytic phenotype in order to provide the metabolic intermediates necessary for carrying out the mitochondrial pathways of ATP generation in cancer cells. This review will also discuss the molecular mechanisms responsible for this metabolic make over promoting glycolysis in CAF cells. A thorough investigation of the pathways and molecules involved will not only help in understanding the process of activation and metabolic reprogramming in CAF cells but also might open up new targets for cancer therapy.
Collapse
|
47
|
Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in Tumor Growth. Cancers (Basel) 2015; 7:2443-58. [PMID: 26690480 PMCID: PMC4695902 DOI: 10.3390/cancers7040902] [Citation(s) in RCA: 544] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/17/2015] [Accepted: 12/07/2015] [Indexed: 12/17/2022] Open
Abstract
Cancer tissues are composed of cancer cells and the surrounding stromal cells (e.g., fibroblasts, vascular endothelial cells, and immune cells), in addition to the extracellular matrix. Most studies investigating carcinogenesis and the progression, invasion, metastasis, and angiogenesis of cancer have focused on alterations in cancer cells, including genetic and epigenetic changes. Recently, interactions between cancer cells and the stroma have attracted considerable attention, and increasing evidence has accumulated on this. Several researchers have gradually clarified the origins, features, and roles of cancer-associated fibroblasts (CAFs), a major component of the cancer stroma. CAFs function in a similar manner to myofibroblasts during wound healing. We previously reported the relationship between CAFs and angiogenesis. Interleukin-6 (IL-6), a multifunctional cytokine, plays a central role in regulating inflammatory and immune responses, and important roles in the progression, including proliferation, migration, and angiogenesis, of several cancers. We showed that CAFs are an important IL-6 source and that anti-IL-6 receptor antibody suppressed angiogenesis and inhibited tumor-stroma interactions. Furthermore, CAFs contribute to drug-resistance acquisition in cancer cells. The interaction between cancer cells and the stroma could be a potential target for anti-cancer therapy.
Collapse
|
48
|
MicroRNA-144 mediates metabolic shift in ovarian cancer cells by directly targeting Glut1. Tumour Biol 2015; 37:6855-60. [PMID: 26662316 DOI: 10.1007/s13277-015-4558-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022] Open
Abstract
Warburg effect is characterized by an increased utilization of glucose via glycolysis in cancer cells, even when enough oxygen is present to properly respire. Recent studies demonstrate that deregulation of microRNAs contributes to the Warburg effect. In the present study, we show that miR-144 is downregulated while glucose transporter 1 (Glut1) is upregulated in ovarian cancers. In vitro studies further showed that miR-144 inhibits Glut1 expression through targeting its 3'-untranslated region. As a result, cells overexpressing miR-144 exhibited a metabolic shift, including enhanced glucose uptake and lactate production. The altered glucose metabolism induced by miR-144 also leads to a rapid growth of ovarian cancer cells. Taken together, our results indicate that miR-144 may serve as a molecular switch to regulate glycolysis in ovarian cancer by targeting the expression of Glut1.
Collapse
|
49
|
Gómez VE, Giovannetti E, Peters GJ. Unraveling the complexity of autophagy: Potential therapeutic applications in Pancreatic Ductal Adenocarcinoma. Semin Cancer Biol 2015; 35:11-9. [PMID: 26408419 DOI: 10.1016/j.semcancer.2015.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 01/14/2023]
Abstract
Autophagy is a highly dynamic, evolutionary conserved cellular homeostatic process that occurs at baseline levels in most cells. It exerts predominantly cytoprotective effects by removing damaged organelles and protein aggregates. In cancer, however, autophagy acts as both a tumor suppressor by preventing ROS-induced tumorigenesis and as a tumor inducer by providing nutrients to tumor cells under hypoxic, low-energy conditions and protecting them against therapeutically induced stress. Pancreatic Ductal Adenocarcinoma is an extremely lethal and aggressive neoplasm with a 5 year-survival rate between 1% and 5%. One of the most important factors affecting its poor prognosis is its high resistance to most of the existing chemotherapeutic regimens. The role of autophagy in PDAC has been investigated by different research groups and the results are quite divergent; some research lines point at autophagy as a tumor promoting mechanism, whereas other studies assign oncosuppressive functions to it. Nevertheless, several distinct preclinical studies and clinical trials have evaluated the efficacy of both autophagy inducers and autophagy inhibitors as therapeutic compounds against PDAC, many of them providing promising results. Although a better understanding of the complexity of autophagy is needed, the modulation of this process opens new opportunities for prognostic and therapeutic purposes.
Collapse
Affiliation(s)
- Valentina E Gómez
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Berardi DE, Flumian C, Rodriguez CE, Díaz Bessone MI, Cirigliano SM, Bal de Kier Joffé ED, Fiszman GL, Urtreger AJ, Todaro LB. PKCδ Inhibition Impairs Mammary Cancer Proliferative Capacity But Selects Cancer Stem Cells, Involving Autophagy. J Cell Biochem 2015; 117:730-40. [DOI: 10.1002/jcb.25358] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 09/01/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Damián E. Berardi
- Research Area; Institute of Oncology “Angel H. Roffo”; University of Buenos Aires; Buenos Aires Argentina
| | - Carolina Flumian
- Research Area; Institute of Oncology “Angel H. Roffo”; University of Buenos Aires; Buenos Aires Argentina
| | - Cristina E. Rodriguez
- Research Area; Institute of Oncology “Angel H. Roffo”; University of Buenos Aires; Buenos Aires Argentina
| | - María I. Díaz Bessone
- Research Area; Institute of Oncology “Angel H. Roffo”; University of Buenos Aires; Buenos Aires Argentina
| | - Stefano M. Cirigliano
- Research Area; Institute of Oncology “Angel H. Roffo”; University of Buenos Aires; Buenos Aires Argentina
| | - Elisa D. Bal de Kier Joffé
- Research Area; Institute of Oncology “Angel H. Roffo”; University of Buenos Aires; Buenos Aires Argentina
| | - Gabriel L. Fiszman
- Research Area; Institute of Oncology “Angel H. Roffo”; University of Buenos Aires; Buenos Aires Argentina
| | - Alejandro J. Urtreger
- Research Area; Institute of Oncology “Angel H. Roffo”; University of Buenos Aires; Buenos Aires Argentina
| | - Laura B. Todaro
- Research Area; Institute of Oncology “Angel H. Roffo”; University of Buenos Aires; Buenos Aires Argentina
| |
Collapse
|